Skip to main content

A Tags Mining Approach for Automatic Image Annotation Using Neighbor Images Tree

  • Chapter
  • First Online:
Cognitive Computing in Human Cognition

Part of the book series: Learning and Analytics in Intelligent Systems ((LAIS,volume 17))

Abstract

With the growth of the internet and the volume of images, both online (such as Flicker and Facebook) and offline (such as image datasets or personal/organizational collections), in recent years, annotation of the image has taken broad attention. Image annotation, is a method where labels or keywords for an image are created. This may be biased to popular labels in the automatic image annotation relying on the closet neighbors. Furthermore, when confronting images with less common and unique keywords, the efficiency of these methods will reduce. This article developed a new model to addressing these issues using a tree mechanism of photos related to the target image. Firstly, focused on the correlation of the feature vector between the target image and the image database, neighbor’s images are obtained in the form of a matrix. Afterwards, to indicate the different tags of interest, the non-redundant tags subspaces are mined. Next, based on the tags it has in common with the query image, a neighbor’s images tree structure is drawn. Finally, recommendation tags to the query image are obtained through using the tree structure. The Proposed method applied to well-known benchmarks of annotated datasets, Corel5k, IAPR TC12 and MIR Flickr. The results of the experiments indicate that the method suggested is the better performance and improves the results in comparison with the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.U.N. Jun-ding, D.U. Juan, Review on automatic image semantic annotation techniques. Pattern Recognit. 45(210128), 346–362 (2012)

    Google Scholar 

  2. A. Alzu’bi, A. Amira, N. Ramzan, Semantic content-based image retrieval: a comprehensive study. J. Vis. Commun. Image Represent., 32, 20–54 (2015). https://doi.org/10.1016/j.jvcir.2015.07.012

  3. T. Deselaers, H. Müller, P. Clough, H. Ney, T.M. Lehmann, The CLEF 2005 automatic medical image annotation task. Int. J. Comput. Vis. 74(1), 51–58 (2007). https://doi.org/10.1007/s11263-006-0007-y

    Article  Google Scholar 

  4. Y. Shin, Y. Kim, E.Y. Kim, Automatic textile image annotation by predicting emotional concepts from visual features. Image Vis. Comput. 28(3), 526–537 (2010). https://doi.org/10.1016/j.imavis.2009.08.009

    Article  Google Scholar 

  5. C. Huang, F. Meng, W. Luo, S. Zhu, Bird breed classification and annotation using saliency based graphical model. J. Vis. Commun. Image Represent. 25(6), 1299–1307 (2014). https://doi.org/10.1016/j.jvcir.2014.05.002

    Article  Google Scholar 

  6. G. Allampalli-Nagaraj, I. Bichindaritz, Automatic semantic indexing of medical images using a web ontology language for case-based image retrieval. Eng. Appl. Artif. Intell. 22(1), 18–25 (2009). https://doi.org/10.1016/j.engappai.2008.04.018

    Article  Google Scholar 

  7. A. Lotfi, V. Maihami, F. Yaghmaee, Wood image annotation using Gabor texture feature. Int. J. Mechatron. Electr. Comput. Technol. 4, 1508–1523 (2014)

    Google Scholar 

  8. C. Lei, D. Liu, W. Li, Social diffusion analysis with common-interest model for image annotation. IEEE Trans. Multimed. 18(4), 687–701 (2016). https://doi.org/10.1109/TMM.2015.2477277

    Article  Google Scholar 

  9. J. Liu, M. Li, Q. Liu, H. Lu, S. Ma, Image annotation via graph learning. Pattern Recognit. 42(2), 218–228 (2009). https://doi.org/10.1016/j.patcog.2008.04.012

    Article  MATH  Google Scholar 

  10. J.H. Su, C.L. Chou, C.Y. Lin, V.S. Tseng, Effective semantic annotation by image-to-concept distribution model. IEEE Trans. Multimed. 13(3), 530–538 (2011). https://doi.org/10.1109/TMM.2011.2129502

    Article  Google Scholar 

  11. V. Maihami, F. Yaghmaee, A genetic-based prototyping for automatic image annotation. Comput. Electr. Eng. 70, 400–412 (2018). https://doi.org/10.1016/j.compeleceng.2017.03.019

    Article  Google Scholar 

  12. D. Zhang, M. Monirul Islam, G. Lu, Structural image retrieval using automatic image annotation and region based inverted file. J. Vis. Commun. Image Represent. 24(7), 1087–1098 (2013). https://doi.org/10.1016/j.jvcir.2013.07.004

  13. S. Zhang, J. Huang, Automatic image annotation and retrieval using group sparsity. Syst. Man 42(3), 838–849 (2012). https://doi.org/10.1109/tsmcb.2011.2179533

  14. Y. Yang, Z. Huang, Y. Yang, J. Liu, H.T. Shen, J. Luo, Local image tagging via graph regularized joint group sparsity. Pattern Recognit. 46(5), 1358–1368 (2013). https://doi.org/10.1016/j.patcog.2012.10.026

    Article  MATH  Google Scholar 

  15. L. Ballan, M. Bertini, G. Serra, A. Del Bimbo, A data-driven approach for tag refinement and localization in web videos. Comput. Vis. Image Underst. 140, 58–67 (2015). https://doi.org/10.1016/J.CVIU.2015.05.009

    Article  Google Scholar 

  16. Z. Chen, Z. Chi, H. Fu, D. Feng, Multi-instance multi-label image classification: a neural approach. Neurocomputing 99, 298–306 (2013)

    Article  Google Scholar 

  17. A. Makadia, V. Pavlovic, S. Kumar, A new baselines for image annotation. Int. J. Comput. Vis. 90, 88–105 (2010)

    Google Scholar 

  18. M. Guillaumin, T. Mensink, J. Verbeek, C. Schmid, C. Schmid TagProp, TagProp: Discriminative metric learning in nearest neighbor models for image auto-annotation: Discriminative metric learning in nearest neighbor models for image auto-annotation, in IEEE Computer society (2009), pp. 309–316. https://doi.org/10.1109/iccv.2009.5459266

  19. C. Cui, J. Shen, J. Ma, T. Lian, Social tag relevance learning via ranking-oriented neighbor voting. Multimed. Tools Appl. 76(6), 8831–8857 (2017). https://doi.org/10.1007/s11042-016-3512-1

    Article  Google Scholar 

  20. X. Li, C.G.M. Snoek, M. Worring, Learning social tag relevance by neighbor voting. IEEE Trans. Multimed. 11(7), 1310–1322 (2009). https://doi.org/10.1109/TMM.2009.2030598

    Article  Google Scholar 

  21. X. Li, T. Uricchio, L. Ballan, M. Bertini, C. G. M. Snoek, A. Del Bimbo, Socializing the semantic gap: a comparative survey on image tag assignment, refinement and retrieval, in ACM Computer Survey Preprint. arXiv1503.08248 (2016) https://doi.org/10.1145/2906152

  22. J. Johnson, L. Ballan, L. Fei-Fei, Love thy neighbors: Image annotation by exploiting image metadata, in Proceedings of the IEEE International Conference on Computer Vision, vol. 2015 Inter (2015) pp. 4624–4632, https://doi.org/10.1109/iccv.2015.525

  23. S. Lee, W. De Neve, Y.M. Ro, Visually weighted neighbor voting for image tag relevance learning. Multimed. Tools Appl. 72(2), 1363–1386 (2014). https://doi.org/10.1007/s11042-013-1439-3

    Article  Google Scholar 

  24. Y. Verma C.V. Jawahar, Image annotation using metric learning in semantic neighbourhoods, in Computer Vision–ECCV 2012 (Springer, 2012), pp. 836–849

    Google Scholar 

  25. A. Yu, K. Grauman, Predicting useful neighborhoods for lazy local learning, in Advances in Neural Information Processing Systems (2014), pp. 1916–1924

    Google Scholar 

  26. F. Tian, X. Shen, F. Shang, Automatic image annotation with real-world community contributed data set. Multimed. Syst. 25(5), 463–474 (2019). https://doi.org/10.1007/s00530-017-0548-7

    Article  Google Scholar 

  27. V. Maihami, F. Yaghmaee, Automatic image annotation using community detection in neighbor images. Phys. A Stat. Mech. Appl. 507, 123–132 (2018). https://doi.org/10.1016/j.physa.2018.05.028

    Article  Google Scholar 

  28. Y. Ma, Y. Liu, Q. Xie, L. Li, CNN-feature based automatic image annotation method. Multimed. Tools Appl. 78(3), 3767–3780 (2019). https://doi.org/10.1007/s11042-018-6038-x

    Article  Google Scholar 

  29. V. Maihami, F. Yaghmaee, A review on the application of structured sparse representation at image annotation. Artif. Intell. Rev. 48(3), 331–348 (2017). https://doi.org/10.1007/s10462-016-9502-x

    Article  Google Scholar 

  30. Q. Cheng, Q. Zhang, P. Fu, C. Tu, S. Li, A survey and analysis on automatic image annotation, in Pattern Recognition (2018)

    Google Scholar 

  31. J. Chen, D. Wang, I. Xie, Q. Lu, Image annotation tactics: transitions, strategies and efficiency. Inf. Process. Manag. 54(6), 985–1001 (2018). https://doi.org/10.1016/j.ipm.2018.06.009

    Article  Google Scholar 

  32. Y. Gu, X. Qian, Q. Li, M. Wang, R. Hong, Q. Tian, Image annotation by latent community detection and multikernel learning. IEEE Trans. Image Process. 24(11), 3450–3463 (2015). https://doi.org/10.1109/TIP.2015.2443501

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Huang, H. Liu, J. Shen, S. Yan, Towards efficient sparse coding for scalable image annotation, in Proceedings of the 21st ACM International Conference on Multimedia (2013), pp. 947–956. https://doi.org/10.1145/2502081.2502127

  34. P.V. Bengio, Y. Aaron Courville, Representation learning: a review and new perspectives. Pattern Anal. Mach. Intell. IEEE Trans. 35(8), 1798–1828 (2013)

    Google Scholar 

  35. A.G. Howard, Some improvements on deep convolutional neural network based image classification. arXiv Prepr. (2013)

    Google Scholar 

  36. Y. Yang, Z. Huang, H.T. Shen, X. Zhou, Mining multi-tag association for image tagging. World Wide Web 14(2), 133–156 (2011). https://doi.org/10.1007/s11280-010-0099-8

    Article  Google Scholar 

  37. J. Wang, J. Zhou, H. Xu, T. Mei, X.S. Hua, S. Li, Image tag refinement by regularized latent Dirichlet allocation. Comput. Vis. Image Underst. 124, 61–70 (2014). https://doi.org/10.1016/j.cviu.2014.02.011

    Article  Google Scholar 

  38. Y. Zhu, G. Yan, S. Ma, Image tag refinement towards low-rank, content-tag prior and error sparsity, in Proceedings of the International Conference on Multimedia (2010)

    Google Scholar 

  39. D. Liu, X.-S. Hua, L. Yang, M. Wang, H.-J. Zhang, Tag ranking, in Proceedings of the 18th International Conference on World Wide Web—WWW ’09 (2009), p. 351. https://doi.org/10.1145/1526709.1526757

  40. G. Lan, T. Mori, A max-margin riffled independence model for image tag ranking, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2013), pp. 3103–3110

    Google Scholar 

  41. G. Vaizman, Y. McFee, B. Lanckriet, Codebook-based audio feature representation for music information retrieval. IEEE/ACM Trans. Audio, Speech Lang. Process. 22(10), 1483–1493 (2014)

    Google Scholar 

  42. R.R. Pickup, D. Sun, X. Rosin, P.L. Martin, Euclidean-distance-based canonical forms for non-rigid 3D shape retrieval. Pattern Recognit. 48(8), 2500–2512 (2015)

    Google Scholar 

  43. P. Duygulu, K. Barnard, J.F.G. de Freitas, D.A. Forsyth, Object recognition as machine translation: learning a lexicon for a fixed image vocabulary, in Computer Vision ECCV 2002 (Springer, 2002), pp. 97–112

    Google Scholar 

  44. M.J. Huiskes, B. Thomee, M.S. Lew, New trends and ideas in visual concept detection, in Proceedings of the International Conference on Multimedia Information Retrieval—MIR ’10 (2010), p. 527. https://doi.org/10.1145/1743384.1743475

  45. A. Oliva, A. Torralba, Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

    Article  Google Scholar 

  46. M. Chen, A. Zheng, K. Weinberger, Fast image tagging, in Proceedings of the 30th International Conference on Machine Learning (ICML-13),vol. 28 (2013), pp. 1274–1282

    Google Scholar 

  47. Y. Gu, H. Xue, J. Yang, Cross-modal saliency correlation for image annotation. Neural Process. Lett. 45(3), 777–789 (2017). https://doi.org/10.1007/s11063-016-9511-4

    Article  Google Scholar 

  48. J. Jeon, V. Lavrenko, R. Manmatha, Automatic image annotation and retrieval using cross-media relevance models, in 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (2003), pp. 119–126

    Google Scholar 

  49. N. El-Bendary, T. Kim, A.E. Hassanien, M. Sami, Automatic image annotation approach based on optimization of classes scores. Computing 96(5), 381–402 (2013). https://doi.org/10.1007/s00607-013-0342-0

    Article  Google Scholar 

  50. M. Wang, Tag Ranking, in Proceedings of the 18th International Conference on World Wide Web (2009), pp. 351–360

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vafa Maihami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maihami, V. (2020). A Tags Mining Approach for Automatic Image Annotation Using Neighbor Images Tree. In: Mallick, P., Pattnaik, P., Panda, A., Balas, V. (eds) Cognitive Computing in Human Cognition. Learning and Analytics in Intelligent Systems, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-48118-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48118-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48117-9

  • Online ISBN: 978-3-030-48118-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics