Skip to main content

Geospatial Big Data Handling with High Performance Computing: Current Approaches and Future Directions

  • Chapter
  • First Online:
High Performance Computing for Geospatial Applications

Part of the book series: Geotechnologies and the Environment ((GEOTECH,volume 23))

Abstract

Geospatial big data plays a major role in the era of big data, as most data today are inherently spatial, collected with ubiquitous location-aware sensors such as mobile apps, the global positioning system (GPS), satellites, environmental observations, and social media. Efficiently collecting, managing, storing, and analyzing geospatial data streams provide unprecedented opportunities for business, science, and engineering. However, handling the “Vs” (volume, variety, velocity, veracity, and value) of big data is a challenging task. This is especially true for geospatial big data since the massive datasets must be analyzed in the context of space and time. High performance computing (HPC) provides an essential solution to geospatial big data challenges. This chapter first summarizes four critical aspects for handling geospatial big data with HPC and then briefly reviews existing HPC-related platforms and tools for geospatial big data processing. Lastly, future research directions in using HPC for geospatial big data handling are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016). Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) (pp. 265–283).

    Google Scholar 

  • Abramova, V., & Bernardino, J. (2013, July). NoSQL databases: MongoDB vs Cassandra. In Proceedings of the International C∗ Conference on Computer Science and Software Engineering (pp. 14–22). New York: ACM

    Google Scholar 

  • Alarabi, L., Mokbel, M. F., & Musleh, M. (2018). St-Hadoop: A MapReduce framework for spatio-temporal data. GeoInformatica, 22(4), 785–813.

    Google Scholar 

  • Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., & Mock, S. (2004, June). Kepler: an extensible system for design and execution of scientific workflows. In Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004 (pp. 423–424). Piscataway, NJ: IEEE.

    Google Scholar 

  • Armstrong, M. P. (2000). Geography and computational science. Annals of the Association of American Geographers, 90(1), 146–156.

    Google Scholar 

  • Asadi, R., & Regan, A. (2019). A spatial-temporal decomposition based deep neural network for time series forecasting. arXiv preprint arXiv:1902.00636.

    Google Scholar 

  • Ashton, K. (2009). That ‘Internet of Things’ thing. RFID Journal, 22(7), 97–114.

    Google Scholar 

  • Athanasis, N., Themistocleous, M., Kalabokidis, K., & Chatzitheodorou, C. (2018, October). Big Data Analysis in UAV Surveillance for Wildfire Prevention and Management. In European, Mediterranean, and Middle Eastern Conference on Information Systems (pp. 47–58). Cham: Springer.

    Google Scholar 

  • Audebert, N., Le Saux, B., & Lefèvre, S. (2018). Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks. ISPRS Journal of Photogrammetry and Remote Sensing, 140, 20–32.

    Google Scholar 

  • Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495.

    Google Scholar 

  • Baumann, P., Dehmel, A., Furtado, P., Ritsch, R., & Widmann, N. (1999, September). Spatio-temporal retrieval with RasDaMan. In VLDB (pp. 746–749).

    Google Scholar 

  • Baumann, P., Mazzetti, P., Ungar, J., Barbera, R., Barboni, D., Beccati, A., et al. (2016). Big data analytics for earth sciences: The EarthServer approach. International Journal of Digital Earth, 9(1), 3–29.

    Google Scholar 

  • Baumann, P., Misev, D., Merticariu, V., Huu, B. P., Bell, B., Kuo, K. S., et al. (2018). Array databases: Concepts, standards, Implementations. Research Data Alliance (RDA) Working Group Report.

    Google Scholar 

  • Bhangale, U. M., Kurte, K. R., Durbha, S. S., King, R. L., & Younan, N. H. (2016, July). Big data processing using hpc for remote sensing disaster data. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 5894–5897). Piscataway, NJ: IEEE.

    Google Scholar 

  • Blumenfeld J. (2019). Getting petabytes to people: How EOSDIS facilitates earth observing data discovery and use. Retrieved May 1, 2019, from https://earthdata.nasa.gov/getting-petabytes-to-people-how-the-eosdis-facilitates-earth-observing-data-discovery-and-use

  • Bouziane, H. L., Pérez, C., & Priol, T. (2008, August). A software component model with spatial and temporal compositions for grid infrastructures. In European Conference on Parallel Processing (pp. 698-708). Berlin: Springer.

    Google Scholar 

  • Callahan, S. P., Freire, J., Santos, E., Scheidegger, C. E., Silva, C. T., & Vo, H. T. (2006, June). VisTrails: Visualization meets data management. In Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data (pp. 745–747). New York: ACM.

    Google Scholar 

  • Camara, G., Assis, L. F., Ribeiro, G., Ferreira, K. R., Llapa, E., & Vinhas, L. (2016, October). Big earth observation data analytics: Matching requirements to system architectures. In Proceedings of the 5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data (pp. 1–6). New York: ACM.

    Google Scholar 

  • Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., et al. (2008). Bigtable: A distributed storage system for structured data. ACM Transactions on Computer Systems (TOCS), 26(2), 4.

    Google Scholar 

  • Chen, X. W., & Lin, X. (2014). Big data deep learning: Challenges and perspectives. IEEE Access, 2, 514–525.

    Google Scholar 

  • Cheng, G., Zhou, P., & Han, J. (2016). Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 54(12), 7405–7415.

    Google Scholar 

  • Clarke, K. C. (2003). Geocomputation’s future at the extremes: High performance computing and nanoclients. Parallel Computing, 29(10), 1281–1295.

    Google Scholar 

  • Cudré-Mauroux, P., Kimura, H., Lim, K. T., Rogers, J., Simakov, R., Soroush, E., et al. (2009). A demonstration of SciDB: A science-oriented DBMS. Proceedings of the VLDB Endowment, 2(2), 1534–1537.

    Google Scholar 

  • De Mauro, A., Greco, M., & Grimaldi, M. (2015, February). What is big data? A consensual definition and a review of key research topics. In AIP Conference Proceedings (Vol. 1644, No. 1, pp. 97–104). College Park, MD: AIP.

    Google Scholar 

  • Dean, J. (2016). Large-scale deep learning for building intelligent computer systems. https://storage.googleapis.com/pub-tools-public-publication-data/pdf/44921.pdf

  • Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113.

    Google Scholar 

  • Desjardins, M. R., Hohl, A., Griffith, A., & Delmelle, E. (2018). A space–time parallel framework for fine-scale visualization of pollen levels across the Eastern United States. Cartography and Geographic Information Science, 46(5), 428–440.

    Google Scholar 

  • Ding, Y., & Densham, P. (1996). Spatial strategies for parallel spatial modelling. International Journal of Geographical Information Systems, 10(6), 669–698. https://doi.org/10.1080/02693799608902104

    Article  Google Scholar 

  • Duffy, D., Spear, C., Bowen, M., Thompson, J., Hu, F., Yang, C., et al. (2016, December). Emerging cyber infrastructure for NASA’s large-scale climate data analytics. In AGU Fall Meeting Abstracts.

    Google Scholar 

  • Eldawy, A., & Mokbel, M. F. (2015, April). SpatialHadoop: A mapreduce framework for spatial data. In 2015 IEEE 31st International Conference on Data Engineering (pp. 1352–1363). Piscataway, NJ: IEEE.

    Google Scholar 

  • Eldawy, A., Mokbel, M. F., Alharthi, S., Alzaidy, A., Tarek, K., & Ghani, S. (2015, April). Shahed: A mapreduce-based system for querying and visualizing spatio-temporal satellite data. In 2015 IEEE 31st International Conference on Data Engineering (pp. 1585–1596). Piscataway, NJ: IEEE.

    Google Scholar 

  • Engélinus, J., & Badard, T. (2018). Elcano: A Geospatial Big Data Processing System based on SparkSQL. In Geographical Information Systems Theory, Applications and Management (GISTAM) (pp. 119–128).

    Google Scholar 

  • Esri. (2013). GIS tools for Hadoop. Retrieved April 25, 2019, from https://github.com/Esri/gis-tools-for-hadoop

  • Fahmy, M. M., Elghandour, I., & Nagi, M. (2016, December). CoS-HDFS: Co-locating geo-distributed spatial data in Hadoop distributed file system. In Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (pp. 123–132). New York: ACM

    Google Scholar 

  • Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., et al. (2004, September). Open MPI: Goals, concept, and design of a next generation MPI implementation. In European Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting (pp. 97–104). Berlin: Springer.

    Google Scholar 

  • Gong, J., Wu, H., Zhang, T., Gui, Z., Li, Z., You, L., et al. (2012). Geospatial service web: Towards integrated cyberinfrastructure for GIScience. Geo-spatial Information Science, 15(2), 73–84.

    Google Scholar 

  • Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–221.

    Google Scholar 

  • Google. (2019). Google BigQuery GIS. Retrieved April 25, 2019, from https://cloud.google.com/bigquery/docs/gis-intro

  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.

    Google Scholar 

  • Gropp, W., Lusk, E., Doss, N., & Skjellum, A. (1996). A high-performance, portable implementation of the MPI message passing interface standard. Parallel Computing, 22(6), 789–828.

    Google Scholar 

  • Guan, Q. (2009). pRPL: An open-source general-purpose parallel Raster processing programming library. SIGSPATIAL Special, 1(1), 57–62.

    Google Scholar 

  • Guan, Q., Zhang, T., & Clarke, K. C. (2006, December). GeoComputation in the grid computing age. In International Symposium on Web and Wireless Geographical Information Systems (pp. 237–246). Berlin: Springer.

    Google Scholar 

  • Gudivada, V. N., Baeza-Yates, R., & Raghavan, V. V. (2015). Big data: Promises and problems. Computer, 3, 20–23.

    Google Scholar 

  • Guo, Z., Fox, G., & Zhou, M. (2012, May). Investigation of data locality in mapreduce. In Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012) (pp. 419–426). Washington, DC: IEEE Computer Society.

    Google Scholar 

  • Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. ACM SIGMOD International Conference on Management of Data (Vol. 14, No. 2, pp. 47–57). Boston: ACM.

    Google Scholar 

  • Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A. A., Tyukavina, A., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853.

    Google Scholar 

  • He, Z., Wu, C., Liu, G., Zheng, Z., & Tian, Y. (2015). Decomposition tree: A spatio-temporal indexing method for movement big data. Cluster Computing, 18(4), 1481–1492.

    Google Scholar 

  • Hohl, A., Delmelle, E. M., & Tang, W. (2015). Spatiotemporal domain decomposition for massive parallel computation of space-time Kernel density. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences (Vol. 2–4). International Workshop on Spatiotemporal Computing. July 13–15, 2015, Fairfax, VA.

    Google Scholar 

  • Hohl, A., Griffith, A. D., Eppes, M. C., & Delmelle, E. (2018). Computationally enabled 4D visualizations facilitate the detection of rock fracture patterns from acoustic emissions. Rock Mechanics and Rock Engineering, 51, 2733–2746.

    Google Scholar 

  • Hu, F., Xia, G. S., Hu, J., & Zhang, L. (2015). Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sensing, 7(11), 14680–14707.

    Google Scholar 

  • Hu, F., Yang, C., Schnase, J. L., Duffy, D. Q., Xu, M., Bowen, M. K., et al. (2018). ClimateSpark: An in-memory distributed computing framework for big climate data analytics. Computers & Geosciences, 115, 154–166.

    Google Scholar 

  • Huang, Z., Chen, Y., Wan, L., & Peng, X. (2017). GeoSpark SQL: An effective framework enabling spatial queries on spark. ISPRS International Journal of Geo-Information, 6(9), 285.

    Google Scholar 

  • Hughes, J. N., Annex, A., Eichelberger, C. N., Fox, A., Hulbert, A., & Ronquest, M. (2015, May). GeoMesa: A distributed architecture for spatio-temporal fusion. In Geospatial informatics, fusion, and motion video analytics V (Vol. 9473, p. 94730F). Washington, DC: International Society for Optics and Photonics.

    Google Scholar 

  • Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M. R., Li, P., et al. (2006). Taverna: A tool for building and running workflows of services. Nucleic Acids Research, 34(suppl_2), W729–W732.

    Google Scholar 

  • Internet Live Stats. (2019). Retrieved May 3, 2019, from https://www.internetlivestats.com/twitter-statistics/

  • Iorga, M., Feldman, L., Barton, R., Martin, M., Goren, N., & Mahmoudi, C. (2017). The nist definition of fog computing (No. NIST Special Publication (SP) 800–191 (Draft)). National Institute of Standards and Technology.

    Google Scholar 

  • Jaeger, E., Altintas, I., Zhang, J., Ludäscher, B., Pennington, D., & Michener, W. (2005, June). A scientific workflow approach to distributed geospatial data processing using web services. In SSDBM (Vol. 3, No. 42, pp. 87–90).

    Google Scholar 

  • Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., et al. (2014, November). Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM International Conference on Multimedia (pp. 675–678). New York: ACM

    Google Scholar 

  • Katal, A., Wazid, M., & Goudar, R. H. (2013, August). Big data: issues, challenges, tools and good practices. In 2013 Sixth International Conference on Contemporary Computing (IC3) (pp. 404–409). Piscataway, NJ: IEEE.

    Google Scholar 

  • Kini, A., & Emanuele, R. (2014). Geotrellis: Adding geospatial capabilities to spark. Spark Summit.

    Google Scholar 

  • Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778–782.

    Google Scholar 

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.

    Google Scholar 

  • Lee, K., & Kim, K. (2018, July). Geo-based image analysis system supporting OGC-WPS standard on open PaaS cloud platform. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 5262–5265). Piscataway, NJ: IEEE.

    Google Scholar 

  • Li, J., Jiang, Y., Yang, C., Huang, Q., & Rice, M. (2013). Visualizing 3D/4D environmental data using many-core graphics processing units (GPUs) and multi-core central processing units (CPUs). Computers & Geosciences, 59, 78–89.

    Google Scholar 

  • Li, Z., Hodgson, M., & Li, W. (2018). A general-purpose framework for large-scale LiDAR data processing. International Journal of Digital Earth, 11(1), 26–47.

    Google Scholar 

  • Li, Z., Hu, F., Schnase, J. L., Duffy, D. Q., Lee, T., Bowen, M. K., et al. (2017c). A spatiotemporal indexing approach for efficient processing of big array-based climate data with MapReduce. International Journal of Geographical Information Science, 31(1), 17–35.

    Google Scholar 

  • Li, Z., Huang, Q., Carbone, G., & Hu, F. (2017b). A high performance query analytical framework for supporting data-intensive climate studies, computers. Environment and Urban Systems, 62(3), 210–221.

    Google Scholar 

  • Li, Z., Huang, Q., Jiang, Y., & Hu, F. (2019). SOVAS: A scalable online visual analytic system for big climate data analysis. International Journal of Geographic Information Science. https://doi.org/10.1080/13658816.2019.1605073

  • Li, Z., Yang, C., Huang, Q., Liu, K., Sun, M., & Xia, J. (2017a). Building model as a service for supporting geosciences, computers. Environment and Urban Systems, 61(B), 141–152.

    Google Scholar 

  • Li, Z., Yang, C., Liu, K., Hu, F., & Jin, B. (2016). Automatic Scaling Hadoop in the Cloud for Efficient Process of Big Geospatial Data. ISPRS International Journal of Geo-Information, 5(10), 173.

    Google Scholar 

  • Li, Z., Yang, C., Yu, M., Liu, K., & Sun, M. (2015). Enabling big geoscience data analytics with a cloud-based, MapReduce-enabled and service-oriented workflow framework. PloS one, 10(3), e0116781.

    Google Scholar 

  • Li, Z., Yang, C. P., Wu, H., Li, W., & Miao, L. (2011). An optimized framework for seamlessly integrating OGC Web services to support geospatial sciences. International Journal of Geographical Information Science, 25(4), 595–613.

    Google Scholar 

  • Ling, F., & Foody, G. M. (2019). Super-resolution land cover mapping by deep learning. Remote Sensing Letters, 10(6), 598–606.

    Google Scholar 

  • Ma, L., Li, M., Ma, X., Cheng, L., Du, P., & Liu, Y. (2017). A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens., 130, 277–293.

    Google Scholar 

  • Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. et al. (2011). Big data: The next frontier for innovation, competition, and productivity (pp. 1–143). McKinsey Global Institute. Retrieved from: https://bigdatawg.nist.gov/pdf/MGI_big_data_full_report.pdf

  • Marciniec, M. (2017). Observing world tweeting tendencies in real-time. Retrieved May 3, 2019, from https://codete.com/blog/observing-world-tweeting-tendencies-in-real-time-part-2

  • Minsky, M. (1961). Steps toward artificial intelligence. Proceedings of the IRE, 49(1), 8–30.

    Google Scholar 

  • Murphy, J. M., Sexton, D. M., Barnett, D. N., Jones, G. S., Webb, M. J., et al. (2004). Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768–772.

    Google Scholar 

  • Nvidia, C. U. D. A. (2011). Nvidia CUDA C programming guide. Nvidia Corporation, 120(18), 8.

    Google Scholar 

  • OGC. (2017). OGC announces a new standard that improves the way information is referenced to the earth. https://www.ogc.org/pressroom/pressreleases/2656

  • Ooi, B. C. (1987). Spatial kd-tree: A data structure for geographic database. In Datenbanksysteme in Büro, Technik und Wissenschaft (pp. 247–258). Berlin: Springer.

    Google Scholar 

  • Ooi, B. C., Tan, K. L., Wang, S., Wang, W., Cai, Q., Chen, G., et al. (2015, October). SINGA: A distributed deep learning platform. In Proceedings of the 23rd ACM International Conference on Multimedia (pp. 685–688). New York: ACM.

    Google Scholar 

  • Planthaber, G., Stonebraker, M., & Frew, J. (2012, November). EarthDB: scalable analysis of MODIS data using SciDB. In Proceedings of the 1st ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data (pp. 11–19). New York: ACM

    Google Scholar 

  • Ramsey, P. (2005). PostGis manual. Refractions Research Inc, 17.

    Google Scholar 

  • Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., et al. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of climate, 24(14), 3624–3648.

    Google Scholar 

  • Robinson. (2012). The storage and transfer challenges of Big Data. Retrieved November 25, 2015, from http://sloanreview.mit.edu/article/the-storage-and-transfer-challenges-of-big-data/

  • Sabeur, Z, Gibb, R., & Purss, M. (2019). Discrete global grid systems SWG. Retrieved March 13, 2019, from http://www.opengeospatial.org/projects/groups/dggsswg

  • Samet, H. (1984). The quadtree and related hierarchical data structures. ACM Computing Surveys (CSUR), 16(2), 187–260.

    Google Scholar 

  • Schnase, J. L., Duffy, D. Q., Tamkin, G. S., Nadeau, D., Thompson, J. H., Grieg, C. M., ... & Webster, W. P. (2017). MERRA analytic services: Meeting the big data challenges of climate science through cloud-enabled climate analytics-as-a-service. Computers, Environment and Urban Systems, 61, 198–211.

    Google Scholar 

  • Shook, E., Hodgson, M. E., Wang, S., Behzad, B., Soltani, K., Hiscox, A., et al. (2016). Parallel cartographic modeling: A methodology for parallelizing spatial data processing. International Journal of Geographical Information Science, 30(12), 2355–2376.

    Google Scholar 

  • Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010, May). The hadoop distributed file system. In MSST (Vol. 10, pp. 1–10).

    Google Scholar 

  • Tan, X., Di, L., Deng, M., Fu, J., Shao, G., Gao, M., et al. (2015). Building an elastic parallel OGC web processing service on a cloud-based cluster: A case study of remote sensing data processing service. Sustainability, 7(10), 14245–14258.

    Google Scholar 

  • Tang, W., Feng, W., & Jia, M. (2015). Massively parallel spatial point pattern analysis: Ripley’s K function accelerated using graphics processing units. International Journal of Geographical Information Science, 29(3), 412–439.

    Google Scholar 

  • Taylor, I., Wang, I., Shields, M., & Majithia, S. (2005). Distributed computing with Triana on the grid. Concurrency and Computation: Practice and Experience, 17(9), 1197–1214.

    Google Scholar 

  • Taylor, R. C. (2010, December). An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics. BMC Bioinformatics (BioMed Central), 11(12), S1.

    Google Scholar 

  • Thain, D., Tannenbaum, T., & Livny, M. (2005). Distributed computing in practice: The Condor experience. Concurrency and Computation: Practice and Experience, 17(2-4), 323–356.

    Google Scholar 

  • Tschauner, H., & Salinas, V. S. (2006, April). Stratigraphic modeling and 3D spatial analysis using photogrammetry and octree spatial decomposition. In Proceedings of the 34th Conference. Digital Discovery. Exploring New Frontiers in Human Heritage. Computer Applications and Quantitative Methods in Archaeology: CAA2006 (pp. 257–270). Fargo, ND.

    Google Scholar 

  • Unat, D., Dubey, A., Hoefler, T., Shalf, J., Abraham, M., Bianco, M., et al. (2017). Trends in data locality abstractions for HPC systems. IEEE Transactions on Parallel and Distributed Systems, 28(10), 3007–3020.

    Google Scholar 

  • VoPham, T., Hart, J. E., Laden, F., & Chiang, Y. Y. (2018). Emerging trends in geospatial artificial intelligence (geoAI): Potential applications for environmental epidemiology. Environmental Health, 17(1), 40.

    Google Scholar 

  • Vora, M. N. (2011, December). Hadoop-HBase for large-scale data. In Proceedings of 2011 International Conference on Computer Science and Network Technology (Vol. 1, pp. 601–605). Piscataway, NJ: IEEE.

    Google Scholar 

  • Wang, F., Aji, A., Liu, Q., & Saltz, J. (2011). Hadoop-GIS: A high performance spatial query system for analytical medical imaging with MapReduce. Center for Comprehensive Informatics, Technical Report. Retrieved September 21, 2015, from https://pdfs.semanticscholar.org/578f/7c003de822fbafaaf82f0dc1c5cf8ed92a14.pdf

  • Wang, L., Chen, B., & Liu, Y. (2013a, June). Distributed storage and index of vector spatial data based on HBase. In 2013 21st International Conference on Geoinformatics (pp. 1–5). Piscataway, NJ: IEEE.

    Google Scholar 

  • Wang, S. (2008, November). GISolve toolkit: Advancing GIS through cyberinfrastructure. In Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (p. 83). New York: ACM

    Google Scholar 

  • Wang, S. (2010). A CyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis. Annals of the Association of American Geographers, 100(3), 535–557.

    Google Scholar 

  • Wang, S., Anselin, L., Bhaduri, B., Crosby, C., Goodchild, M. F., Liu, Y., et al. (2013b). CyberGIS software: A synthetic review and integration roadmap. International Journal of Geographical Information Science, 27(11), 2122–2145.

    Google Scholar 

  • Wang, S., & Armstrong, M. P. (2003). A quadtree approach to domain decomposition for spatial interpolation in grid computing environments. Parallel Computing, 29(10), 1481–1504.

    Google Scholar 

  • Ward, J. S., & Barker, A. (2013). Undefined by data: A survey of big data definitions. School of Computer Science, University of St Andrews, UK

    Google Scholar 

  • Whitby, M. A., Fecher, R., & Bennight, C. (2017, August). Geowave: Utilizing distributed key-value stores for multidimensional data. In International Symposium on Spatial and Temporal Databases (pp. 105–122). Cham: Springer.

    Google Scholar 

  • Widlund, O. B. (2009). Accommodating irregular subdomains in domain decomposition theory. In Domain decomposition methods in science and engineering XVIII (pp. 87–98). Berlin: Springer.

    Google Scholar 

  • Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E., Belward, A. S., Cohen, W. B., et al. (2016). The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment, 185, 271–283.

    Google Scholar 

  • Xia, J., Yang, C., Gui, Z., Liu, K., & Li, Z. (2014). Optimizing an index with spatiotemporal patterns to support GEOSS Clearinghouse. International Journal of Geographical Information Science, 28(7), 1459–1481.

    Google Scholar 

  • Yang, C., Huang, Q., Li, Z., Liu, K., & Hu, F. (2017). Big data and cloud computing: Innovation opportunities and challenges. International Journal of Digital Earth, 10(1), 1–41.

    Google Scholar 

  • Yin, D., Liu, Y., Padmanabhan, A., Terstriep, J., Rush, J., & Wang, S. (2017, July). A CyberGIS-Jupyter framework for geospatial analytics at scale. In Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact (p. 18). New York: ACM

    Google Scholar 

  • Yin, J., Foran, A., & Wang, J. (2013, October). DL-MPI: Enabling data locality computation for MPI-based data-intensive applications. In 2013 IEEE International Conference on Big Data (pp. 506–511). Piscataway, NJ: IEEE.

    Google Scholar 

  • Yoon, G., & Lee, K. (2015). WPS-based satellite image processing onweb framework and cloud computing environment. Korean Journal of Remote Sensing, 31(6), 561–570.

    Google Scholar 

  • Yu, J., Wu, J., & Sarwat, M. (2015, November). GeoSpark: A cluster computing framework for processing large-scale spatial data. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems (p. 70). New York: ACM.

    Google Scholar 

  • Yue, P., Gong, J., & Di, L. (2010). Augmenting geospatial data provenance through metadata tracking in geospatial service chaining. Computers & Geosciences, 36(3), 270–281.

    Google Scholar 

  • Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., et al. (2016). Apache spark: A unified engine for big data processing. Communications of the ACM, 59(11), 56–65.

    Google Scholar 

  • Zhang, C., Di, L., Sun, Z., Eugene, G. Y., Hu, L., Lin, L., et al. (2017, August). Integrating OGC Web Processing Service with cloud computing environment for Earth Observation data. In 2017 6th International Conference on Agro-Geoinformatics (pp. 1–4). Piscataway, NJ: IEEE.

    Google Scholar 

  • Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., et al. (2018). An object-based convolutional neural network (OCNN) for urban land use classification. Remote Sensing of Environment, 216, 57–70.

    Google Scholar 

  • Zhang, J., Pennington, D. D., & Michener, W. K. (2006, May). Automatic transformation from geospatial conceptual workflow to executable workflow using GRASS GIS command line modules in Kepler. In International Conference on Computational Science (pp. 912–919). Berlin: Springer.

    Google Scholar 

  • Zhang, X., Song, W., & Liu, L. (2014, June). An implementation approach to store GIS spatial data on NoSQL database. In 2014 22nd International Conference on Geoinformatics (pp. 1–5). Piscataway, NJ: IEEE.

    Google Scholar 

  • Zhao, L., Chen, L., Ranjan, R., Choo, K. K. R., & He, J. (2016). Geographical information system parallelization for spatial big data processing: A review. Cluster Computing, 19(1), 139–152.

    Google Scholar 

  • Zheng, M., Tang, W., Lan, Y., Zhao, X., Jia, M., Allan, C., et al. (2018). Parallel generation of very high resolution digital elevation models: High-performance computing for big spatial data analysis. In Big data in engineering applications (pp. 21–39). Singapore: Springer.

    Google Scholar 

  • Zikopoulos, P., & Eaton, C. (2011). Understanding big data: Analytics for enterprise class hadoop and streaming data. New York: McGraw-Hill.

    Google Scholar 

  • Zikopoulos, P., Parasuraman, K., Deutsch, T., Giles, J., & Corrigan, D. (2012). Harness the power of big data the IBM big data platform. New York: McGraw-Hill.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenlong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Z. (2020). Geospatial Big Data Handling with High Performance Computing: Current Approaches and Future Directions. In: Tang, W., Wang, S. (eds) High Performance Computing for Geospatial Applications. Geotechnologies and the Environment, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-47998-5_4

Download citation

Publish with us

Policies and ethics