Skip to main content

Cloud Computing for Robotics and Surgery

  • Chapter
  • First Online:
Digital Surgery

Abstract

This chapter is intended to be an introduction to cloud computing for surgeons and noncomputer scientists. In addition to presenting a modern history of the cloud, it explores theoretical concepts of applying cloud computer systems to next-generation medical robots and operating room infrastructures. It explains how the cloud is suited for high-scale computational tasks necessary for the integration of artificial intelligence and machine learning into tomorrow’s surgical suite and how it will provide a framework for digital surgery. Machine learning via the cloud versus single machine learning is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jadeja Y, Modi K. Cloud computing-concepts, architecture and challenges. International conference on computing, electronics and electrical technologies (ICCEET). IEEE; 2012. p. 877–80.

    Google Scholar 

  2. Regalado A. Who coined ‘cloud computing’? Technol Rev. 2011;31.

    Google Scholar 

  3. Erl T, Puttini R, Mahmood Z. Cloud computing: concepts, technology & architecture. Westford, MA, USA: Pearson Education; 2013.

    Google Scholar 

  4. Qian L, Luo Z, Du Y, Guo L. Cloud computing: an overview. In: IEEE international conference on cloud computing. Berlin, Heidelberg: Springer; 2009. p. 626–31.

    Google Scholar 

  5. Dijkstra EW. A note on two problems in connexion with graphs. Numer Math. 1959;1(1):269–71.

    Google Scholar 

  6. Duckham M, Kulik L. “Simplest” paths: automated route selection for navigation. In: International conference on spatial information theory. Berlin, Heidelberg: Springer; 2003. p. 169–85.

    Google Scholar 

  7. Nazari S, Meybodi MR, Salehigh MA, Taghipour S. An advanced algorithm for finding shortest path in car navigation system. In: 2008 first international conference on intelligent networks and intelligent systems. New York City, NY, USA: IEEE; 2008. p. 671–4.

    Google Scholar 

  8. Wang H, Yu Y, Yuan Q. Application of Dijkstra algorithm in robot path-planning. In: 2011 second international conference on mechanic automation and control engineering. New York City, NY, USA: IEEE; 2011. p. 1067–9.

    Google Scholar 

  9. Paul U, Subramanian AP, Buddhikot MM, Das SR. Understanding traffic dynamics in cellular data networks. In: 2011 Proceedings IEEE INFOCOM. New York City, NY, USA:IEEE; 2011. p. 882–90.

    Google Scholar 

  10. Hawley J. GeoDNS—geographically-aware, protocol-agnostic load balancing at the DNS level. In: Proceedings of the linux symposium. p. 123–30. https://www.linuxsecrets.com/kdocs/ols/2009/ols2009-pages-123-130.pdf.

  11. Moore G. Moore’s law. Electronics Magazine. 1965;38(8):114.

    Google Scholar 

  12. Mack CA. Fifty years of Moore’s law. IEEE Trans Semicond Manuf. 2011;24(2):202–7.

    Google Scholar 

  13. Schaller RR. Moore’s law: past, present and future. IEEE Spectr. 1997;34(6):52–9.

    Google Scholar 

  14. Keyes RW. The impact of Moore’s law. IEEE Solid-State Circuits Soc Newsletter. 2006;11(3):25–7.

    Google Scholar 

  15. Waldrop MM. The chips are down for Moore’s law. Nature News. 2016;530(7589):144.

    CAS  Google Scholar 

  16. Lundstrom M. Moore’s law forever? Science. 2003;299(5604):210–1.

    CAS  PubMed  Google Scholar 

  17. Kish LB. End of Moore’s law: thermal (noise) death of integration in micro and nano electronics. Phys Lett A. 2002;305(3–4):144–9.

    CAS  Google Scholar 

  18. Borkar S. Obeying Moore’s law beyond 0.18 micron [microprocessor design]. In: Proceedings of 13th annual IEEE international ASIC/SOC conference (Cat. No. 00TH8541). New York City, NY, US: IEEE; 2000. p. 26–31.

