Skip to main content

Synthesis of Hybridized Rheological Modifiers for 3D Concrete Printing

  • Conference paper
  • First Online:
Second RILEM International Conference on Concrete and Digital Fabrication (DC 2020)

Part of the book series: RILEM Bookseries ((RILEM,volume 28))

Included in the following conference series:

Abstract

Viscosity and static yield stress are key rheological properties for 3D concrete printing (3DCP), where high static yield stress is associated with high buildability and shape stability and low viscosity is associated with extrudability and pumping. The challenge in concrete rheology lies in decoupling the effect of admixtures on these two properties, i.e. achieving high static yield stresses while still maintaining moderately low viscosities. In this paper, we present a hybridized additive system of nanoclays and viscosity modifying admixtures that can tailor the rheological properties of cement composites to meet 3DCP performance requirements. Further, because 3DCP is a technology of scales, any additive must meet scalability and stability requirements for construction, i.e. ease of processing in abundance and relatively low cost, and exhibit an extended shelf life. We examine different methods of synthesizing the hybrid systems and examine their stability through measuring their effect on cement rheology at different component ratios and at different time stamps from the time of hybridization. We then demonstrate their impact on printing performance by producing complex 3D prints utilizing cement pastes modified with the hybridized additive system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khoshnevis, B.: Automated construction by contour crafting—related robotics and information technologies. Autom. Constr. 13(1), 5–19 (2004). ISSN 0926-5805

    Article  Google Scholar 

  2. Roussel, N.: Rheological requirements for printable concretes. Cem. Concr. Res. 112, 76–85 (2018). ISSN 0008-8846

    Article  CAS  Google Scholar 

  3. Marchon, D., Kawashima, S., Bessaies-Bey, H., Mantellato, S., Ng, S.: Hydration and rheology control of concrete for digital fabrication: potential admixtures and cement chemistry. Cem. Concr. Res. 112, 96–110 (2018). ISSN 0008-8846

    Article  CAS  Google Scholar 

  4. Roussel, N., Ovarlez, G., Garrault, S., Brumaud, C.: The origins of thixotropy of fresh cement pastes. Cem. Concr. Res. 42(1), 148–157 (2012). ISSN 0008-8846

    Article  CAS  Google Scholar 

  5. Lomboy, G.R., Wang, K.: Semi-flowable self-consolidating concrete and its application. Int. J. Mater. Struct. Integrity 9(1–3), 61–71 (2015). https://doi.org/10.1504/IJMSI.2015.071110

    Article  CAS  Google Scholar 

  6. Dejaeghere, I., Sonebi, M., De Schutter, G.: Influence of nano-clay on rheology, fresh properties, heat of hydration and strength of cement-based mortars. Constr. Build. Mater. 222, 73–85 (2019). ISSN 0950-0618

    Article  CAS  Google Scholar 

  7. Liu, Y., Han, J., Li, M., Yan, P.: Effect of a nanoscale viscosity modifier on rheological properties of cement pastes and mechanical properties of mortars. Constr. Build. Mater. 190, 255–264 (2018). ISSN 0950-0618

    Article  Google Scholar 

  8. Kawashima, S., Kim, J.H., Corr, D.J., Shah, S.P.: Study of the mechanisms underlying the fresh-state response of cementitious materials modified with nanoclays. Constr. Build. Mater. 36, 749–757 (2012). ISSN 0950-0618

    Article  Google Scholar 

  9. Kazemian, A., Yuan, X., Cochran, E., Khoshnevis, B.: Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture. Constr. Build. Mater. 145, 639–647 (2017). https://doi.org/10.1016/j.conbuildmat.2017.04.015. ISSN 0950-0618

    Article  CAS  Google Scholar 

  10. ActiveMinerals International, LLC: What is Acti-Gel® 208 and the science behind Acti-Gel® 208 (2017)

    Google Scholar 

  11. Qian, Y., De Schutter, G.: Enhancing thixotropy of fresh cement pastes with nanoclay in presence of polycarboxylate ether superplasticizer (PCE). Cem. Concr. Res. 111, 15–22 (2018). ISSN 0008-8846

    Article  CAS  Google Scholar 

  12. Panda, B., Ruan, S., Unluer, C., Tan, M.J.: Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay. Compos. Part B Eng. 165, 75–83 (2019). ISSN 1359-8368

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Science Foundation (Award # 1653419) for financial support, and technical support by the staff of Columbia University’s Carleton Laboratory. We would also like to acknowledge the efforts of Hajin Kim, Elise Westhoff, Jonathan Rosas and Jithu Alexander for contributing to our experimental procedures and testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiho Kawashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 RILEM

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Douba, A., Chan, C., Berrios, S., Kawashima, S. (2020). Synthesis of Hybridized Rheological Modifiers for 3D Concrete Printing. In: Bos, F., Lucas, S., Wolfs, R., Salet, T. (eds) Second RILEM International Conference on Concrete and Digital Fabrication. DC 2020. RILEM Bookseries, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-49916-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49916-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49915-0

  • Online ISBN: 978-3-030-49916-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics