Skip to main content

Multimodal Signal Acquisition for Pain Assessment in Physiotherapy

  • Chapter
  • First Online:
Information Technology in Biomedicine

Abstract

Pain monitoring during physiotherapy is an important factor determining the course of therapy. However, current pain scales are subjective and do not feature a unified level of pain that indicates the required interruption of the therapy. Hence, in this study a multimodal platform with wearable devices for monitoring and objective assessment of pain is presented. In the case study, six patients with neck pain underwent fascial therapy with simultaneous recording of signals. For classification we used electrodermal activity, electromyography, and respiration signals. The decision relies on the occurrence of signal distortion surrounding the onset of the pain in a specified time period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aung, M.S.H., Bianchi-Berthouze, N., Watson, P., Williams, A.C.d.C.: Automatic recognition of fear-avoidance behavior in chronic pain physical rehabilitation. In: Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth ’14, pp. 158–161. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels, BEL (2014)

    Google Scholar 

  2. Branchini, M., Lopopolo, F., Andreoli, E., Loreti, I., Marchand, A., Stecco, A.: Fascial manipulation® for chronic aspecific low back pain: a single blinded randomized controlled trial. F1000Research 4 (2015). https://doi.org/10.12688/f1000research.6890.1

  3. Erel, V.K., Özkan, H.S.: Thermal camera as a pain monitor. J. Pain Res. 10, 2827 (2017)

    Google Scholar 

  4. Greco, A., Valenza, G., Lanata, A., Scilingo, E.P., Citi, L.: cvxEDA: a convex optimization approach to electrodermal activity processing. IEEE Trans. Biomed. Eng. 63(4), 797–804 (2016)

    Google Scholar 

  5. Gruss, S., Geiger, M., Werner, P., Wilhelm, O., Traue, H.C., Al-Hamadi, A., Walter, S.: Multi-modal signals for analyzing pain responses to thermal and electrical stimuli. JoVE (Journal of Visualized Experiments) (146), e59,057 (2019)

    Google Scholar 

  6. Haque, M.A., Bautista, R.B., Noroozi, F., Kulkarni, K., Laursen, C.B., Irani, R., Bellantonio, M., Escalera, S., Anbarjafari, G., Nasrollahi, K., et al.: Deep multimodal pain recognition: a database and comparison of spatio-temporal visual modalities. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 250–257. IEEE (2018)

    Google Scholar 

  7. Jafari, H., Courtois, I., Van den Bergh, O., Vlaeyen, J.W., Van Diest, I.: Pain and respiration: a systematic review. Pain 158(6), 995–1006 (2017)

    Article  Google Scholar 

  8. Lee, J., Mawla, I., Kim, J., Loggia, M.L., Ortiz, A., Jung, C., Chan, S.T., Gerber, J., Schmithorst, V.J., Edwards, R.R., et al.: Machine learning–based prediction of clinical pain using multimodal neuroimaging and autonomic metrics. Pain 160(3), 550–560 (2019)

    Google Scholar 

  9. Lim, H., Kim, B., Noh, G.J., Yoo, S.K.: A deep neural network-based pain classifier using a photoplethysmography signal. Sensors 19(2), 384 (2019)

    Google Scholar 

  10. Lopez-Martinez, D., Peng, K., Lee, A., Borsook, D., Picard, R.: Pain detection with fnirs-measured brain signals: a personalized machine learning approach using the wavelet transform and bayesian hierarchical modeling with dirichlet process priors. In: 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), pp. 304–309. IEEE (2019)

    Google Scholar 

  11. Lopez-Martinez, D., Peng, K., Steele, S.C., Lee, A.J., Borsook, D., Picard, R.: Multi-task multiple kernel machines for personalized pain recognition from functional near-infrared spectroscopy brain signals. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 2320–2325. IEEE (2018)

    Google Scholar 

  12. Lopez-Martinez, D., Picard, R.: Multi-task neural networks for personalized pain recognition from physiological signals. In: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), pp. 181–184. IEEE (2017)

    Google Scholar 

  13. Lucey, P., Cohn, J.F., Prkachin, K.M., Solomon, P.E., Chew, S., Matthews, I.: Painful monitoring: automatic pain monitoring using the unbc-mcmaster shoulder pain expression archive database. Image Vis. Comput. 30(3), 197–205 (2012)

    Article  Google Scholar 

  14. Olugbade, T.A., Aung, M.H., Bianchi-Berthouze, N., Marquardt, N., Williams, A.C.: Bi-modal detection of painful reaching for chronic pain rehabilitation systems. In: Proceedings of the 16th International Conference on Multimodal Interaction, ICMI ’14, p. 455–458. Association for Computing Machinery, New York, NY, USA (2014)

    Google Scholar 

  15. Tavakolian, M., Hadid, A.: A spatiotemporal convolutional neural network for automatic pain intensity estimation from facial dynamics. Int. J. Comput. Vis. 127, 1413–1425 (2019)

    Google Scholar 

  16. Velana, M., Gruss, S., Layher, G., Thiam, P., Zhang, Y., Schork, D., Kessler, V., Meudt, S., Neumann, H., Kim, J., et al.: The senseemotion database: a multimodal database for the development and systematic validation of an automatic pain-and emotion-recognition system. In: IAPR Workshop on Multimodal Pattern Recognition of Social Signals in Human-Computer Interaction, pp. 127–139. Springer (2016)

    Google Scholar 

  17. Walter, S., Gruss, S., Ehleiter, H., Tan, J., Traue, H.C., Werner, P., Al-Hamadi, A., Crawcour, S., Andrade, A.O., da Silva, G.M.: The biovid heat pain database data for the advancement and systematic validation of an automated pain recognition system. In: 2013 IEEE international conference on cybernetics (CYBCO), pp. 128–131. IEEE (2013)

    Google Scholar 

  18. Werner, P., Al-Hamadi, A., Gruss, S., Walter, S.: Twofold-multimodal pain recognition with the X-ITE pain database. In: 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), pp. 290–296. IEEE (2019)

    Google Scholar 

  19. Werner, P., Al-Hamadi, A., Limbrecht-Ecklundt, K., Walter, S., Gruss, S., Traue, H.: Automatic pain assessment with facial activity descriptors. IEEE Trans. Affect. Comput. 286–299 (2016). https://doi.org/10.1109/TAFFC.2016.2537327

  20. Wiesenfeld-Hallin, Z.: Sex differences in pain perception. Gend. Med. 2(3), 137–145 (2005)

    Article  Google Scholar 

  21. Yang, F., Banerjee, T., Narine, K., Shah, N.: Improving pain management in patients with sickle cell disease from physiological measures using machine learning techniques. Smart Health 7, 48–59 (2018)

    Google Scholar 

  22. Zhang, X., Yin, L., Cohn, J.F., Canavan, S., Reale, M., Horowitz, A., Liu, P., Girard, J.M.: Bp4d-spontaneous: a high-resolution spontaneous 3D dynamic facial expression database. Image Vis. Comput. 32(10), 692–706 (2014)

    Article  Google Scholar 

  23. E4 wristband. https://www.empatica.com/en-int/research/e4/

  24. K-force grip. https://k-invent.com/produit/k-force-grip/

  25. Medstorme, the painmonitor index. https://med-storm.com/products/the-pain-monitor/

  26. Painchek, intelligent pain assessment. https://www.painchek.com/how-it-works/

  27. Pmd-200, monitoring physiological pain response to optimize analgesia. https://medasense.com/pmd-200

  28. Respiban professional. https://plux.info/biosignalsplux-wearables/313-respiban-professional-820202407.html

Download references

Acknowledgements

This work was supported by The National Centre for Research and Development (grant number WPN-3/1/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Badura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Badura, A., Bieńkowska, M., Masłowska, A., Czarlewski, R., Myśliwiec, A., Pietka, E. (2021). Multimodal Signal Acquisition for Pain Assessment in Physiotherapy. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. Advances in Intelligent Systems and Computing, vol 1186. Springer, Cham. https://doi.org/10.1007/978-3-030-49666-1_18

Download citation

Publish with us

Policies and ethics