    Google Scholar 

  19. Compton AH. A quantum theory of the scattering of X-rays by light elements. Phys Rev. 1923;21(5):483.

    CAS  Google Scholar 

  20. Powell JR. The quantum limit to Moore’s law. Proc IEEE. 2008;96(8):1247–8.

    Google Scholar 

  21. Theis TN, Wong HS. The end of Moore’s law: a new beginning for information technology. Comput Sci Eng. 2017;19(2):41.

    Google Scholar 

  22. Roberts LG. Beyond Moore’s law: internet growth trends. Computer. 2000;33(1):117–9.

    Google Scholar 

  23. Meindl JD. Beyond Moore’s law: the interconnect era. Comput Sci Eng. 2003;5(1):20–4.

    Google Scholar 

  24. Schwartz WB. Medicine and the computer. The promise and problems of change. N Engl J Med. 1970;283(23):1257–64.

    CAS  PubMed  Google Scholar 

  25. Schwartz WB, Patil RS, Szolovits P. Artificial intelligence in medicine. Where do we stand? N Engl J Med. 1987;316(11):685–8.

    CAS  PubMed  Google Scholar 

  26. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44.

    CAS  PubMed  Google Scholar 

  27. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44. https://doi.org/10.1038/nature14539.

    Article  CAS  PubMed  Google Scholar 

  28. Hinton G. Deep learning-A technology with the potential to transform health care. JAMA. 2018;320(11):1101–2. https://doi.org/10.1001/jama.2018.11100.

    Article  PubMed  Google Scholar 

  29. Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. 2018;319(13):1317–8. https://doi.org/10.1001/jama.2017.18391.

    Article  PubMed  Google Scholar 

  30. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347–58. https://doi.org/10.1056/NEJMra1814259.

    Article  PubMed  Google Scholar 

  31. Ferrucci D, Brown E, Chu-Carroll J, Fan J, Gondek D, Kalyanpur AA, Lally A, Murdock JW, Nyberg E, Prager J, Schlaefer N. Building Watson: an overview of the DeepQA project. AI Mag. 2010;31(3):59–79.

    Google Scholar 

  32. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8. https://doi.org/10.1038/nature21056. Epub 2017 Jan 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nistér D, Naroditsky O, Bergen J. Visual odometry. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004, vol. 1. New York City, NY, USA: IEEE; 2004. p. I.

    Google Scholar 

  34. Howard TM, Morfopoulos A, Morrison J, Kuwata Y, Villalpando C, Matthies L, McHenry M. Enabling continuous planetary rover navigation through FPGA stereo and visual odometry. In: 2012 IEEE aerospace conference: IEEE; 2012. p. 1–9.

    Google Scholar 

  35. Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B, Goyal P, Jackel LD, Monfort M, Muller U, Zhang J, Zhang X. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316. 2016.

    Google Scholar 

  36. Dissanayake MG, Newman P, Clark S, Durrant-Whyte HF, Csorba M. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans Robot Autom. 2001;17(3):229–41.

    Google Scholar 

  37. Guivant JE, Nebot EM. Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Trans Robot Autom. 2001;17(3):242–57.

    Google Scholar 

  38. Leonard JJ, Durrant-Whyte HF. Simultaneous map building and localization for an autonomous mobile robot. In: Proceedings IROS’91: IEEE/RSJ international workshop on intelligent robots and systems’ 91: IEEE; 1991. p. 1442–7.

    Google Scholar 

  39. Montemerlo M, Thrun S, Koller D, Wegbreit B. FastSLAM: A factored solution to the simultaneous localization and mapping problem. AAAI/IAAI. 2002;593–8.

    Google Scholar 

  40. Newcombe RA, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison AJ, Kohli P, Shotton J, Hodges S, Fitzgibbon AW. Kinectfusion: real-time dense surface mapping and tracking. In: ISMAR. Vol. 11, No. 2011. New York City, NY, USA: IEEE; 2011. p. 127–36.

    Google Scholar 

  41. Newcombe RA, Lovegrove SJ, Davison AJ. DTAM: dense tracking and mapping in real-time. In: 2011 international conference on computer vision. New York City, NY, USA: IEEE; 2011. p. 2320–7.

    Google Scholar 

  42. Yamamoto Y, Pirjanian P, Munich M, DiBernardo E, Goncalves L, Ostrowski J, Karlsson N. Optical sensing for robot perception and localization. In: IEEE workshop on advanced robotics and its social impacts, 2005. New York City, NY, USA: IEEE; 2005. p. 14–7.

    Google Scholar 

  43. Turan M, Almalioglu Y, Konukoglu E, Sitti M. A deep learning based 6 degree-of-freedom localization method for endoscopic capsule robots. arXiv preprint arXiv:1705.05435. 2017.

    Google Scholar 

  44. Turan M, Almalioglu Y, Araujo H, Konukoglu E, Sitti M. A non-rigid map fusion-based direct slam method for endoscopic capsule robots. Int J Intelligent Robot Appl. 2017;1(4):399–409.

    Google Scholar 

  45. Lin B. Visual SLAM and surface reconstruction for abdominal minimally invasive surgery. 2015. Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5849.

  46. Lin B, Sun Y, Qian X, Goldgof D, Gitlin R, You Y. Video-based 3D reconstruction, laparoscope localization and deformation recovery for abdominal minimally invasive surgery: a survey. Int J Med Robot Comput Assist Surg. 2016;12(2):158–78.

    Google Scholar 

  47. Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D. Review of emerging surgical robotic technology. Surg Endosc. 2018;32(4):1636–55.

    PubMed  Google Scholar 

  48. Atallah S, Parra-Davila E, Melani AGF. Assessment of the Versius surgical robotic system for dual-field synchronous transanal total mesorectal excision (taTME) in a preclinical model: will tomorrow’s surgical robots promise newfound options? Tech Coloproctol. 2019;23(5):471–7. https://doi.org/10.1007/s10151-019-01992-1. Epub 2019 May 8.

    Article  CAS  PubMed  Google Scholar 

  49. Wu C. Towards linear-time incremental structure from motion. In: 2013 international conference on 3D vision-3DV 2013. New York City, NY, USA: IEEE; 2013. p. 127–34.

    Google Scholar 

  50. Burschka D, Li M, Ishii M, Taylor RH, Hager GD. Scale-invariant registration of monocular endoscopic images to CT-scans for sinus surgery. Med Image Anal. 2005;9(5):413–26.

    PubMed  Google Scholar 

  51. Chen PD, Hu RH, Liang JT, Huang CS, Wu YM. Toward a fully robotic surgery: performing robotic major liver resection with no table-side surgeon. Int J Med Robot. 2019;15(2):e1985. https://doi.org/10.1002/rcs.1985. Epub 2019 Feb 17.

    Article  PubMed  Google Scholar 

  52. Panesar S, Cagle Y, Chander D, Morey J, Fernandez-Miranda J, Kliot M. Artificial intelligence and the future of surgical robotics. Ann Surg. 2019;270(2):223–6. https://doi.org/10.1097/SLA.0000000000003262.

    Article  PubMed  Google Scholar 

  53. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268(1):70–6. https://doi.org/10.1097/SLA.0000000000002693.

    Article  PubMed  Google Scholar 

  54. Mezger U, Jendrewski C, Bartels M. Navigation in surgery. Langenbeck’s Arch Surg. 2013;398:501–14.

    Google Scholar 

  55. Hashimoto DA, Rosman G, Witkowski ER, Stafford C, Navarette-Welton AJ, Rattner DW, Lillemoe KD, Rus DL, Meireles OR. Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy. Ann Surg. 2019; https://doi.org/10.1097/SLA.0000000000003460. [Epub ahead of print].

  56. Leonard S, Wu KL, Kim Y, Krieger A, Kim PC. Smart tissue anastomosis robot (STAR): A vision-guided robotics system for laparoscopic suturing. IEEE Trans Biomed Eng. 2014;61(4):1305–17.

    PubMed  Google Scholar 

  57. Shademan A, Decker RS, Opfermann JD, Leonard S, Krieger A, Kim PC. Supervised autonomous robotic soft tissue surgery. Sci Transl Med. 2016;8(337):337ra64. https://doi.org/10.1126/scitranslmed.aad9398.

    Article  PubMed  Google Scholar 

  58. Hu G, Tay WP, Wen Y. Cloud robotics: architecture, challenges and applications. IEEE Netw. 2012;26(3):21–8.

    Google Scholar 

  59. Kehoe B, Patil S, Abbeel P, Goldberg K. A survey of research on cloud robotics and automation. IEEE Trans Autom Sci Eng. 2015;12(2):398–409.

    Google Scholar 

  60. Goldberg K, Kehoe B. Cloud robotics and automation: a survey of related work. EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2013-5; 2013.

    Google Scholar 

  61. Wan J, Tang S, Yan H, Li D, Wang S, Vasilakos AV. Cloud robotics: current status and open issues. IEEE Access. 2016;4:2797–807.

    Google Scholar 

  62. Quintas J, Menezes P, Dias J. Cloud robotics: towards context aware robotic networks. In: International conference on robotics; 2011. p. 420–7. Available online at: https://home.isr.uc.pt/~jorge/wp-content/uploads/OP242.pdf.

  63. Kamei K, Nishio S, Hagita N, Sato M. Cloud networked robotics. IEEE Netw. 2012;26(3):28–34.

    Google Scholar 

  64. Turnbull L, Samanta B. Cloud robotics: formation control of a multi robot system utilizing cloud infrastructure. In: 2013 Proceedings of IEEE Southeastcon. New York City, NY, USA: IEEE; 2013. p. 1–4.

    Google Scholar 

  65. Du Z, He L, Chen Y, Xiao Y, Gao P, Wang T. Robot cloud: bridging the power of robotics and cloud computing. Futur Gener Comput Syst. 2017;74:337–48.

    Google Scholar 

  66. Goldberg K, Siegwart R, editors. Beyond Webcams: an introduction to online robots. Cambridge, MA, USA: MIT Press; 2002.

    Google Scholar 

  67. Inaba M, Kagami S, Kanehiro F, Hoshino Y, Inoue H. A platform for robotics research based on the remote-brained robot approach. Int J Robot Res. 2000;19(10):933–54.

    Google Scholar 

  68. Waibel M, Beetz M, Civera J, d'Andrea R, Elfring J, Galvez-Lopez D, Häussermann K, Janssen R, Montiel JM, Perzylo A, Schiessle B. Roboearth-a world wide web for robots. IEEE Robotics Automation Magazine (RAM), Special Issue Towards a WWW for Robots. 2011;18(2):69–82.

    Google Scholar 

  69. Arumugam R, Enti VR, Bingbing L, Xiaojun W, Baskaran K, Kong FF, Kumar AS, Meng KD, Kit GW. DAvinCi: A cloud computing framework for service robots. In: 2010 IEEE international conference on robotics and automation. New York City, NY, USA: IEEE; 2010. p. 3084–9.

    Google Scholar 

  70. Mohanarajah G, Hunziker D, D'Andrea R, Waibel M. Rapyuta: A cloud robotics platform. IEEE Trans Autom Sci Eng. 2014;12(2):481–93.

    Google Scholar 

  71. Aguiar RL, Gomes D, Barraca JP, Lau N. Cloud thinking as an intelligent infrastructure for mobile robotics. Wirel Pers Commun. 2014;76(2):231–44.

    Google Scholar 

  72. Goldenberg MG, Jung J, Grantcharov TP. Using data to enhance performance and improve quality and safety in surgery. JAMA Surg. 2017;152(10):972–3. https://doi.org/10.1001/jamasurg.2017.2888.

    Article  PubMed  Google Scholar 

  73. Grantcharov TP, Yang KL, inventors; Surgical Safety Technologies Inc, Assignee. Operating room black-box device, system, method and computer readable medium for event and error prediction. United States patent application US 15/561,877. 2018.

    Google Scholar 

  74. Gambadauro P, Magos A. Surgical videos for accident analysis, performance improvement, and complication prevention: time for a surgical black box? Surg Innov. 2012;19(1):76–80.

    PubMed  Google Scholar 

  75. Guerlain S, Adams RB, Turrentine FB, Shin T, Guo H, Collins SR, Calland JF. Assessing team performance in the operating room: development and use of a “black-box” recorder and other tools for the intraoperative environment. J Am Coll Surg. 2005;200(1):29–37.

    PubMed  Google Scholar 

  76. Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA. 2013;309(13):1351–2.

    CAS  PubMed  Google Scholar 

  77. Dikaiakos MD, Katsaros D, Mehra P, Pallis G, Vakali A. Cloud computing: distributed internet computing for IT and scientific research. IEEE Internet Comput. 2009;13(5):10–3.

    Google Scholar 

  78. Nickolov P, Armijo B, Miloushev V, Inventors; CA Inc, Assignee. Globally distributed utility computing cloud. United States patent US 9,578,088. 2017.

    Google Scholar 

  79. Strom N. Scalable distributed DNN training using commodity GPU cloud computing. In: Sixteenth annual conference of the International Speech Communication Association. 2015. Available online at: https://www.isca-speech.org/archive/interspeech_2015/papers/i15_1488.pdf.

  80. Skala K, Davidovic D, Afgan E, Sovic I, Sojat Z. Scalable distributed computing hierarchy: cloud, fog and dew computing. Open J Cloud Computing (OJCC). 2015;2(1):16–24.

    Google Scholar 

  81. Jonas E, Pu Q, Venkataraman S, Stoica I, Recht B. Occupy the cloud: distributed computing for the 99%. In: Proceedings of the 2017 symposium on cloud computing. New York, NY,USA: ACM; 2017. p. 445–51.

    Google Scholar 

  82. Zhang Q, Cheng L, Boutaba R. Cloud computing: state-of-the-art and research challenges. J Internet Services Appl. 2010;1(1):7–18.

    CAS  Google Scholar 

  83. Amdahl GM. Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the April 18–20, 1967, spring joint computer conference. New York, NY,USA: ACM; 1967. p. 483–5.

    Google Scholar 

  84. JoSEP AD, KAtz R, KonWinSKi A, Gunho LE, Patterson D, Rabkin A. A view of cloud computing. Communications ACM. 2010;53(4):50–8.

    Google Scholar 

  85. Vecchiola C, Pandey S, Buyya R. High-performance cloud computing: a view of scientific applications. In: 2009 10th international symposium on pervasive systems, algorithms, and networks. New York, NY, USA: IEEE; 2009. p. 4–16.

    Google Scholar 

  86. Banko M, Brill E. Scaling to very very large corpora for natural language disambiguation. In: Proceedings of the 39th annual meeting on association for computational linguistics. Stroudsburg,PA,USA: Association for Computational Linguistics; 2001. p. 26–33.

    Google Scholar 

  87. Mukherjee S, Tamayo P, Rogers S, Rifkin R, Engle A, Campbell C, Golub TR, Mesirov JP. Estimating dataset size requirements for classifying DNA microarray data. J Comput Biol. 2003;10(2):119–42.

    CAS  PubMed  Google Scholar 

  88. Hwang EJ, Jung JY, Lee SK, Lee SE, Jee WH. Machine learning for diagnosis of hematologic diseases in magnetic resonance imaging of lumbar spines. Sci Rep. 2019;9(1):6046.

    PubMed  PubMed Central  Google Scholar 

  89. Johnson M, Anderson P, Dras M, Steedman M. Predicting accuracy on large datasets from smaller pilot data. In: Proceedings of the 56th annual meeting of the Association for Computational Linguistics, vol. 2: Short Papers; 2018. p. 450–5. Available online at: https://www.aclweb.org/anthology/P18-2072.pdf.

  90. Seth A, Singla AR, Aggarwal H. Service oriented architecture adoption trends: a critical survey. In: International conference on contemporary computing. Berlin, Heidelberg: Springer; 2012. p. 164–75.

    Google Scholar 

  91. Stépán G. Instability caused by delay in robot systems. Periodica Polytechnica Mech Eng. 1989;33(1–2):37–44.

    Google Scholar 

  92. Buzurovic I, Debeljkovic DL, Misic V, Simeunovic G. Stability of the robotic system with time delay in open kinematic chain configuration. Acta Polytechnica Hungarica. 2014;11(8):45–64.

    Google Scholar 

  93. Behnke S, Egorova A, Gloye A, Rojas R, Simon M. Predicting away robot control latency. In: Robot soccer world cup. Berlin, Heidelberg: Springer; 2003. p. 712–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asa B. Atallah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Atallah, A.B., Atallah, S. (2021). Cloud Computing for Robotics and Surgery. In: Atallah, S. (eds) Digital Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-49100-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49100-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49099-7

  • Online ISBN: 978-3-030-49100-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics