Skip to main content

Biography or Obituary? The Historiographical Value of the Death of the Ether

  • Chapter
  • First Online:
Biographies in the History of Physics

Abstract

In the preface to the second edition of his A History of the Theories of Aether and Electricity, issued in 1951, Edmund Whittaker explained why he decided to preserve the old title. First published in 1910, this book was intended as an encyclopedic account of the evolution of physics since the days of Descartes, although the main focus was optics, electricity and magnetism in the nineteenth century, and the argumentative backbone was the changing role of the ether(s) in this evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade, E.N.C. (1930). The mechanism of nature. Being a simple approach to modern views on the structure of matter and radiation. London: G. Bell & Sons.

    Google Scholar 

  • Arabatzis, T. (2006). Representing electrons. A biographical approach to theoretical entities. Chicago: Chicago University Press.

    Google Scholar 

  • Badino, M. & Navarro, J. (2018). Introduction. ether—The multiple lives of a resilient concept (pp. 1–13).

    Google Scholar 

  • Bragg, W. H. (1933). The universe of light. London: G Bell & Sons.

    MATH  Google Scholar 

  • Cantor, G.N. & Hodge, M.J.S. (1981). Conceptions of ether. Studies in the history of ether theories, 1740–1900. Cambridge: Cambridge University Press.

    Google Scholar 

  • Carr, H. W. (1913). The principle of relativity and its importance for philosophy. Proceedings of the Aristotelian Society, 14, 407–424.

    Google Scholar 

  • Chang, H. (2009). We have never been whiggish (about phlogiston). Centaurus, 51, 239–264.

    Google Scholar 

  • Chang, H. (2011). The persistence of epsitemic objects through scientific change. Erkenntnis, 75, 413–429.

    Google Scholar 

  • Cloud, J. (1928). The ether and growth. A theoretical study. London: Simpkin Marshall.

    Google Scholar 

  • Corrigan, J.F. (1928). Radio and relativity. How the Einstein theory affects our conception of the ether. In Pitman’s Radio Year Book, 100–4. London: Pitman & Sons.

    Google Scholar 

  • Dirac, P. A. M. (1951). Is there an Æther? Nature, 168, 906–907.

    ADS  MathSciNet  Google Scholar 

  • Drude, P. (1894). Physik des aethers auf elektromagnetischer Grundlage. Stuttgart: Verlag von Ferdinand.

    Google Scholar 

  • Drude, P. (1895). Die Theorie in der Physik. Leipzig: S. Hirzel.

    MATH  Google Scholar 

  • Eddington, A. S. (1918). Report on the relativity theory of gravitation. London: Fleetway Press.

    MATH  Google Scholar 

  • Eddington, A. S. (1920). The meaning of matter and the laws of nature according to the theory of relativity. Mind, 29, 145–158.

    MATH  Google Scholar 

  • Eddington, A. S. (1935). New pathways of science. Cambridge: Cambirdge University Press.

    Google Scholar 

  • Einstein, Albert. (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik, 322, 891–921.

    ADS  MATH  Google Scholar 

  • Einstein, A. (1907). Ãœber das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik, 4, 411–462.

    ADS  Google Scholar 

  • Einstein, A. (1909). Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung. Physikalische Zeitschrift, 10, 817–825.

    MATH  Google Scholar 

  • Einstein, A. (1920). Äther und Relativitätstheorie. Berlin: Springer.

    MATH  Google Scholar 

  • Fleming, J.A. (1902). Waves and ripples in water, air, and aether. Being a Course of Christmas Lectures delivered at the Royal institution of Great Britain. London: Society for promoting Christian knowledge.

    Google Scholar 

  • Fleming, J. A. (1923). Electrons, electric waves and wireless telephony. London: The Wireless Press.

    Google Scholar 

  • Graham, L. R. (1993). Science in Russia and the Soviet Union. Cambridge: Cambridge University Press.

    Google Scholar 

  • Haley, C. (2001). Envisioning the unseen universe: Models of the ether in the nineteenth century. Unpublished Ph.D. dissertation, University of Cambridge.

    Google Scholar 

  • Henderson, L. D. (1998). Duchamp in context: Science and technology and related works. Princeton: Princeton University Press.

    Google Scholar 

  • Henderson, L. D. (2002). Vibratory modernism: Boccioni, Kupka, and the ether of Space. In L. D. Henderson & B. Clarke (Eds.), From energy to information: Representation in science and technology, art, and literature (pp. 126–149). Stanford: Stanford University Press.

    Google Scholar 

  • Henderson, L. D. (2004). Editor’s introduction: I. writing modern art and science—An overview; II. Cubism, futurism, and ether physics in the early twentieth century. Science in Context, 17, 423–466.

    Google Scholar 

  • Henderson, L.D. (2014). Abstraction, the ether, and the fourth dimension: Kandinsky, Mondrian, and Malevich in context. In M. Ackermann & I. Malz (Ed.), Kandinsky, Malewitsch, Mondrian: Der weisse Abgrund Unendlichkeit/The Infinite White Abyss (pp. 37–55) (German); 233-44 (English). Düsseldorf: Kunstsammlung Nordrhein-Westfalen.

    Google Scholar 

  • Hunt, B. J. (1991). The Maxwellians. Cornell: Cornell University Press.

    Google Scholar 

  • Jeans, J. (1929). The universe around us. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Jeans, J. (1930). The mysterious universe. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kostro, L. (2000). Einstein and the ether. Montreal: Apeiron.

    MATH  Google Scholar 

  • Kragh, H. (2002). The vortex atom: a Victorian theory of everything. Centaurus, 44, 32–114.

    MathSciNet  Google Scholar 

  • Laemmli, W. (2016). The choreography of everyday life: Rudolf Laban and the making of modern movement. Unpublished Ph.D. dissertation, University of Pennsylvania.

    Google Scholar 

  • Larmor, J. (1911). Aether. In Encyclopædia Britannica ninth edition (Vol. 11). https://en.wikisource.org/wiki/1911_Encyclopædia_Britannica/Aether.

  • Levy, H. (1939). Modern science. A study of physical science of the world today. London: Havish Hamilton.

    Google Scholar 

  • Lodge, O. (1916). Raymond or life and death. London: Methuen & Co.

    Google Scholar 

  • Lodge, O. (1922). Address to the wireless society of London. The Wireless World, 13, 407–415.

    Google Scholar 

  • Mach, E. (1893). The science of mechanics: A critical and historical exposition of its principles. Chicago: Open Court.

    MATH  Google Scholar 

  • Maxwell, J.C. (1875). Atom. Encyclopædia Britannica ninth edition (Vol. 3). https://en.wikisource.org/wiki/Encyclopædia_Britannica,_Ninth_Edition/Atom.

  • Maxwell, J.C. (1878). Ether. Encyclopædia Britannica ninth edition (Vol. 8). https://en.wikisource.org/wiki/Encyclopædia_Britannica,_Ninth_Edition/Ether.

  • Mills, J. (1922). Within the atom. A popular view of electrons and quanta. London: George Routledge and Sons.

    Google Scholar 

  • Morus, I. (2005). When physics became king. Chicago: Chicago University Press.

    Google Scholar 

  • Navarro, J. (2004). New entities, old paradigms: elementary particles in the 1930s. Llull, 27, 435–464.

    Google Scholar 

  • Navarro, J. (2012). A history of the electron. In G.P. Thomson (Ed.), Cambridge: Cambridge University Press.

    Google Scholar 

  • Navarro, J. (2016). Ether and wireless. An old medium into new media. Historical Studies in the Natural Sciences, 46, 460–489.

    Google Scholar 

  • Navarro, J. (2018). Ether and modernity. The recalcitrance of an epistemic object in the early twentieth century. Oxford: Oxford University Press.

    Google Scholar 

  • Noakes, R. (2018). Making space for the soul: Oliver lodge, Maxwellian psychics and the etherial body. Navarro, 2018, 88–106.

    Google Scholar 

  • Ostwald, W. (1893). Lehrbuch der allgemeinen Chemie (2nd ed.). Leipzig: Engelmann.

    Google Scholar 

  • Rice, J. (1927). Relativity. An exposition without mathematics. London: Ernest Benn Limited.

    Google Scholar 

  • The Marquis of Salisbury. (1894). Presidential address. British Association for the Advancement of Science Report, 64, 3–15.

    Google Scholar 

  • Schaffer, S. (1982). Conceptions of ether: Studies in the history of ether theories 1740–1900. History of Science, 20, 297–303.

    ADS  Google Scholar 

  • Sponsel, A. (2002). Constructing a ‘Revolution in Science’: The campaign to promote a favourable reception for the 1919 solar eclipse experiments. The British Journal for the History of Science, 35, 439–467.

    MathSciNet  Google Scholar 

  • Stachel, J. (2002). Einstein from ‘B’ to ‘Z’. Basel: Birkhäuser.

    MATH  Google Scholar 

  • Staley, R. (2008). Einstein’s generation. Chicago: Chicago University Press.

    MATH  Google Scholar 

  • Thomson, G. P. (1930). The wave mechanics of free electrons. New York and London: McGraw-Hill Book Company.

    MATH  Google Scholar 

  • Thomson, W. (1867). On vortex atoms. Proceedings of the Royal Society of Edinburgh, 6, 94–105.

    Google Scholar 

  • Thomson, W., & Tait, Peter G. (1867). Treatise on natural philosophy. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • van Dongen, J. (2009). On the role of the Michelson-Morley experiment: Einstein in Chicago. Archive for History of Exact Sciences, 63, 655–663.

    MathSciNet  MATH  Google Scholar 

  • van Dongen, J. (2012). Mistaken identity and mirror images: Albert and Carl Einstein, Leiden and Berlin, relativity and revolution. Physics in Perspective, 14, 126–177.

    ADS  Google Scholar 

  • Whittaker, E.T. (1951). A history of the theories of aether and electricity (vol. 1, 2nd ed). London: Nelson.

    Google Scholar 

  • Wilson, E. B. (1913). Review of A history of the theories of aether and electricity. Bulletin of the American Mathematical Society, 19, 423–427.

    MathSciNet  Google Scholar 

  • Wilson, D. B. (1974). Aether studies. History of Science, 12, 220–227.

    ADS  Google Scholar 

  • Wise, M. N. (1981). German concepts of force, energy and the electromagnetic ether: 1845–1880. Cantor & Hodge, 1981, 269–308.

    Google Scholar 

Download references

Ikerbasque Research Professor, University of the Basque Country. Part of this research was possible thanks to project HAR2015-67831-P MINECO/FEDER, EU of the Spanish Government as well as the Ikercambridge fellowship of the Basque Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navarro, J. (2020). Biography or Obituary? The Historiographical Value of the Death of the Ether. In: Forstner, C., Walker, M. (eds) Biographies in the History of Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-48509-2_16

Download citation

Publish with us

Policies and ethics