Skip to main content

A Virtual Reality for the Digital Surgeon

  • Chapter
  • First Online:
Digital Surgery

Abstract

Virtual reality (VR) uptake and adoption is becoming increasingly popular, and its impact is more realized. VR is defined as the immersion of a user in a computer-generated environment. This concept was first popularized in the late nineteenth century and has since been adopted across all industries, including healthcare. This chapter explores VR as an emerging education strategy and a surgical support tool. In surgical education, VR offers the potential to standardize and improve both cognitive and technical skills, free of the demands of traditional clinical environments. In clinical practice, VR facilitates manipulation of patient-specific data to optimize preoperative planning and intraoperative support. The application of VR technology to healthcare is an endeavor uniquely positioned to succeed, and its impact, once realized, will be nothing short of revolutionary.

In this chapter, the current state of practice, barriers to further implementation, and emerging trends in the field are explored. The authors foresee widespread adoption, improvement, and longevity of VR technology in surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Webster. The Merriam-Webster Dictionary, International Edition; 2016.

    Google Scholar 

  2. [No title]. http://worrydream.com/refs/Sutherland%20-%20The%20Ultimate%20Display.pdf. Accessed 11 Sept 2019.

  3. Cipresso P, Giglioli IAC, Raya MA, Riva G. The past, present, and future of virtual and augmented reality research: a network and cluster analysis of the literature. Front Psychol. 2018;9:2086.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chinnock C. Virtual reality in surgery and medicine. Hosp Technol Ser. 1994;13:1–48.

    CAS  PubMed  Google Scholar 

  5. Cyberspace: The New Explorers: Autodesk : Free Download, Borrow, and Streaming : Internet Archive.

    Google Scholar 

  6. Wilson MS, Middlebrook A, Sutton C, Stone R, McCloy RF. MIST VR: a virtual reality trainer for laparoscopic surgery assesses performance. Ann R Coll Surg Engl. 1997;79:403–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Castelvecchi D. Low-cost headsets boost virtual reality’s lab appeal. Nature. 2016;533:153–4.

    Article  CAS  PubMed  Google Scholar 

  8. MEDLINE/ PubMed. SpringerReference. https://doi.org/10.1007/springerreference_65284.

  9. Statista - The Statistics Portal [Internet]. Statista. 2019 [cited 17 October 2019]. Available from: https://www.statista.com/.

  10. Parisi T. Learning virtual reality: developing immersive experiences and applications for desktop, web, and mobile. Sebastopol, CA;O’Reilly Media, Inc.; 2015.

    Google Scholar 

  11. Sugand K, Mawkin M, Gupte C. Validating Touch Surgery™: A cognitive task simulation and rehearsal app for intramedullary femoral nailing. Injury. 2015;46:2212–6.

    Article  PubMed  Google Scholar 

  12. Morone PJ, Bekelis K, Root BK, Singer RJ. Development and validation of a mobile device-based external ventricular drain simulator. Oper Neurosurg (Hagerstown). 2017;13:603–8.

    Article  Google Scholar 

  13. Sherman WR, Craig AB. Understanding virtual reality: Interface, application, and design. Berkeley CA; Morgan Kaufmann; 2018.

    Google Scholar 

  14. Pellegrini VD Jr, Ferguson PC, Cruess R, Cruess S, Briggs TWR. Sufficient competence to enter the unsupervised practice of orthopaedics: what is it, when does it occur, and do we know it when we see it? AOA critical issues. J Bone Joint Surg Am. 2015;97:1459–64.

    Article  PubMed  Google Scholar 

  15. Kotsis SV, Chung KC. Application of the “see one, do one, teach one” concept in surgical training. Plast Reconstr Surg. 2013;131:1194–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moorthy K, Munz Y, Sarker SK, Darzi A. Objective assessment of technical skills in surgery. BMJ. 2003;327:1032–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Talbot CL, Holt EM, Gooding BWT, Tennent TD, Foden P. The shoulder objective practical assessment tool: evaluation of a new tool assessing residents learning in diagnostic shoulder arthroscopy. Arthroscopy. 2015;31:1441–9.

    Article  PubMed  Google Scholar 

  18. Jakimowicz JJ, Cuschieri A. Time for evidence-based minimal access surgery training--simulate or sink. Surg Endosc. 2005;19:1521–2.

    Article  CAS  PubMed  Google Scholar 

  19. Yiannakopoulou E, Nikiteas N, Perrea D, Tsigris C. Virtual reality simulators and training in laparoscopic surgery. Int J Surg. 2015;13:60–4.

    Article  PubMed  Google Scholar 

  20. Zhuang W, Xiao Q. Facilitate active learning: the role of perceived benefits of using technology. J Educ Bus. 2018;93:88–96.

    Article  Google Scholar 

  21. Shatto B, Erwin K. Teaching millennials and generation Z: bridging the generational divide. Creat Nurs. 2017;23:24–8.

    Article  PubMed  Google Scholar 

  22. Sonnleitner K. From sage on the stage to guide on the side. Zeitschrift für Didaktik der Rechtswissenschaft. 2016;3:288–302.

    Article  Google Scholar 

  23. Paolis LTD, De Paolis LT. Serious game for laparoscopic suturing training. In: 2012 Sixth international conference on complex, intelligent, and software intensive systems. 2012. https://doi.org/10.1109/cisis.2012.175.

  24. Ricciardi F, De Paolis LT. A comprehensive review of serious games in health professions. Int J Comput Games Technol. 2014;2014:1–11.

    Article  Google Scholar 

  25. Wang R, DeMaria S Jr, Goldberg A, Katz D. A systematic review of serious games in training health care professionals. Simul Healthc. 2016;11:41–51.

    Article  PubMed  Google Scholar 

  26. Feifer A, Al-Ammari A, Kovac E, Delisle J, Carrier S, Anidjar M. Randomized controlled trial of virtual reality and hybrid simulation for robotic surgical training. BJU Int. 2011;108:1652–6; discussion 1657.

    Article  PubMed  Google Scholar 

  27. Diesen DL, Erhunmwunsee L, Bennett KM, Ben-David K, Yurcisin B, Ceppa EP, Omotosho PA, Perez A, Pryor A. Effectiveness of laparoscopic computer simulator versus usage of box trainer for endoscopic surgery training of novices. J Surg Educ. 2011;68:282–9.

    Article  PubMed  Google Scholar 

  28. Orzech N, Palter VN, Reznick RK, Aggarwal R, Grantcharov TP. A comparison of 2 ex vivo training curricula for advanced laparoscopic skills: a randomized controlled trial. Ann Surg. 2012;255:833–9.

    Article  PubMed  Google Scholar 

  29. Jensen K, Ringsted C, Hansen HJ, Petersen RH, Konge L. Simulation-based training for thoracoscopic lobectomy: a randomized controlled trial. Surg Endosc. 2014;28:1821–9.

    Article  PubMed  Google Scholar 

  30. Khan MW, Lin D, Marlow N, Altree M, Babidge W, Field J, Hewett P, Maddern G. Laparoscopic skills maintenance: a randomized trial of virtual reality and box trainer simulators. J Surg Educ. 2014;71:79–84.

    Article  PubMed  Google Scholar 

  31. Loukas C, Nikiteas N, Schizas D, Lahanas V, Georgiou E. A head-to-head comparison between virtual reality and physical reality simulation training for basic skills acquisition. Surg Endosc. 2012;26:2550–8.

    Article  PubMed  Google Scholar 

  32. Munz Y, Kumar BD, Moorthy K, Bann S, Darzi A. Laparoscopic virtual reality and box trainers: is one superior to the other? Surg Endosc. 2004;18:485–94.

    Article  CAS  PubMed  Google Scholar 

  33. Kowalewski K-F, Hendrie JD, Schmidt MW, Proctor T, Paul S, Garrow CR, Kenngott HG, Müller-Stich BP, Nickel F. Validation of the mobile serious game application Touch Surgery™ for cognitive training and assessment of laparoscopic cholecystectomy. Surg Endosc. 2017;31:4058–66.

    Article  PubMed  Google Scholar 

  34. Pfandler M, Lazarovici M, Stefan P, Wucherer P, Weigl M. Virtual reality-based simulators for spine surgery: a systematic review. Spine J. 2017;17:1352–63.

    Article  PubMed  Google Scholar 

  35. Haubruck P, Nickel F, Ober J, et al. Evaluation of app-based serious gaming as a training method in teaching chest tube insertion to medical students: randomized controlled trial. J Med Internet Res. 2018;20:e195.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Moro C, Štromberga Z, Raikos A, Stirling A. The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anat Sci Educ. 2017;10:549–59.

    Article  PubMed  Google Scholar 

  37. Kyaw BM, Saxena N, Posadzki P, et al. Virtual reality for health professions education: systematic review and meta-analysis by the digital health education collaboration. J Med Internet Res. 2019;21:e12959.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li L, Yu F, Shi D, Shi J, Tian Z, Yang J, Wang X, Jiang Q. Application of virtual reality technology in clinical medicine. Am J Transl Res. 2017;9:3867–80.

    PubMed  PubMed Central  Google Scholar 

  39. Arriaga AF, Gawande AA, Raemer DB, et al. Pilot testing of a model for insurer-driven, large-scale multicenter simulation training for operating room teams. Ann Surg. 2014;259:403–10.

    Article  PubMed  Google Scholar 

  40. Howe J, Puthumana J, Hoffman D, et al. Development of virtual simulations for medical team training: an evaluation of key features. Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care. 2018;7:261–6.

    Article  Google Scholar 

  41. Olasky J, Sankaranarayanan G, Seymour NE, et al. Identifying opportunities for virtual reality simulation in surgical education: a review of the proceedings from the innovation, design, and emerging alliances in surgery (IDEAS) conference: VR surgery. Surg Innov. 2015;22:514–21.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Singh K, Bharatha A, Sa B, Adams OP, Majumder MAA. Teaching anatomy using an active and engaging learning strategy. BMC Med Educ. 2019;19:149.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bairamian D, Liu S, Eftekhar B. Virtual reality angiogram vs 3-dimensional printed angiogram as an educational tool-A comparative study. Neurosurgery. 2019;85:E343–9.

    Article  PubMed  Google Scholar 

  44. Yammine K, Violato C. A meta-analysis of the educational effectiveness of three-dimensional visualization technologies in teaching anatomy. Anat Sci Educ. 2015;8:525–38.

    Article  PubMed  Google Scholar 

  45. Izard SG, Méndez JAJ. Virtual reality medical training system. In: Proceedings of the fourth international conference on technological ecosystems for enhancing multiculturality: ACM; 2016. p. 479–85.

    Google Scholar 

  46. Maresky HS, Oikonomou A, Ali I, Ditkofsky N, Pakkal M, Ballyk B. Virtual reality and cardiac anatomy: exploring immersive three-dimensional cardiac imaging, a pilot study in undergraduate medical anatomy education. Clin Anat. 2019;32:238–43.

    Article  CAS  PubMed  Google Scholar 

  47. Silva JNA, Southworth M, Raptis C, Silva J. Emerging applications of virtual reality in cardiovascular medicine. JACC Basic Transl Sci. 2018;3:420–30.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mandler AG. Touch surgery: a twenty-first century platform for surgical training. J Digit Imaging. 2018;31:585–90.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tulipan J, Miller A, Park AG, Labrum JT 4th, Ilyas AM. Touch surgery: analysis and assessment of validity of a hand surgery simulation “App.”. Hand. 2019;14:311–6.

    Article  PubMed  Google Scholar 

  50. Chidambaram S, Erridge S, Leff D, Purkayastha S. A randomized controlled trial of skills transfer: from touch surgery to laparoscopic cholecystectomy. J Surg Res. 2019;234:217–23.

    Article  PubMed  Google Scholar 

  51. Bunogerane GJ, Taylor K, Lin Y, Costas-Chavarri A. Using touch surgery to improve surgical education in low- and middle-income settings: a randomized control trial. J Surg Educ. 2018;75:231–7.

    Article  PubMed  Google Scholar 

  52. Luciano CJ, Banerjee PP, Sorenson JM, Foley KT, Ansari SA, Rizzi S, Germanwala AV, Kranzler L, Chittiboina P, Roitberg BZ. Percutaneous spinal fixation simulation with virtual reality and haptics. Neurosurgery. 2013;72 Suppl 1:89–96.

    Article  PubMed  Google Scholar 

  53. Purkayastha S, Tilney HS, Georgiou P, Athanasiou T, Tekkis PP, Darzi AW. Laparoscopic cholecystectomy versus mini-laparotomy cholecystectomy: a meta-analysis of randomised control trials. Surg Endosc. 2007;21:1294–300.

    Article  PubMed  Google Scholar 

  54. Abelson JS, Silverman E, Banfelder J, Naides A, Costa R, Dakin G. Virtual operating room for team training in surgery. Am J Surg. 2015;210:585–90.

    Article  PubMed  Google Scholar 

  55. Kurenov S, Cendan J, Dindar S, Attwood K, Hassett J, Nawotniak R, Cherr G, Cance WG, Peters J. Surgeon-authored virtual laparoscopic adrenalectomy module is judged effective and preferred over traditional teaching tools. Surg Innov. 2017;24:72–81.

    Article  PubMed  Google Scholar 

  56. Allcoat D, von Mühlenen A. Learning in virtual reality: effects on performance, emotion and engagement. Res Learn Technol. 2018. https://doi.org/10.25304/rlt.v26.2140.

  57. Patel V, Aggarwal R, Cohen D, Taylor D, Darzi A. Implementation of an interactive virtual-world simulation for structured surgeon assessment of clinical scenarios. J Am Coll Surg. 2013;217:270–9.

    Article  PubMed  Google Scholar 

  58. Izard SG, Juanes JA, García Peñalvo FJ, Estella JMG, Ledesma MJS, Ruisoto P. Virtual reality as an educational and training tool for medicine. J Med Syst. 2018;42:50.

    Article  PubMed  Google Scholar 

  59. Wilkerson W, Avstreih D, Gruppen L, Beier K-P, Woolliscroft J. Using immersive simulation for training first responders for mass casualty incidents. Acad Emerg Med. 2008;15:1152–9.

    Article  PubMed  Google Scholar 

  60. Pratt R, Deprest J, Vercauteren T, Ourselin S, David AL. Computer-assisted surgical planning and intraoperative guidance in fetal surgery: a systematic review. Prenat Diagn. 2015;35:1159–66.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Stella F, Dolci G, Dell’Amore A, Badiali G, De Matteis M, Asadi N, Marchetti C, Bini A. Three-dimensional surgical simulation-guided navigation in thoracic surgery: a new approach to improve results in chest wall resection and reconstruction for malignant diseases. Interact Cardiovasc Thorac Surg. 2014;18:7–12.

    Article  PubMed  Google Scholar 

  62. Sakamoto T. Roles of universal three-dimensional image analysis devices that assist surgical operations. J Hepatobiliary Pancreat Sci. 2014;21:230–4.

    Article  PubMed  Google Scholar 

  63. Mendez A, Hussain T, Hosseinpour A-R, Valverde I. Virtual reality for preoperative planning in large ventricular septal defects. Eur Heart J. 2019;40:1092.

    Article  PubMed  Google Scholar 

  64. Riener R, Harders M. VR for planning and intraoperative support. In: Riener R, Harders M, editors. Virtual reality in medicine. London: Springer London; 2012. p. 211–23.

    Chapter  Google Scholar 

  65. Sethia R, Wiet GJ. Preoperative preparation for otologic surgery. Curr Opin Otolaryngol Head Neck Surg. 2015;23:355–9.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kockro RA, Killeen T, Ayyad A, Glaser M, Stadie A, Reisch R, Giese A, Schwandt E. Aneurysm surgery with preoperative three-dimensional planning in a virtual reality environment: technique and outcome analysis. World Neurosurg. 2016;96:489–99.

    Article  PubMed  Google Scholar 

  67. Bilgic E, Turkdogan S, Watanabe Y, Madani A, Landry T, Lavigne D, Feldman LS, Vassiliou MC. Effectiveness of telementoring in surgery compared with on-site mentoring: a systematic review. Surg Innov. 2017;24:379–85.

    Article  PubMed  Google Scholar 

  68. Sandars J. The use of reflection in medical education: AMEE Guide No. 44. Med Teach. 2009;31:685–95.

    Article  PubMed  Google Scholar 

  69. General Medical Council (Great Britain). Good medical practice. General Medical Council. 2001.

    Google Scholar 

  70. Gibbs G. Learning by doing: a guide to teaching and learning methods. Oxford: Further Education Unit. Oxford Polytechnic; 1988.

    Google Scholar 

  71. Hatton N, Smith D. Reflection in teacher education: towards definition and implementation. Teach Teach Educ. 1995;11:33–49.

    Article  Google Scholar 

  72. [No title]. https://discovery.ucl.ac.uk/id/eprint/1425894/1/Pachilova_Sailer2013_EBD_PatientCaregiverInterface_D4H13_Vol2_web.pdf. Accessed 21 Oct 2019.

  73. Alarcon A, Berguer R. A comparison of operating room crowding between open and laparoscopic operations. Surg Endosc. 1996;10:916–9.

    Article  CAS  PubMed  Google Scholar 

  74. Dexter F, Ledolter J, Wachtel RE. Tactical decision making for selective expansion of operating room resources incorporating financial criteria and uncertainty in subspecialties’ future workloads. Anesth Analg. 2005;100:1425–32.

    Article  PubMed  Google Scholar 

  75. Barbagallo S, Corradi L, de Ville de Goyet J, Iannucci M, Porro I, Rosso N, Tanfani E, Testi A. Optimization and planning of operating theatre activities: an original definition of pathways and process modeling. BMC Med Inform Decis Mak. 2015;15:38.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Joseph A, Khoshkenar A, Taaffe KM, Catchpole K, Machry H, Bayramzadeh S, RIPCHD.OR study group. Minor flow disruptions, traffic-related factors and their effect on major flow disruptions in the operating room. BMJ Qual Saf. 2019;28:276–83.

    Article  PubMed  Google Scholar 

  77. Virtual reality system helps surgeons, reassures patients. In: Medical Center Development. https://medicalgiving.stanford.edu/news/virtual-reality-system-helps-surgeons-reassures-patients.html. Accessed 18 Sept 2019.

  78. [No title]. https://www.echopixeltech.com/pdfs/lu_poster1.pdf. Accessed 24 Sept 2019.

  79. Mohammed MAA, Khalaf MH, Kesselman A, Wang DS, Kothary N. A role for virtual reality in planning endovascular procedures. J Vasc Interv Radiol. 2018;29:971–4.

    Article  PubMed  Google Scholar 

  80. Ballocca F, Meier LM, Ladha K, Qua Hiansen J, Horlick EM, Meineri M. Validation of quantitative 3-dimensional transesophageal echocardiography mitral valve analysis using stereoscopic display. J Cardiothorac Vasc Anesth. 2019;33:732–41.

    Article  PubMed  Google Scholar 

  81. Babel VR. https://www.cbrg.ox.ac.uk/cbrg/babelVR.html. Accessed 18 Sept 2019.

  82. [No title]. https://www.cras-eu.org/past%20events/cras-2018-pages/CRAS_2018_proceedings.pdf. Accessed 3 Oct 2019.

  83. Stolk B, Abdoelrahman F, Koning AHJ, Wielinga P, van der Spek P. Mining the human genome using virtual reality. In: Proceedings of the fourth eurographics workshop on parallel graphics and visualization, EGPGV 2002, Blaubeuren, 9–10 Sept 2002. p. 17–21.

    Google Scholar 

  84. Schmidt E, Cohen J. The new digital age: reshaping the future of people, nations and business. New York; John Murray; 2013.

    Google Scholar 

  85. Alaker M, Wynn GR, Arulampalam T. Virtual reality training in laparoscopic surgery: a systematic review & meta-analysis. Int J Surg. 2016;29:85–94.

    Article  PubMed  Google Scholar 

  86. [No title]. https://pdfs.semanticscholar.org/8720/1ba9d513efaddb72d94b8b3521546366d5a2.pdf. Accessed 4 Oct 2019.

  87. Kim Y, Kim H, Kim YO. Virtual reality and augmented reality in plastic surgery: a review. Arch Plast Surg. 2017;44:179–87.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Slater M. Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos Trans R Soc Lond Ser B Biol Sci. 2009;364:3549–57.

    Article  Google Scholar 

  89. Riva G, Raspelli S, Algeri D, Pallavicini F, Gorini A, Wiederhold BK, Gaggioli A. Interreality in practice: bridging virtual and real worlds in the treatment of posttraumatic stress disorders. Cyberpsychol Behav Soc Netw. 2010;13:55–65.

    Article  PubMed  Google Scholar 

  90. Riva G, Raspelli S, Pallavicini F, Grassi A, Algeri D, Wiederhold BK, Gaggioli A. Interreality in the management of psychological stress: a clinical scenario. Stud Health Technol Inform. 2010;154:20–5.

    PubMed  Google Scholar 

  91. Gaggioli A, Pallavicini F, Morganti L, et al. Experiential virtual scenarios with real-time monitoring (interreality) for the management of psychological stress: a block randomized controlled trial. J Med Internet Res. 2014;16:e167.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Nehme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Velazquez-Pimentel, D., Hurkxkens, T., Nehme, J. (2021). A Virtual Reality for the Digital Surgeon. In: Atallah, S. (eds) Digital Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-49100-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49100-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49099-7

  • Online ISBN: 978-3-030-49100-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics