Skip to main content

Accelerated Improvement of Cole Vegetable Crops

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 2

Abstract

Cole vegetables are important sources of dietary minerals and health benefiting substances including glucosinolates. They have been distributed across the world and contribute around 9.25% of total world vegetable production. Advances have been made in exploration and utilization of wild relatives of Brassica vegetables for breeding high-yielding hybrids and resistant genetic stocks to biotic and abiotic stresses and for introgression of quality traits. Conventional approach of breeding helped in development of various open-pollinated varieties (OPV) with wider adaptation. However, innovative approaches such as genomics, transcriptomics, TILLING and EcoTILLING, single SNPs discovery and next-generation sequencing, genome-wide studies, association mapping, marker-assisted breeding and QTLs mapping and introgression and genomic selection have shown promise in breeding for complex traits. The genomics provides breeders with a new set of tools and techniques facilitating study of genotype of complex traits and their relationship with phenotype (Tester and Langridge, Science 327:818–822, 2010). Introgression of Ogura cytoplasmic male sterility (CMS) in Cole vegetables from Japanese wild radish and its refinement by somatic hybridization for low-temperature-related leaf chlorosis revolutionized the hybrid breeding in Cole vegetables which was further strengthened by diversifying the CMS system from alien Brassicas. Now, molecular tools are available for detection of CMS types and also tracking any change in genomic composition for assuring stability of the sterile cytoplasm. The molecular breeding and doubled haploid technique hastened the speed of targeted breeding programmes. Development of Pusa KesariVitA-1 of cauliflower for rich beta-carotene content in India and Beneforte® of broccoli rich in health beneficial glucosinolates through use of molecular markers could push the Cole vegetable breeding to tailoring varieties/hybrids to meet the criteria of ‘super foods’. Innovation in genome editing, i.e. CRISPR/Cas, and its successful use in cabbage facilitate its use in editing of genes responsible for economic traits in other Cole vegetables. Over the years, adequate information on genomic resources in Brassica vegetables have been generated particularly for disease resistance, quality traits and abiotic stress tolerance traits. This article highlights the updated information along with significant achievements in Brassica vegetable breeding on diverse breeding aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Annual Report (2015–2016) Indian Agricultural Research Institute, New Delhi – 110012, p 25

    Google Scholar 

  • Arashida FM, Maluf WR, Carvalho RC (2017) General and specific combining ability in tropical winter cauliflower. Hortic Bras 35(2):167–173

    Google Scholar 

  • Arumugam N, Mukhopadhyay A, Gupta V, Sodhi YS, Verma JK, Pental D, Pradhan AK (2000) Somatic cell hybridization of ‘oxy’ CMS Brassica juncea (AABB) with B. oleracea (CC) for correction of chlorosis and transfer of novel organelle combinations to allotetraploid Brassicas. Theor Appl Genet 100:1043–1049

    Google Scholar 

  • Bannerot H, Boulidard L, Chupeau Y (1977) Unexpected difficulties met with the radish cytoplasm. Cruciferae Newsl 2:16

    Google Scholar 

  • Bhatia R, Dey SS, Sharma K, Prakash C, Kuamr R (2015) In vitro maintenance of CMS lines of Indian cauliflower: an alternative for conventional CMS-based hybrid seed production. J Hortic Sci Biotechnol 90(2):171–179

    CAS  Google Scholar 

  • Branham SE, Stansell ZJ, Couillard DM, Farnham MW (2017) Quantitative trait loci mapping of heat tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing. Theor Appl Genet 130(3):529–538

    CAS  PubMed  Google Scholar 

  • Broun P (2005) Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol 8:272–279

    CAS  PubMed  Google Scholar 

  • Camargo LE, Osborn TC (1996) Mapping loci controlling flowering time in Brassica oleracea. Theor Appl Genet 92(5):610–616

    CAS  PubMed  Google Scholar 

  • Cardi T, Earle ED (1997) Production of new CMS Brassica oleracea by transfer of ‘Anand’ cytoplasm from B. rapa through protoplast fusion. Theor Appl Genet 94:202–212

    Google Scholar 

  • Chamola R, Balyan HS, Bhat SR (2013) Transfer of cytoplasmic male sterility from alloplasmic Brassica juncea and B. napus to cauliflower (B. oleracea var. botrytis) through interspecific hybridization and embryo culture. Indian J Genet 73(2):203–210

    Google Scholar 

  • Chatterjee SS, Swarup V (1984) Self-incompatibility in Indian cauliflower. Cruciferae Newsl 9:25–27

    Google Scholar 

  • Chen LFO, Lin CH, Kelkar SM, Chang YM, Shaw JF (2008a) Transgenic broccoli (Brassica oleracea var. italica) with antisense chlorophyllase (BoCLH1) delays postharvest yellowing. Plant Sci 174(1):25–31

    CAS  Google Scholar 

  • Chen X, Zhu Z, Gerendas J, Zimmermann N (2008b) Glucosinolates in Chinese Brassica campestris vegetables: chinese cabbage, purple cai-tai, choysum, pakchoi, and turnip. Hortic Sci 43(2):571–574

    Google Scholar 

  • Chen C, Mu Z, Zhi-yuan F, Qing-biao W, Yang-yong Z, Yu-mei L, Li-mei Y, Fei C (2013) A co-dominant marker BoE332 applied to marker-assisted selection of homozygous male-sterile plants in cabbage (Brassica oleracea var. capitata L.). J Integr Agric 12(4):596–602

    Google Scholar 

  • Cheng F, Wu J, Fang L, Wang X (2012) Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front Plant Sci 3:198. https://doi.org/10.3389/fpls.2012.00198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang MS, Chiang BY, Grant WF (1977) Transfer of resistance to race 2 of Plasmodiophora brassicae from Brassica napus to cabbage (B. oleracea var. capitata). I. Interspecific hybridization between B. napus and B. oleracea var. capitata. Euphytica 26:319–326

    Google Scholar 

  • Chiu LW, Zhou X, Burke S, Wu X, Prior RL, Li L (2010) The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol 154(3):1470–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christey MC, Makaroff CA, Earle ED (1991) Atrazine resistant cytoplasmic male sterile-nigra-broccoli obtained by protoplast fusion between cytoplasmic male sterile Brassica oleracea and attrazine resistant Brassica campestris. Theor Appl Genet 83:201–208

    CAS  PubMed  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B Biol Sci 363:557–572

    CAS  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA et al (2004) Efficient discovery of DNA polymorphisms in natural populations by EcoTILLING. Plant J 37:778–786

    CAS  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunha C, Tonguc M, Griffiths PD (2004) Discrimination of diploid crucifer species using PCR-RFLP of chloroplast DNA. Hortic Sci 39(7):1575–1577

    CAS  Google Scholar 

  • de Melo PE, de Giordano LB (1994) Effect of Ogura male-sterile cytoplasm on the performance of cabbage hybrid variety. II. Commercial characteristics. Euphytica 78(1–2):149–154

    Google Scholar 

  • Deschamps S, Campbell MA (2010) Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery. Mol Breed 25:553–570

    CAS  Google Scholar 

  • Dey SS, Sharma SR, Bhatia R, Prakash C, Barwal RN (2011a) Superior CMS (Ogura) lines with better combining ability improve yield and maturity in cauliflower (Brassica oleracea var. botrytis). Euphytica 182:187–197

    Google Scholar 

  • Dey SS, Sharma SR, Kumar PR, Prakash C (2011b) Development and characterization of “Ogura” based improved CMS lines of cauliflower (Brassica oleracea var. botrytis L.). Indian J Genet Plant Breed 71:37–42

    Google Scholar 

  • Dey SS, Bhatia R, Sharma SR, Parkash C, Sureja AK (2013) Effects of chloroplast substituted Ogura male sterile cytoplasm on the performance of cauliflower (Brassica oleracea var. botrytis L.) F1 hybrids. Sci Hortic 157:45–51

    CAS  Google Scholar 

  • Dey SS, Singh N, Bhatia R, Parkash C, Chandel C (2014a) Genetic combining ability and heterosis for important vitamins and antioxidant pigments in cauliflower (Brassica oleracea var. botrytis L.). Euphytica 195(2):169–181

    CAS  Google Scholar 

  • Dey SS, Bhatia R, Parkash C, Kalia P, Barwal RN (2014b) Evaluation of cauliflower (Brassica oleracea var. botrytis) CMS (Ogura) lines for agronomic and floral traits. Indian J Hortic 71(3):424–427

    Google Scholar 

  • Dey SS, Sharma K, Dey RB, Kumar GS, Singh D, Kumar R, Parkash C (2015) Inter specific hybridization (Brassica carinata× Brassica oleracea) for introgression of black rot resistance genes into Indian cauliflower (B. oleracea var. botrytis L.). Euphytica 204(1):149–162

    Google Scholar 

  • Dey SS, Bhata R, Prakash C, Sharma S, Dabral M, Mishra V et al (2017a) Alteration in important quality traits and antioxidant activities in Brassica oleracea with Ogura cybrid cytoplasm. Plant Breed 136(3):400–409

    CAS  Google Scholar 

  • Dey SS, Bhatia R, Bhardwaj I, Mishra V, Sharma K, Prakash C et al (2017b) Molecular-agronomic characterization and genetic study reveals usefulness of refined Ogura cytoplasm based CMS lines in hybrid breeding of cauliflower (Brassica oleracea var. botrytis L.). Sci Hortic 224:27–36

    Google Scholar 

  • Dixit SK, Singh BP, Ram HH (2004) Heterosis and combining ability in Indian cauliflower (Brassica oleracea var. botrytis L.). Veg Sci 31(2):164–167

    Google Scholar 

  • Duclos DV, Bjorkman T (2008) Meristem identity gene expression during curd proliferation and flower initiation in Brassica oleracea. J Exp Bot 59(2):421–433

    CAS  PubMed  Google Scholar 

  • Duclos V, Bjorkman T (2015) Gibberellin control of reproductive transitions in Brassica oleracea curd development. J Am Soc Hortic Sci 140(1):57–67

    CAS  Google Scholar 

  • Dunemann F, Grunewaldt J (1991) Identification of a monogenic dominant male sterility mutant in broccoli (Brassica oleracea L. var. italica Plenck). Plant Breed 106:161–163

    Google Scholar 

  • Edh K, Widen B, Ceplitis A (2009) The evolution and diversification of s-locus haplotypes in the Brassicaceae family. Genetics 181(3):977–984

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Esawi MA, Germaine K, Bourke P, Malone R (2016) Genetic diversity and population structure of Brassica oleracea germplasm in Ireland using SSR markers. C R Biol 339(3–4):133–140

    PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. https://doi.org/10.1371/journal.pone.0019379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farinho M, Coelho P, Carlier J, Svetleva D, Monteiro A, Leitao J (2004) Mapping of a locus for adult plant resistance to downy mildew in broccoli (Brassica oleracea convar. italica). Theor Appl Genet 109(7):1392–1398

    CAS  PubMed  Google Scholar 

  • Faulkner K, Mithen R, Williamson G (1998) Selective increase of the potential anticarcinogen 4-methylsulphinylbutyl glucosinolate in broccoli. Carcinogenesis 19:605–609

    CAS  PubMed  Google Scholar 

  • Fehr W (1991) Principles of cultivar development: theory and technique. Agronomy books, vol 1. https://lib.dr.iastate.edu/agron_books/1

  • Ganal MW, Altmann T, Roder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217

    CAS  PubMed  Google Scholar 

  • Garg N, Lal T (2005) Components of variation and genetic parameters in cauliflower. Haryana J Hortic Sci 34(1/2):113–115

    Google Scholar 

  • Gong HY, Luo SX, Gu AX, Wang YH, Jun ZJ, Xing SS (2014) Development of SSR markers linked to glucosinolate synthesis genes in Chinese cabbage (Brassica rapa ssp. pekinensis). J Agric Biotechnol 22(10):1232–1241

    CAS  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53(5):814–827

    CAS  PubMed  Google Scholar 

  • Grelon M, Budar F, Bonhomme S, Pelletier G (1994) Ogura cytoplasmic male-sterility (CNS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol Gen Genomics 243:540–547

    CAS  Google Scholar 

  • Groszmann M, Gonzalez-Bayon R, Lyons RL, Greaves IK, Kazan K et al (2015) Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids. Proc Natl Acad Sci USA 112(46):E6397–E6406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu H, Wang J, Yu H, Zhao Z, Sheng X, Chen J, Xu Y (2014) Development and validation of high-glucoraphanin broccoli F1 hybrids and parental lines. J Am Soc Hortic Sci 139(4):460–468

    CAS  Google Scholar 

  • Gustafson-Brown C, Savidge B, Yanofsky MF (1994) Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76:131–143

    CAS  PubMed  Google Scholar 

  • Habib K, Ahmed N, Khan SH, Mehdi M (2017) Heterosis in sprouting broccoli (Brassica oleracea var. italica Plenck.). Green Farm 8(5):1018–1023

    Google Scholar 

  • Hagimori M, Nagaoka M, Kato N, Yoshikawa H (1992) Production and characterization of somatic hybrids between the Japanese radish and cauliflower. Theor Appl Genet 84:819–824

    CAS  PubMed  Google Scholar 

  • Hale AL, Farnham MW, Nzaramba MN, Kimbeng CA (2007) Heterosis for horticultural traits in broccoli. Theor Appl Genet 115(3):351–360

    CAS  PubMed  Google Scholar 

  • Han F-G, Yang C, Fang Z-Y, Yang L-M, Zhunag M et al (2015) Inheritance and InDel markers closely linked to petal color gene (cpc-1) in Brassica oleracea. Mol Breed 35:160. https://doi.org/10.1007/s1103

    Article  CAS  Google Scholar 

  • Hanschen FS, Schreiner M (2017) Isothiocyanates, nitriles, and epithionitriles from glucosinolates are affected by genotype and developmental stage in Brassica oleracea Varieties. Front Plant Sci 8:1095. https://doi.org/10.3389/fpls.2017.01095

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen LN, Earle ED (1995) Transfer of resistance to Xanthomonas campestris pv campestris in to Brassica oleracea L. by protoplast fusion. Theor Appl Genet 91:1293–1300

    CAS  PubMed  Google Scholar 

  • Heath DW, Earle ED, Dickson MH (1994) Introgressing cold tolerant Ogura cytoplasms from rapeseed into pak choi and Chinese cabbage. Hortic Sci 29:202–203

    Google Scholar 

  • Himelblau E, Gilchrist EJ, Buono K, Bizzell C, Mentzer L et al (2009) Forward and reverse genetics of rapid-cycling Brassica oleracea. Theor Appl Genet 118(5):953–961

    PubMed  Google Scholar 

  • Hirani AH, Li G, Zelmer CD, McVetty PBE, Asif M, Goyal A (2012) Molecular genetics of glucosinolate biosynthesis in Brassicas: genetic manipulation and application aspects. In: Goyal A (ed) Crop plant. https://doi.org/10.5772/45646

    Chapter  Google Scholar 

  • Hodgkin T (1995) Cabbages, kales etc. Brassica oleracea (Cruciferae). In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman, London, pp 76–82

    Google Scholar 

  • Imaging FE (2009) With ‘phenomics,’ plant scientists hope to shift breeding into overdrive. Science 325:380–381

    Google Scholar 

  • Ishii T, Yonezawa K (2007) Optimization of the marker-based procedures for pyramiding genes from multiple donor lines: II. Strategies for selecting the objective homozygous plant. Crop Sci 47:1878–1886

    Google Scholar 

  • Ishikawa S, Bang SW, Kaneko Y, Matsuzawa Y (2003) Production and characterization of intergeneric somatic hybrids between Moricandia arvensis and Brassica oleracea. Plant Breed 122:233–238

    Google Scholar 

  • Jansson S (2018) Gene-edited plants on the plate: the ‘CRISPR cabbage story’. Physiol Plant 164(4):396–405

    CAS  PubMed  Google Scholar 

  • Jeong S-Y, Ahmed NU, Jung H-J, Kim H-T, Park J-I, Nou I-S (2017a) Discovery of candidate genes for heterosis breeding in Brassica oleracea L. Acta Physiol Plant 39:180

    Google Scholar 

  • Jeong S-W, Yi H, Song H, Lee S-S, Park Y, Hur Y (2017b) Chlorosis of Ogura-CMS Brassica rapa is due to down-regulation of genes for chloroplast proteins. J Plant Biotechnol 44:115–124

    Google Scholar 

  • Jin RG, Liu YB, Tabashnik BE, Borthakur D (2000) Development of transgenic cabbage (Brassica oleracea var. capitata) for insect resistance by agrobacterium tumefaciens-mediated transformation. In Vitro Cell Dev Biol Plant 36(4):231–237

    CAS  Google Scholar 

  • Kachroo UJ (1984) Heterosis and combining ability in kohlrabi (Brassica oleracea var. gongylodes L). Masters dissertation, CSKHPKV Solan

    Google Scholar 

  • Kalia P (2009) Genetic improvement in vegetable crucifers. In: Gupta SK (ed) Biology and breeding of crucifers. CRC Press Taylor & Francis Group, Boca Raton, pp 309–342

    Google Scholar 

  • Kalia P, Saha P, Roy S (2017) Development of RAPD and ISSR derived SCAR markers linked to Xca1Bo gene conferring resistance to black rot disease in cauliflower (Brassica oleracea var. botrytis L.). Euphytica 213:232. https://doi.org/10.1007/s10681-017-2025-y

    Article  Google Scholar 

  • Kalia P, Muthukumar P, Soi S (2018) Marker-assisted introgression of the Or gene for enhancing β-carotene content in Indian cauliflower. Acta Hortic 1203:121–128

    Google Scholar 

  • Kalia P, Aminedi R, Golz J, Russel D, Choudhary P et al (2020) Development of diamondback moth resistant transgenic cabbage and cauliflower by stacking Cry1B & Cry1C Bt genes. Acta Hortic. (In Press)

    Google Scholar 

  • Kameya Y, Kanzaki H, Toki S, Abe T (1989) Transfer of radish (Raphanus sativus L.) chloroplasts into cabbage (Brassica oleracea L.) by protoplast fusion. Jpn J Genet 64:27–34

    Google Scholar 

  • Kaminski P, Dyki B, Stepowska AA (2012) Improvement of cauliflower male sterile lines with brassica nigra cytoplasm, phenotypic expression and possibility of practical application. J Agric Sci 4(4):190–200

    Google Scholar 

  • Kanwar MS, Karla BN (2004) Genetic analysis in late cauliflower (Brassica oleracea var. botrytis L.) subjected to North Carolina mating design-I. Indian J Genet Plant Breed 64(3):225–227

    Google Scholar 

  • Kempin S, Savidge S, Yanofsky MF (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267:522–525

    CAS  PubMed  Google Scholar 

  • Kibar B, Karaagac O, Kar H (2015) Heterosis for yield contributing head traits in cabbage (Brassica oleracea var. capitata). Cienc Investig Agrar 42(2):205–216

    Google Scholar 

  • Kim JKC, Sang M, Sun JL, Dong J et al (2010) Variation of glucosinolates in vegetable crops of Brassica rapa L. ssp. pekinensis. Food Chem 119(1):423–428

    CAS  Google Scholar 

  • Kowalczyk T, Gerszberg A, Durańska P, Biłas R, Hnatuszko-Konka K (2018) High efficiency transformation of Brassica oleracea var. botrytis plants by Rhizobium rhizogenes. AMB Express 8(1):125. https://doi.org/10.1186/s13568-018-0656-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47(4):1541–1548

    CAS  PubMed  Google Scholar 

  • Lawrenson T, Hundleby P, Harwood W (2019) Creating targeted gene knockouts in Brassica oleracea Using CRISPR/Cas9. In: Qi Y (ed) Plant genome editing with CRISPR systems. Methods in molecular biology, 1917. Humana Press, New York

    Google Scholar 

  • Lee J, Izzah NK, Jayakodi M, Perumal S et al (2015) Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage. BMC Plant Biol 15(1):32. https://doi.org/10.1186/s12870-015-0424-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Izzah NK, Choi B-S, Joh HJ, Lee S-C, Perumal S et al (2016) Genotyping-by-sequencing map permits identification of clubroot resistance QTLs and revision of the reference genome assembly in cabbage (Brassica oleracea L.). DNA Res 23:29–41

    CAS  PubMed  Google Scholar 

  • Li L, Garvin DF (2003) Molecular mapping of Or, a gene inducing beta-carotene accumulation in cauliflower (Brassica oleracea L. var. botrytis). Genome 46(4):588–594

    CAS  PubMed  Google Scholar 

  • Li L, Paolillo DJ, Parthasarathy MV, DiMuzio EM, Garvin DF (2001) A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J 26(1):59–67

    CAS  PubMed  Google Scholar 

  • Li H, Liu Q, Zhang Q, Qin E, Jin C, Wang Y, Wu M et al (2017) Curd development associated gene (CDAG1) in cauliflower (Brassica oleracea L. var. botrytis) could result in enlarged organ size and increased biomass. Plant Sci 254:82–94

    CAS  PubMed  Google Scholar 

  • Liu S, Liu Y, Yang X et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploidy genomes. Nat Commun 5:3930. https://doi.org/10.1038/ncomms4930

    Article  CAS  PubMed  Google Scholar 

  • Liu XP, Yang C, Han FQ, Fang ZY, Yang LM, Zhuang M et al (2016) Genetics and fine mapping of a yellow-green leaf gene (ygl-1) in cabbage (Brassica oleracea var. capitata L.). Mol Breed 36:1–8. https://doi.org/10.1007/s11032-015-0425-z

    Article  CAS  Google Scholar 

  • Liu X, Gao B, Han F, Fang Z, Yang L, Zhuang M et al (2017) Genetics and fine mapping of a purple leaf gene BoPr in ornamental kale (Brassica oleracea L. var. acephala). BMC Genomics 18:230. https://doi.org/10.1186/s12864-017-3613-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T et al (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123

    Google Scholar 

  • Lu S, Eck JV, Zhou X, Lopez AB, Halloran DM et al (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain containing protein that mediates high levels of β-carotene accumulation. Plant Cell 18:3594–3605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lv HH, Fang ZY, Yang LM, Zhang YY, Wang QB, Liu YM et al (2014) Mapping and analysis of a novel candidate Fusarium wilt resistance gene FOC1 in Brassica oleracea. BMC Genomics 15:1094. https://doi.org/10.1186/1471-2164-15-1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv H, Wang Q, Liu X, Han F, Fang Z, Yang L et al (2016) Whole-genome mapping reveals novel QTL clusters associated with main agronomic traits of cabbage (Brassica oleracea var. capitata L.). Front Plant Sci 7:989. https://doi.org/10.3389/fpls.2016.00989

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma C, Zhu C, Zheng M, Liu M, Zhang D, Liu B, Li Q, Si J, Ren X, Song H (2019) CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Hortic Res 6(1):20

    PubMed  PubMed Central  Google Scholar 

  • Maggioni L, Bothmer RV, Poulsen G, Branca F, Bagger JR (2014) Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. In South Italy. Hereditas 151:145–158

    PubMed  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277

    CAS  PubMed  Google Scholar 

  • Matschegewski C, Zetzsche H, Hasan Y, Leibeguth L, Briggs W, Ordon F, Uptmoor R (2015) Genetic variation of temperature-regulated curd induction in cauliflower: elucidation of floral transition by genome-wide association mapping and gene expression analysis. Front Plant Sci 10(6):720

    Google Scholar 

  • Mei J, Ding Y, Lu K, Wei D, Liu Y, Disi O et al (2013) Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea. Theor Appl Genet 126:549–556

    CAS  PubMed  Google Scholar 

  • Mithen RF, Lewis BG, Heaney RK, Fenwick GR (1987) Glucosinolates of wild and cultivated Brassica species. Phytochemistry 26(7):1969–1973

    CAS  Google Scholar 

  • Monteiro AA, Gabelman WH, Williams PH (1988) The use of sodium chloride solution to overcome self incompatibility in Brassica campestris. Cruciferae Newsl 13:122–123

    Google Scholar 

  • Murovec J, Gucek K, Bohanec B, Avbelj M, Jerala R (2018) DNA-free genome editing of Brassica oleracea and B. rapa protoplasts using CRISPR-Cas9 ribonucleoprotein complexes. Front Plant Sci 9:1594

    PubMed  PubMed Central  Google Scholar 

  • Muthukumar P, Kalia P, Sharma M, Vashisht S (2017) Study of β-carotene enhancing ‘Or’ gene effects on yield and contributing traits in mid-season Indian cauliflower (Brassica oleracea var. botrytis L.). Indian J Hortic 74(4):520–525

    Google Scholar 

  • Nahm SH, Lee HJ, Lee SW, Joo GY, Harn CH, Yang SG, Min BW (2005) Development of a molecular marker specific to a novel CMS line in radish (Raphanus sativus L.). Theor Appl Genet 111(6):1191–1200

    CAS  PubMed  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padilla G, Cartea ME, Velasco P, de Haro A, Ordas A (2007) Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry 68(4):536–545

    CAS  PubMed  Google Scholar 

  • Pang W, Li X, Choi SR et al (2015a) Mapping QTLs of resistance to head splitting in cabbage (Brassica oleracea L.var. capitata L.). Mol Breed 35:126. https://doi.org/10.1007/s11032-015-0318-1

    Article  CAS  Google Scholar 

  • Pang W, Kim YY, Li X, Choi SR, Wang Y, Sung CK, Im S et al (2015b) Anatomic characteristics associated with head splitting in cabbage (Brassica oleracea var. capitata L.). PLoS One 10(11):e0142202. https://doi.org/10.1371/journal.pone.0142202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry MAJ, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A et al (2009) Mutation discovery for crop improvement. J Exp Bot 60:2817–2825

    CAS  PubMed  Google Scholar 

  • Pathak S, Kumar J, Vidyasagar VS (2007) Heterosis and combining ability for marketable yield and component traits in cabbage (Brassica oleracea var capitata). Indian J Agric Sci 77(2):97–100

    Google Scholar 

  • Paul A, Sharma SR, Sresty TVS, Devi S, Bala S, Kumar PS et al (2005) Transgenic cabbage (Brassica oleracea var. capitata) resistant to Diamondback moth (Plutella xylostella). Indian J Biotechnol 4:72–77

    CAS  Google Scholar 

  • Pelletier G, Ferrault M, Lancelin D, Boulidard L (1989) CMS Brassica oleracea cybrids and their potential for hybrid seed production. 12th Eucarpia Congress, Gottingen 11(7):15

    Google Scholar 

  • Prakash C, Dey SS, Bhatia R, Dhiman MR (2015) Indigenously developed SI and CMS lines in hybrid breeding of cabbage. Indian J Hortic 72(2):212–217

    Google Scholar 

  • Prakash C, Kumar S, Singh R, Kumar A et al (2018) Ogura-based CMS lines with different nuclear backgrounds of cabbage revealed substantial diversity at morphological and molecular levels. 3 Biotech 8(1):27. https://doi.org/10.1007/s13205-017-1047-4

    Article  Google Scholar 

  • Purugganan MD, Boyles AL, Suddith JI (2000) Variation and selection at the CAULIFLOWER floral homeotic gene accompanying the evolution of domesticated Brassica oleracea. Genetics 155:855–862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ram H, Dey SS, Krishnan SG, Kar A, Bhardwaj R et al (2017) Heterosis and combining ability for mineral nutrients in snowball cauliflower (Brassica oleracea var. botrytis L.) using ogura cytoplasmic male sterile lines. In: Proceedings of the national academy of sciences, India – section B: biological sciences. https://doi.org/10.1007/s40011-017-0874-8

  • Ren JP, Dickson MH, Earle ED (2000) Improved resistance to bacterial soft rot by protoplast fusion between Brassica rapa and B. oleracea. Theor Appl Genet 100:810–819

    Google Scholar 

  • Ren J, Liu ZY, Niu RQ, Feng H (2015) Mapping of Re, a gene conferring the red leaf trait in ornamental kale (Brassica oleracea. L. var. acephala). Plant Breed 134:494–500

    CAS  Google Scholar 

  • Rosa EAS, Heaney RK, Fenwick GR, Portas CAM (1997) Glucosinolates in crop plants. Hortic Rev 19:99–215

    CAS  Google Scholar 

  • Rosan A, Hasan Y, Briggs W, Uptmoor R (2018) Genome-based prediction of time to curd induction in cauliflower. Front Plant Sci 9:78. https://doi.org/10.3389/fpls.2018.00078

    Article  Google Scholar 

  • Ruffio-Chable V, Bellis H, Herve Y (1993) A dominant gene for male sterility in cauliflower (Brassica oleracea var. botrytis). Phenotype expression, inheritance and use in F1 hybrid production. Euphytica 67:9–17

    Google Scholar 

  • Russell DA, Huang D, Bhalla P, Singh M, Robin C et al (2017) Progress in the development of transgenic cabbage, cauliflower and canola expressing stacked bts for caterpillar control and RNAi for aphid suppression. Mysore J Agric Sci (Special Issue) 51A:159–167

    Google Scholar 

  • Saha P, Kalia P, Sonah H, Sharma TR (2014) Molecular mapping of black rot resistance locus Xca1bo on chromosome 3 in Indian cauliflower (Brassica oleracea var. botrytis L.). Plant Breed 133(2):268–274

    CAS  Google Scholar 

  • Saha P, Kalia P, Joshi S, Vinod (2015) Genetic analysis of yield components and curd color of midseason heat tolerant Indian cauliflower (Brassica oleracea var. botrytis L.). SABRAO J Breed Genet 47(2):124–132

    Google Scholar 

  • Saha P, Kalia P, Sharma M, Singh D (2016) New source of black rot disease resistance in Brassica oleracea and genetic analysis of resistance. Euphytica 207:35–48

    CAS  Google Scholar 

  • Sarikamis G, Marquez J, MacCormack R, Bennett RN, Roberts J, Mithen R (2006) High glucosinolate broccoli: a delivery system for sulforaphane. Mol Breed 18:219–228

    CAS  Google Scholar 

  • Sharma SR, Kapoor KS, Gill HS (1995) Screening against Sclerotinia rot (Sclerotinia sclerotiarum), downy mildew (Peronospora parasitica) and black rot (Xanthomonas compestris) in caulifl ower (Brassica oleracea var. botrytis subvar. cauliflora DC). Indian J Agric Sci 65:916–918

    Google Scholar 

  • Sharma SR, Singh PK, Chable V, Tripathi SK (2005) A review of hybrid cauliflower development. J New Seeds 6(2):151–193

    Google Scholar 

  • Sharma BB, Kalia P, Yadava DK, Singh D, Sharma TR (2016) Genetics and molecular mapping of black rot resistance locus Xca1bc on chromosome B-7 in Ethiopian mustard (Brassica carinata a. Braun). PLoS One 11(3):e0152290. https://doi.org/10.1371/0152290

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma BB, Kalia P, Singh D, Sharma TR (2017) Introgression of black rot resistance from Brassica carinata to cauliflower (Brassica oleracea botrytis group) through embryo rescue. Front Plant Sci 8:1255

    PubMed  PubMed Central  Google Scholar 

  • Shu J, Liu Y, Li Z, Zhang L, Fang Z et al (2016) Detection of the diversity of cytoplasmic male sterility sources in broccoli (Brassica Oleracea var. Italica) using mitochondrial markers. Front Plant Sci 7:927. https://doi.org/10.3389/fpls.2016.00927

    Article  PubMed  PubMed Central  Google Scholar 

  • Sigareva MA, Earle ED (1997) Direct transfer of a cold tolerant Ogura male sterile cytoplasm into cabbage (Brassica oleracea ssp. capitata) via protoplast fusion. Theor Appl Genet 94:213–220

    Google Scholar 

  • Singh R, Sharma SR (2003) Cauliflower. In: Textbook of vegetables, tuber crops and spices. ICAR, New Delhi, pp 76–97

    Google Scholar 

  • Singh B, Singh A, Pal AK, Banerjee MK (2002) Evaluation of self-incompatibility in Indian cauliflower. Veg Sci 29(2):142–145

    Google Scholar 

  • Singh BK, Sharma SR, Singh B (2010) Heterosis for superoxide dismutase, peroxidase and catalase enzymes in the head of single cross-hybrids of cabbage (Brassica oleracea var. capitata). J Genet 89:217–221

    CAS  PubMed  Google Scholar 

  • Singh S, Sharma SR, Kalia P, Deshmukh R, Vinod SP, Sharma TR (2012) Molecular mapping of the downy mildew resistance gene Ppa3 in cauliflower (Brassica oleracea var. botrytis L.). J Hortic Sci Biotechnol 87(2):137–143

    CAS  Google Scholar 

  • Singh S, Sharma SR, Kalia P, Sharma P, Kumar V, Kumar R et al (2013) Screening of cauliflower (Brassica oleracea L. var. botrytis L.) germplasm for resistance to downy mildew [Hyaloperonospora parasitica constant (Pers.:Fr) Fr.] and designing appropriate multiple resistance breeding strategies. J Hortic Sci Biotechnol 88(1):103–109

    Google Scholar 

  • Smith LB, King G (2000) The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of the cauliflower. Mol Breed 6(6):603–613

    Google Scholar 

  • Stansell Z, Hyma K, Fresnedo-Ramírez J, Sun Q, Mitchell S et al (2018) Genotyping-by-sequencing of Brassica oleracea vegetables reveals unique phylogenetic patterns, population structure and domestication footprints. Hortic Res 5(1):38

    PubMed  PubMed Central  Google Scholar 

  • Stephenson P, Baker D, Girin T, Perez A, Amoah S, King GJ, Ostergaard L (2010) A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biol 10(1):62

    PubMed  PubMed Central  Google Scholar 

  • Sun D, Wang C, Zhang X, Zhang W, Jiang H, Yao X et al (2019) Draft genome sequence of cauliflower (Brassica oleracea L. var. botrytis) provides new insights into the C genome in Brassica species. Hortic Res 6(1):82

    PubMed  PubMed Central  Google Scholar 

  • Swarup V, Brahmi P (2005) Cole crops. In: Dhillon BS, Tyagi RK, Saxena S, Randhawa GJ (eds) Plant genetic resources: horticultural crops. Narosa Publishing House, New Delhi, pp 75–88

    Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    CAS  PubMed  Google Scholar 

  • Thakur H, Vidyasagar (2016) Comparing of self-incompatibility and cytoplasmic male sterility systems for the performance of F1 hybrids in cabbage (Brassica oleracea var. capitata L.). Electron J Plant Breed 7(3):602–610

    Google Scholar 

  • Thakur JC, Singh N, