Skip to main content

Genetically Modified Microbes as Biofertilizers

  • Chapter
  • First Online:
Bioremediation and Biotechnology, Vol 4

Abstract

Plant nutrients are important for efficient crop productivity and generation of healthy food. For achieving such goals, maintenance of soil quality is one of the key factors. Maintenance of soil is mainly reliant on the inorganic chemical-based fertilizers. However, these fertilizers are highly toxic to the environment. In this backdrop, biofertilizers have been identified as substitute for enhancing crop productivity and soil fertility. The utilization of advantageous microorganisms as biofertilizers have become of utmost importance in agriculture. They form an important part of nutrient management system in plants. These potential biological fertilizers play a vital role in enhancing sustainability and productivity of soil. Besides, they protect environment and are cost-effective. Moreover, biofertilizer production by using the tools of molecular biotechnology like recombinant DNA technology can perk up the metabolic pathways of production of significant plant growth-promoting factors, if recognized and transmitted to the valuable plant growth-promoting microbes. Genetically modified organisms symbolize a genetic store. These microorganisms find use as donor or recipient of genes of interest. Microbes play an important role in different sectors of food processing, agriculture, pharmaceutical industries, and environmental management. Genes of microbes can be optimized or improved by means of various genetic modifications. Genetically modified microbes offer an improved nutrient accessibility to plants and thus enhance plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Mohammad SK (2010) Plant growth promoting activities of phosphate-solubilizing Enterobacter asburiae as influenced by fungicides. Eurasia J Biosci 4:88–95

    Article  CAS  Google Scholar 

  • Ahmed A, Hasnain S (2010) Auxin producing Bacillus sp.: auxin quantification and effect on the growth Solanumm tuberosum. Pure Appl Chem 82:313–319

    Article  CAS  Google Scholar 

  • Aloni R, Aloni E, Langhans M (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awais MA, Pervez A, Yaqub A, Sarwar R, Alam F, Siraj S (2010) Current status of biotechnology in health. Am Eurasian J Agric Environ Sci 7:210–220

    CAS  Google Scholar 

  • Backman PA, Sikora RA (2008) An emerging tool for biological control. Biol Control 46:1–3

    Article  Google Scholar 

  • Bagwan JD, Patil SJ, Mane AS, Kadam VV, Vichare S (2010) Genetically modified crops: food of the future. Int J Adv Biotechnol Res 1(1):21–30

    Google Scholar 

  • Bakshi A (2003) Potential adverse health effects of genetically modified crops. J Toxicol Environ Health 7:211–226

    Article  Google Scholar 

  • Barrows GA, Sexton S, Zilberman D (2014) Agricultural biotechnology: the promise and prospects of genetically modified crops. J Econ Perspect 28(1):99–120

    Article  Google Scholar 

  • Becker PD, Noerder M, Guzman CA (2008) Genetic immunization: bacteria as DNA vaccine delivery vehicles. Hum Vaccin 4:189–202

    Article  CAS  PubMed  Google Scholar 

  • Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R, Potrykus I (2002) Golden rice: introducing the b-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr 132:506–510

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Boccia F, Sarnacchiaro PA (2015) Genetically modified foods and consumer perspective. Recent Pat Food Nutr Agric 7:28–34

    Article  PubMed  Google Scholar 

  • Brookes G, Barfoot P (2009) Global impact of biotech crops. Income and production effect 1996-2007. AgBio Forum 12:184–208

    Google Scholar 

  • Brown C, Hug LA, Thoma BC, Sharon I, Castelle CJ, Singh A (2015) Unusual biology across a group comprising more than 15% of domain bacteria. Nature 523:208–211

    Article  CAS  PubMed  Google Scholar 

  • Bueno MM, Thys RCS, Rodrigues RC (2016) Microbial enzymes as substitutes of chemical additives in baking wheat flour-part II: combined effects of nine enzymes on dough rheology. Food Bioprocess Technol 9:1598–1611

    Article  CAS  Google Scholar 

  • Buikema WJ, Haselkorn S (2001) Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions. Proc Natl Acad Sci 98:2729–2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese, Zechmeister-Boltenstern R (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc 8:368–369

    Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under limited water conditions. Plant Physiol 147:2446–2455

    Article  CAS  Google Scholar 

  • Chang CH, Yang SS (2009) Thermotolerant phosphate solubilizing microbes for multifunctional biofertilizer preparation. Bioresour Technol 100(4):1648–1658

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Wang H-G, Wen Z-J, Wang Y (2007) Life sciences and biotechnology in China. Philos Trans R Soc B 362:947–957

    Article  Google Scholar 

  • Chun-Li W, Shiuan-Yuh C, Chiu-Chung Y (2014) Present situation and future perspective of biofertilizer for environmentally friendly agriculture. Annu Rep 4:1–5

    Google Scholar 

  • Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci 70:3240–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dana M, Pinto-Toro JA, Cubero B (2006) Transgenic plants overexpressing chitinases of fungal origin show resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Article  PubMed Central  CAS  Google Scholar 

  • Dash A, Kundu D, Das M, Bose D, Adak S, Banerjee R (2016) Food biotechnology: a step towards improving nutritional quality of food for Asian countries. Recent Pat Biotechnol 10:43–57

    Article  CAS  PubMed  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189

    Article  Google Scholar 

  • Gonzalez AJ, Larraburu EE, Llorente BE (2015) Azospirillum brasilense increased salt tolerance of jojoba during in vitro rooting. Ind Crop Prod 76:41–48

    Article  CAS  Google Scholar 

  • Goswami D, Pithwa S, Dhandhukia P, Thakker JN (2014) Delineating Kocuria turfanensis 2M4 as a credible PGPR: a novel IAA producing bacteria isolated from saline desert. J Plant Interact 9:566–576

    Article  CAS  Google Scholar 

  • Gouse M (2012) GM maize as subsistence crop: the South African smallholder experience. AgBio Forum 15:163–174

    Google Scholar 

  • Gray EJ, Smith DL (2004) International and extracellular PGPR: commonalities and distinction in the plant bacterium signalling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gupta AK (2004) The complete technology book on biofertilizer and organic farming, vol 4. National Institute of Industrial Research Press India, Delhi, pp 242–253

    Google Scholar 

  • Hayat R, Ali S, Amara U (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Horvath DM, Stall RE, Jones JB, Pauly MH, Vallad GE, Dahlbeck D, Staskawisz BJ, Scott JW (2012) Transgenic resistance confers effective field level control of bacterial spot disease in tomato. PLoS One 7:e42036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Rozelle S, Pray C, Wang Q (2001) Plant biotechnology in China. Science 295:674–677

    Article  Google Scholar 

  • Huang X, Dong Y, Zhao J (2004) HetR homodimer is a DNA-binding protein required for heterocyst differentiation, and the DNA-binding activity is inhibited by PatS. Proc Natl Acad Sci 101:4848–4853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain N, Mujeeb F, Tahir M (2002) Effectiveness of rhizobium under salinity stress. J Plant Sci 4:124–129

    Google Scholar 

  • Kakumanu K, Ambavaram MMR, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A (2012) Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNASeq. Plant Physiol 160:846–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Khosro M, Yousef S (2012) Bacterial biofertilizers for sustainable crop production: a review. J Agric Biol Sci 7(5):237–308

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. 4th Int. Conf. Plant Pathogen Bacteria Angers 2:879–882

    Google Scholar 

  • Lavakush YJ, Verma JP, Jaiswal DK, Kumar K (2014) Evaluation of PGPR and different concentration of phosphorous level on plant growth, yield and nutrient content of rice (Oryza sativa). J Appl Microbiol 62l:123–128

    Google Scholar 

  • Lemaux PG (2008) Genetically engineered plants and foods: a scientist’s analysis of the issues (part I). Annu Rev Plant Biol 59:779–812

    Article  CAS  Google Scholar 

  • Leonardo D, Blanca LF, Landa B, Weller DM (2006) Host crop affects rhizosphere colonization and competitiveness of 2,4-diacetylphloroglucinol-producing Pseudomonas fluoresens. Phytopathology 96:751–762

    Article  CAS  Google Scholar 

  • Liddycoat SM, Greenberg BM, Wolyn DJ (2009) The effect of plant growth promoting rhizobacteria on Asparagus seedlings and germinating seeds subjected to water stress under green house conditions. Can J Microbiol 55:388–394

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Golden JW (2002) hetL overexpression stimulates heterocyst formation in Anabaena sp. strain PCC 7120. J Bacteriol 184:6873–6881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsheka MI, Elisha BG, Lustovica AL, On SL (2002) Genetic heterogeneity of campylobacter consisus determined by pulse field gel electrophoresis based microrestriction profiling. FEMS Microbiol Lett 211:17–22

    Article  CAS  PubMed  Google Scholar 

  • McAllister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol 10:1011–1025

    Article  CAS  Google Scholar 

  • Mfilinge A, Mtei K, Ndakidemi (2014) Effect of rhizobium inoculation and supplementation with phosphorus and potassium on growth leaf chlorophyll content and nitrogen fixation of bush bean varieties. Am J Res Commun 2(10):49–87

    Google Scholar 

  • Mitragotri S, Burke PA, Langer R (2014) Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 13:655–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nautiyal CS, Govindarajan R, Lavania M, Pushpangadan P (2008) Novel mechanisms of modulating natural antioxidants in functional foods: involvement of plant growth promoting rhizobacteria. J Agric Food Chem 56:4474–4481

    Article  CAS  PubMed  Google Scholar 

  • Nelson DE, Pepetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci 104:16450–16455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newell-McGloughlin M (2008) Nutritionally improved agricultural crops. Plant Physiol 147:939–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngwako S (2008) Mapping quantitative trait loci using marker regression and interval mapping methods. Pak J Biol Sci 11:553–558

    Article  CAS  PubMed  Google Scholar 

  • Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150(3):1368–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okeno JA, Wolt JD, Misra MK, Rodriguez L (2012) Africa’s inevitable walk to genetically modified (GM) crops: opportunities and challenges for commercialization. New Biotechnol 30:124–130

    Article  CAS  Google Scholar 

  • Overton TW (2014) Recombinant protein production in bacterial hosts. Drug Discov Today 19:590–601

    Article  CAS  PubMed  Google Scholar 

  • Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelia processes. Biotechnol Adv 22:189–259

    Article  CAS  PubMed  Google Scholar 

  • Pishchik VN, Vorobyev NJ, Chernyaeva LI, Timofeeva SV, Alexeev YV (2002) Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress. Plant Soil 243:173–186

    Article  CAS  Google Scholar 

  • Podile AR, Kishore GK (2007) Plant growth-promoting rhizobacteria. In: Plant-associated bacteria, vol 6. Springer, Dordrecht, pp 195–230

    Google Scholar 

  • Qaim M (2009) The economics of genetically modified crops. Ann Rev Resour Econ 1:665–693

    Article  Google Scholar 

  • Raja N (2013) Bipesticides and biofertilizers: ecofriendly sources for sustainable agriculture. J Biofertil Biopestic 3:112–115

    Google Scholar 

  • Rajaram H, Apte SK (2008) Nitrogen status and heat-stress-dependent differential expression of the cpn60 chaperonin gene influences thermotolerance in the cyanobacterium Anabaena. Microbiology 154:317–325

    Article  CAS  PubMed  Google Scholar 

  • Reid MS (1981) The role of ethylene in flower senescene. Acta Hortic 261:157–169

    Google Scholar 

  • Riefler M, Novak O, Strnad MA, Schmulling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritika B, Uptal D (2014) Biofertilizer a way towards organic agriculture: a review. Acad J 8:2332–2342

    Google Scholar 

  • Ruiz SM, Aroca R, Monoz M (2010) The arbuscular mycorrhiza symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167:862–869

    Article  CAS  Google Scholar 

  • Sandeep K, Rohini B, Mahesh KM, Lalchand M (2016) Role of agricultural biotechnology in climate change mitigation. Int Appl Pure Sci Agric 1:3–6

    Google Scholar 

  • Santos VB, Araujo SF, Leite LF (2012) Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geodderm 170:227–231

    Article  CAS  Google Scholar 

  • Scalenghe R, Edwards AC, Barberis E (2012) Agricultural soil under a continental temperature climate susceptible to episodic reducing conditions and increased leaching of phosphorus. J Environ Manag 97:141–147

    Article  CAS  Google Scholar 

  • Schiefer WK, Schutz W, Hachtel A (2002) Molecular cloning and characterization of hetR genes from filamentous cyanobacteria. Biochem Biophys Acta 77:139–143

    Google Scholar 

  • Snow AA, Andow DA, Gepts P, Hallerman EM, Power A, Tiedje JM, Wolfenbarger LL (2005) Genetically engineered organisms and the environment: current status and recommendations. Ecol Appl 15:377–404

    Article  Google Scholar 

  • Sokolova MG, Akimova GP, Vaishlia OB (2011) Effect of phytohormones synthesized by rhizosphere bacteria on plants. Prikl Biokhim Mikrobiol 47:302–307

    CAS  PubMed  Google Scholar 

  • Somasegaran P, Springer H (1994) Carrier materials used in biofertilizer making. Nature 6:2–6

    Google Scholar 

  • Tabashnik BE, Huang F, Ghimire BR, Leonard BD, Siegfried, Rangasamy M, Yang Y, Wu Y, Gahan LJ, Heckel DG, Bravo A, Soberon M (2011) Efficacy of genetically modified BT toxins against insects with different genetic mechanisms of resistance. Nat Biotechnol 29:1128–1131

    Article  CAS  PubMed  Google Scholar 

  • Van Loon LC (2007) Plant response to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting Rhizobacteria as biofertilizers. J Plant Soil 43:571–586

    Article  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering or stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wani SA, Chand S, Ali T (2013) Potential use of Azotobacter chroococcum in crop production: an overview. Curr Agric Res J 1:35–38

    Article  Google Scholar 

  • Yang JW, Kloeppe JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Youssef MMA, Eissa MF (2014) Biofertilizers and their role in management of plant parasitic nematodes: a review. Biotechnol Pharm Res 5:1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, R., Zulaykha, K.D., Sajjad, N. (2020). Genetically Modified Microbes as Biofertilizers. In: Bhat, R.A., Hakeem, K.R. (eds) Bioremediation and Biotechnology, Vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-48690-7_13

Download citation

Publish with us

Policies and ethics