Skip to main content

Marker-Assisted Selection in Pea Breeding

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 2

Abstract

In the era of ailing health and shrouded hunger, focusing on the breeding and biotechnological aspects for the improvement of nutritious harvests like pea is the need of the hour. Pea, being the model crop in Mendelian era, has attracted the scientific community, and a lot of work has been done for its improvement. Its exceptionally self-pollinated nature has contributed towards limited genetic base and henceforth confines the breeders to utilize its potential to the maximum extent. Pureline and pedigree method followed by hybridization are the commonly opted methods for its improvement. Breeding methods such as single plant selection have been utilized for developing triple and penta-flowering pea genotypes, wherever backcrossing, single seed descent and recurrent selection are widely used for incorporation of desirable traits in more adapted genotypes. With the advancement in the field of genomics, molecular approaches have been introduced and utilized for deciphering the genetic architecture as well as for acceleration of pea breeding programmes. The improvement of breeding programmes with the help of molecular techniques and their application is a novel prospect for improvement of pea. In comparison, conventional approaches pose the limitation of genetic erosion, while relying totally on molecular and genomic approaches will not be a dependable option. Hence, the parallelism of conventional and molecular breeding especially the marker-assisted selection would be the recommended approach for pea improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S, Kaur S, Palmer NDL (2015) Genetic diversity and population structure of Pisum sativum accessions for marker trait association of lipid content. Crop J 3:238–245

    Google Scholar 

  • Allard RW (1999) Principles of plant breeding, 2nd edn. Wiley, New York

    Google Scholar 

  • Aubert G, Morin J, Jacquin F et al (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112:1024–1041. https://doi.org/10.1007/s00122-005-0205-y

    Article  CAS  PubMed  Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47(3):1082–1090

    Google Scholar 

  • Bordat A, Savois V, Nicolas M et al (2011) Translational genomics in legumes allowed placing in silico 5460 Unigenes on the pea functional map and identified candidate genes in Pisum sativum L. Andrews BJ, editor. G3 58(1):93–103. https://doi.org/10.1534/g3.111.000349

    Article  CAS  Google Scholar 

  • Burstin J, Deniot G, Potier J et al (2001) Microsatellite polymorphism in Pisum sativum. Plant Breed 120:311–317

    CAS  Google Scholar 

  • Burstin J, Salloignon P, Chabert-Martinello M, Magnin-Robert JB, Siol M, Jacquin F et al (2015) Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genomics 16:105. https://doi.org/10.1186/s12864-015-1266-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpenter S, Mishra P, Ghoshal C, Dash P, Wang L, Midha S et al (2018) A strain of an emerging Indian pathotype of Xanthomonas oryzae pv. oryzae defeats the rice bacterial blight resistance gene xa13 without inducing a clade III SWEET gene and is nearly identical to a recent Thai isolate.. bioRxiv [preprint. https://doi.org/10.1101/384289

    Book  Google Scholar 

  • Cobos MJ, Satovic Z, Rubiales D, Fondevilla S (2018) Er3 gene, conferring resistance to powdery mildew in pea, is located in pea LGIV. Euphytica 214:11

    Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond Ser B Biol Sci 363(1491):557–572. https://doi.org/10.1098/rstb.2007.2170

    Article  CAS  Google Scholar 

  • Davies RD (1995) Peas Pisum sativum. In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman scientific and technical, Essex England

    Google Scholar 

  • Deepika, Mahajan R, Lay P et al (2017) Assessment of genetic variability, heritability and genetic advance among Pisum accessions. Vegetos 30(Special):482–488. https://doi.org/10.5958/2229-4473.2017.00125.2

    Article  Google Scholar 

  • Desgroux A, Anthoënel VL, Roux-Duparque M et al (2016) Genome-wide association mapping of partial resistance to Aphanomyces euteiches in pea. BMC Genomics 17:124. https://doi.org/10.1186/s12864-016-2429-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirlewanger E, Isaac PG, Ranade S et al (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and development traits in Pisum sativum L. Theor Appl Genet 88:17–27

    CAS  PubMed  Google Scholar 

  • Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82(suppl_1):17–26

    Google Scholar 

  • Eathington SR, Crosbie TM, Edwards MD et al (2007) Molecular markers in commercial breeding. Crop Sci 47:154–163

    Google Scholar 

  • Ek M, Eklund M, Von Post R et al (2005) Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas 142:86–91

    CAS  PubMed  Google Scholar 

  • Ellis THN, Poyser SJ (2002) An integrated and comparative view of pea genetic and cytogenetic maps. New Phytol 153:17–25. Blackwell Science Ltd. https://doi.org/10.1046/j.0028646X.2001.00302.x

    Article  CAS  Google Scholar 

  • Fondevilla S, Carver TLW, Moreno MT et al (2006) Macroscopic and histological characterisation of genes er1 and er2 for powdery mildew resistance in pea. Eur J Plant Pathol 115:309–321

    Google Scholar 

  • Fondevilla S, Carver TLW, Moreno MT et al (2007) Identification and characterisation of sources of resistance to Erysiphe pisi Syd. In Pisum spp. Plant Breed J 126:113–119

    Google Scholar 

  • Frew TJ, Russell AC, Timmerman-Vaughan GM (2002) Sequence tagged site markers linked to the smb1 gene for resistance to pea seed borne mosaic virus in pea. Plant Breed 121:512–516

    CAS  Google Scholar 

  • Frey JE, Frey B, Sauer C et al (2004) Efficient low-cost DNA extraction and multiplex fluorescent PCR method for marker-assisted selection in breeding. Plant Breed 123:554–557

    CAS  Google Scholar 

  • Gazal A, Dar ZA, Lone AA, Abidi I, Ali AG (2015) Molecular breeding for resilience in maize. IASET JANS 7(2):1057–1063

    CAS  Google Scholar 

  • Ghafoor A, McPhee K (2012) Marker assisted selection for developing powdery mildew resistant pea cultivars. Euphytica 186:593–607

    CAS  Google Scholar 

  • Goddard M (2009) Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136:245–257

    PubMed  Google Scholar 

  • Guo ZG, Tucker DM, Lu JW (2012) Evaluation of genome-wide selection efficiency in maize nested association mapping populations. Theor Appl Genet 124:261–275

    PubMed  Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390. https://doi.org/10.1046/j.1439-0523.1999.00401.x

    Article  CAS  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    CAS  Google Scholar 

  • Holland JB (2004) Implementation of molecular markers for quantitative traits in breeding programs-challenges and opportunities. In: Proceedings of 4th international crop science, Brisbane, 26 Sept–1 Oct

    Google Scholar 

  • Hospital F (2005) Selection in backcross programmes. Philos Trans R Soc B 360:1503–1511. https://doi.org/10.1098/rstb.2005.1670

    Article  CAS  Google Scholar 

  • Hospital F, Charcosset A (1997) Marker-assisted introgression of quantitative trait loci. Genetics 147:1469–1485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Humphry M, Reinstädler A, Ivanov S et al (2011) Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol 12:866–878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang GL, Dong Y, Shi J, Ward RW (2007) QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. II. Resistance to deoxynivalenol accumulation and grain yield loss. Theor and Appl Genet 115(8):1043–1052

    Google Scholar 

  • Kalloo G, Rai M, Singh J et al (2005) Morphological and biochemical variability in vegetable pea (Pisum sativum L.). Veg Sci 32(1):19–23

    Google Scholar 

  • Kapila K, Naryal S, Dhiman KC (2011) Analysis of genetic diversity among garden and field pea genotypes of higher Indian Himalayas. J Plant Biochem Biotechnol 21(2):286–291

    Google Scholar 

  • Katoch V, Sharma S, Pathania S et al (2010) Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Mol Breed 25(2):229–237

    CAS  Google Scholar 

  • Kloppers FJ, Pretorius ZA (1997) Effects of combinations amongst genes Lr13, Lr34 and Lr37 on components of resistance in wheat to leaf rust. Plant Pathol 46:737–750. https://doi.org/10.1046/j.1365-3059.1997.d01-58.x

    Article  Google Scholar 

  • Kreplak J et al (2019) A reference genome for pea provides insight into legume genome evolution. Nat Genet 51:1411–1422

    CAS  PubMed  Google Scholar 

  • Kwon SJ, Smykal P, Hu J, Wang M, Kim SJ, McGee RJ, McPhee K, Coyne CJ (2013) User‐friendly markers linked to Fusarium wilt race 1 resistance Fw gene for marker assisted selection in pea. Plant Breed 132: 642–648

    Google Scholar 

  • Lamprecht H (1948) The variation of linkage and the course of crossing over. Agric Hort Genet 6:10–49

    Google Scholar 

  • Laucou V, Haurogne ÂK, Ellis N et al (1998) Genetic mapping in pea. 1. RAPD-based genetic linkage map of Pisum sativum. Theor Appl Genet 97:905–915

    CAS  Google Scholar 

  • Loridon K, McPhee K, Morin J et al (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet. In Press

    Google Scholar 

  • Ma Y, Coyne CJ, Grusak MA et al (2017) Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.). BMC Plant Biol 17:43. https://doi.org/10.1186/s12870-016-0956-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macas J, Neumann P, Navratilova A (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8: 427. https://doi.org/10.1186/1471-2164-8-427

  • Mackay TFC (2009) A-maize-ing diversity. Science 325:688–689

    CAS  PubMed  Google Scholar 

  • Meuwissen T (2007) Genomic selection: marker assisted selection on a genome wide scale. J Anim Breed Genet 124:321–322

    PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103. https://doi.org/10.1023/A:1009651919792

    Article  CAS  Google Scholar 

  • Mondini L, Noorani A, Pagnotta MA (2009) Assessing plant genetic diversity by molecular tools. Diversity 1(1):19–35

    CAS  Google Scholar 

  • Nadeem MA, Nawaz MA, Shahid MQ et al (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32(2):261–285. https://doi.org/10.1080/13102818.2017.1400401

    Article  CAS  Google Scholar 

  • Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot 110:1303. https://doi.org/10.1093/aob/mcs109

    Article  PubMed  PubMed Central  Google Scholar 

  • National Research Council (2006) Food insecurity and hunger in the United States: an assessment of the measure. The National Academies Press, Washington, DC. https://doi.org/10.17226/11578

    Google Scholar 

  • Nguyen GN, Norton SL, Rosewarne GM et al (2018) Automated phenotyping for early vigour of field pea seedlings in controlled environment by colour imaging technology. PLoS One 13(11):e0207788. https://doi.org/10.1371/journal.pone.0207788. pmid: 30452470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paran I, Michelmore R (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    CAS  PubMed  Google Scholar 

  • Pavan S, Schiavulli A, Appiano M et al (2011) Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theor Appl Genet 123:1425–1431

    PubMed  Google Scholar 

  • Pavan S, Schiavulli A, Appiano M et al (2013) Identification of a complete set of functional markers for the selection of er1 powdery mildew resistance in Pisum sativum L. Mol Breed J 31:247–253

    CAS  Google Scholar 

  • Penner GA, Bush A, Wise R, Kim W et al (1993) Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories. Genome Res 2:341–345

    CAS  Google Scholar 

  • Pereira G, Marques C, Ribeiro R, Formiga S, Dâmaso M, Sousa MT, Farinhó M, Leitão JM (2010) Identification of DNA markers linked to an induced mutated gene conferring resistance to powdery mildew in pea (Pisum sativum L.). Euphytica 171(3):327

    CAS  Google Scholar 

  • Rameau C, DeÂnoue D, Fraval F et al (1998) Genetic mapping in pea 2 identification of RAPD and SCAR markers linked to genes affecting plant architecture. Theor Appl Genet 97:916–928. https://doi.org/10.1007/s001220050972

    Article  CAS  Google Scholar 

  • Rana C (2019) Stability analysis for pod yield and component traits and validation of powdery mildew resistance in garden pea. PhD Dissertation submitted in CSK Himachal Pradesh Agricultural University

    Google Scholar 

  • Ribaut JM, Jiang C, Hoisington D (2002) Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Sci 42:557–565

    Google Scholar 

  • Ribaut JM, Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13:1–6

    Google Scholar 

  • Sato S, Isobe S, Tabata S (2010) Structural analyses of the genomes in legumes. Curr Opin Plant Biol 13:1–17

    Google Scholar 

  • Scegura A (2017) Marker assisted backcross selection for virus resistance in pea (Pisum sativum L.). North Dakota State University of agriculture and applied science, Fargo

    Google Scholar 

  • Shanti ML, George MLC, Cruz CMV et al (2001) Identification of resistance genes effective against rice bacterial blight pathogen in eastern India. Plant Dis 85:506–512. https://doi.org/10.1094/PDIS.2001.85.5.506

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Sekhon B, Sharma S, Kumar R (2019a) Newly isolated intervarietal garden pea (Pisum sativum L.) progenies (F7) under north western Himalayan conditions of India. Exp Agric 1–12. https://doi.org/10.1017/S0014479719000115. Published online Apr 2019

  • Sharma R, Dar AA, Mahajan R et al (2019b) Molecular and biochemical characterisation of Indian germplasm of Pisum sativum L. Proc Natl Acad Sci India Sect B Biol Sci 90:103. https://doi.org/10.1007/s40011-018-01069-3

    Article  CAS  Google Scholar 

  • Sindhu A, Ramsay L, Sanderson LA et al (2014) Gene-based SNP discovery and genetic mapping in pea. Theor Appl Genet 127(10):2225–2241. https://doi.org/10.1007/s00122-014-2375-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BD (2015) Plant breeding: principles and methods. Kalyani Publishers, New Delhi, p 697

    Google Scholar 

  • Singh S, Sidhu JS, Huang N et al (2001) Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor Appl Genet 102:1011–1015. https://doi.org/10.1007/s001220000495

    Article  CAS  Google Scholar 

  • Smýkal P, Šafářová D, Navrátil M et al (2010) Marker assisted pea breeding: eIF4E allele specific markers to pea seed-borne mosaic virus (PSbMV) resistance. Mol Breed 26:425

    Google Scholar 

  • Srivastava RK, Mishra SK, Singh AK, Mohapatra T (2012) Development of a coupling-phase SCAR marker linked to the powdery mildew resistance gene ‘er1’in pea (Pisum sativum L.). Euphytica 186(3):855–866

    CAS  Google Scholar 

  • Stoskopf NC, Tomes DT, Christie BR (1993) Plant breeding: theory and practice. Westview Press Inc, San Francisco/Oxford

    Google Scholar 

  • Sun S, Fu H, Wang Z et al (2015a) Discovery of a novel er1 allele conferring powdery mildew resistance in Chinese pea (Pisum sativum L.) landraces. PLoS One. https://doi.org/10.1371/journal.pone.0147624

  • Sun S, Fu H, Wang Z et al (2015b) Resistance to powdery mildew in the pea cultivar Xucai 1 is conferred by the gene er1. Crop J 3:489–499

    Google Scholar 

  • Sun S, Deng D, Wang Z et al (2016) A novel er1 allele and the development and validation of its functional marker for breeding pea (Pisum sativum L.) resistance to powdery mildew. Theor Appl Genet 129:909–919

    CAS  PubMed  Google Scholar 

  • Sun S, Wang Z, Fu H, Duan C, Wang X, Zhu Z (2015) Resistance to powdery mildew in the pea cultivar Xucai 1 is conferred by the gene er1. The Crop Journal 3(6):489–499

    Google Scholar 

  • Tang SX, Kishore VK, Knapp SJ (2003) PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theor Appl Genet 107:6–19

    CAS  PubMed  Google Scholar 

  • Tayeh N, Aluome C, Falque M, Jacquin F, Klein A, Chauveau A et al (2015a) Development of two major resources for pea genomics: the GenoPea 13.2K SNP Array and a high density, high resolution consensus genetic map. Plant J 84(6):1257–1273. https://doi.org/10.1111/tpj.13070. [Epub ahead of print]

    Article  CAS  PubMed  Google Scholar 

  • Tayeh N, Klein A, Le Paslier MC, Jacquin F, Houtin H, Rond C et al (2015b) Genomic prediction in pea: effect of marker density and training population size and composition on prediction accuracy. Front Plant Sci 6:941. https://doi.org/10.3389/fpls.2015.00941

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakur B, Sharma S, Sharma I et al (2018) Diversity analysis of pea genotypes using RAPD markers. Legum Res 41(2):196–201

    Google Scholar 

  • Timmerman GM, Frew TJ, Allison AL et al (1993) Linkage mapping of sbm-1, a gene conferring resistance to pea seed-borne mosaic virus, using molecular markers in Pisum sativum. Theor Appl Genet 85:609–615

    CAS  PubMed  Google Scholar 

  • Timmerman GM, Frew TJ, Weeden NF et al (1994) Linkage analysis of er-1, a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C.). Theor Appl Genet 88:1050–1055

    CAS  PubMed  Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1998) Identification of coupling and repulsion phase RAPD markers for powdery mildew resistance gene er-1 in pea. Genome 41(3):440–444. https://doi.org/10.1139/g98-014

    Article  CAS  Google Scholar 

  • Vilmorin PD, Bateson WA (1911) Case of Gametic coupling in Pisum. Proc R Soc B Biol Sci R Soc 84:9–11. https://doi.org/10.1098/rspb.1911.0040

    Article  Google Scholar 

  • Wade BL (1937) Breeding and improvement of peas and beans. Year book of agriculture

    Google Scholar 

  • Wang Z, Fu H, Sun S, Duan C, Wu X, Yang X, Zhu Z (2015) Identification of powdery mildew resistance gene in pea line X9002. Acta Agron Sin 41:515–523

    CAS  Google Scholar 

  • Wellensiek SJ (1925) Genetic monograph on Pisum [Internet] Martinus Nijhoff. Available: https://books.google.ru/books?id=hJjYOwAACAAJ

  • Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16:45–55. https://doi.org/10.1007/s11032-005-3445-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Sekhon, B.S., Kumar, R., Sharma, S., Mahajan, R. (2020). Marker-Assisted Selection in Pea Breeding. In: Gosal, S., Wani, S. (eds) Accelerated Plant Breeding, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-47298-6_6

Download citation

Publish with us

Policies and ethics