Skip to main content

Abstract

This work focuses on an autonomous swarm of drones, a multi-agent system, where the leader agent has the capability of intelligent decision making while the other agents in the swarm follow the leader blindly. The proposed algorithm helps with cost cutting especially in the multi-drone systems, i.e., swarms, by reducing the power consumption and processing requirements of each individual agent. It is shown that by applying a pre-specified formation design with feedback cross-referencing between the agents, the swarm as a whole can not only maintain the desired formation and navigate but also avoid collisions with obstacles and other drones. Furthermore, the power consumed by the nodes in the considered test scenario, is reduced by 50% by utilising the proposed methodology.

This work has been supported in part by the Academy of Finland-funded research project 314048 and Finnish Cultural Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campion, M., Ranganathan, P., Faruque, S.: A review and future directions of UAV swarm communication architectures. In: 2018 IEEE International Conference on Electro/Information Technology (EIT), pp. 0903–0908, May 2018

    Google Scholar 

  2. Murray, R.: Recent research in cooperative control of multi-vehicle systems. J. Dyn. Syst. Meas. Control 129, 571–598 (2007)

    Article  Google Scholar 

  3. He, L., Bai, P., Liang, X., Zhang, J., Wang, W.: Feedback formation control of UAV swarm with multiple implicit leaders. Aerosp. Sci. Technol. 72, 327–334 (2018). https://doi.org/10.1016/j.ast.2017.11.020, http://www.sciencedirect.com/science/article/pii/S1270963816309816

  4. Ladd, G., Bland, G.: Non-military applications for small UAS platforms. In: AIAA Infotech@ Aerospace Conference and AIAA Unmanned... Unlimited Conference, p. 2046 (2009)

    Google Scholar 

  5. Mualla, Y., et al.: Agent-based simulation of unmanned aerial vehicles in civilian applications: a systematic literature review and research directions. Future Gener. Comput. Syst. 100, 344–364 (2019). https://doi.org/10.1016/j.future.2019.04.051, http://www.sciencedirect.com/science/article/pii/S0167739X18328462

  6. Gkiokas, A., Cristea, A.I.: Cognitive agents and machine learning by example: representation with conceptual graphs. Comput. Intell. 34(2), 603–634 (2018). https://doi.org/10.1111/coin.12167, https://onlinelibrary.wiley.com/doi/abs/10.1111/coin.12167

  7. Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: a survey. IEEE Access 6, 28573–28593 (2018)

    Article  Google Scholar 

  8. Zhuge, C., Cai, Y., Tang, Z.: A novel dynamic obstacle avoidance algorithm based on collision time histogram. Chin. J. Electron. 26(3), 522–529 (2017)

    Article  Google Scholar 

  9. Wang, X., Yadav, V., Balakrishnan, S.N.: Cooperative uav formation flying with obstacle/collision avoidance. IEEE Trans. Control Syst. Technol. 15(4), 672–679 (2007)

    Article  Google Scholar 

  10. Wei, R.: Consensus based formation control strategies for multi-vehicle systems. In: 2006 American Control Conference, pp. 6pp., June 2006

    Google Scholar 

  11. Low, C.B., Ng, Q.S.: A flexible virtual structure formation keeping control for fixed-wing UAVs. In: 2011 9th IEEE International Conference on Control and Automation (ICCA), pp. 621–626, December 2011

    Google Scholar 

  12. Beard, R.W., Lawton, J., Hadaegh, F.Y.: A coordination architecture for spacecraft formation control. IEEE Trans. Control Syst. Technol. 9(6), 777–790 (2001)

    Article  Google Scholar 

  13. Li, N.H., Liu, H.H.: Formation UAV flight control using virtual structure and motion synchronization. In: 2008 American Control Conference, pp. 1782–1787. IEEE (2008)

    Google Scholar 

  14. Dong, L., Chen, Y., Qu, X.: Formation control strategy for nonholonomic intelligent vehicles based on virtual structure and consensus approach. Procedia Eng. 137, 415–424 (2016). Green Intelligent Transportation System and Safety

    Google Scholar 

  15. Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent formation control. Automatica 53, 424–440 (2015)

    Article  MathSciNet  Google Scholar 

  16. Buzogany, L., Pachter, M., D’azzo, J.: Automated control of aircraft in formation flight. In: Guidance, Navigation and Control Conference, p. 3852 (1993)

    Google Scholar 

  17. Shen, D., Sun, Z., Sun, W.: Leader-follower formation control without leader’s velocity information. Sci. China Inf. Sci. 57(9), 1–12 (2014)

    Article  Google Scholar 

  18. Han, Q., Li, T., Sun, S., Villarrubia, G., de la Prieta, F.: “1-N” leader-follower formation control of multiple agents based on bearing-only observation. In: Demazeau, Y., Decker, K.S., Bajo Pérez, J., de la Prieta, F. (eds.) Advances in Practical Applications of Agents, Multi-Agent Systems, and Sustainability: The PAAMS Collection, pp. 120–130. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-18944-4_10

    Chapter  Google Scholar 

  19. Lawton, J.R., Beard, R.W., Young, B.J.: A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom. 19(6), 933–941 (2003)

    Article  Google Scholar 

  20. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  21. Zhang, X., Liniger, A., Borrelli, F.: Optimization-based collision avoidance. arXiv preprint arXiv:1711.03449 (2017)

  22. Pham, H., Smolka, S.A., Stoller, S.D., Phan, D., Yang, J.: A survey on unmanned aerial vehicle collision avoidance systems. CoRR abs/1508.07723 (2015). http://arxiv.org/abs/1508.07723

  23. Smith, N.E., Cobb, R., Pierce, S.J., Raska, V.: Optimal collision avoidance trajectories via direct orthogonal collocation for unmanned/remotely piloted aircraft sense and avoid operations. In: AIAA Guidance, Navigation, and Control Conference, p. 0966 (2014)

    Google Scholar 

  24. Yasin, J.N., Haghbayan, M.H., Heikkonen, J., Tenhunnen, H., Plosila, J.: Formation maintenance and collision avoidance in a swarm of drones. In: Proceedings of the 3rd International Symposium on Computer Science and Intelligent Control. ISCSIC 2019, Amsterdam, Netherlands. ACM, September 2019

    Google Scholar 

  25. Prats, X., Delgado, L., Ramirez, J., Royo, P., Pastor, E.: Requirements, issues, and challenges for sense and avoid in unmanned aircraft systems. J. Aircr. 49(3), 677–687 (2012)

    Article  Google Scholar 

  26. Albaker, B.M., Rahim, N.A.: A survey of collision avoidance approaches for unmanned aerial vehicles. In: 2009 International Conference for Technical Postgraduates (TECHPOS), pp. 1–7, December 2009. https://doi.org/10.1109/TECHPOS.2009.5412074

  27. Soriano, A., Bernabeu, E.J., Valera, A., Vallés, M.: Multi-agent systems platform for mobile robots collision avoidance. In: Demazeau, Y., Ishida, T., Corchado, J.M., Bajo, J. (eds.) Advances on Practical Applications of Agents and Multi-Agent Systems, pp. 320–323. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38073-0_37

    Chapter  Google Scholar 

  28. Albaker, B.M., Rahim, N.A.: Unmanned aircraft collision detection and resolution: concept and survey. In: 2010 5th IEEE Conference on Industrial Electronics and Applications, pp. 248–253, June 2010. https://doi.org/10.1109/ICIEA.2010.5516808

  29. Seo, J., Kim, Y., Kim, S., Tsourdos, A.: Collision avoidance strategies for unmanned aerial vehicles in formation flight. IEEE Trans. Aerosp. Electron. Syst. 53(6), 2718–2734 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawad N. Yasin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yasin, J.N., Mohamed, S.A.S., Haghbayan, MH., Heikkonen, J., Tenhunen, H., Plosila, J. (2020). Navigation of Autonomous Swarm of Drones Using Translational Coordinates. In: Demazeau, Y., Holvoet, T., Corchado, J., Costantini, S. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Trustworthiness. The PAAMS Collection. PAAMS 2020. Lecture Notes in Computer Science(), vol 12092. Springer, Cham. https://doi.org/10.1007/978-3-030-49778-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49778-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49777-4

  • Online ISBN: 978-3-030-49778-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics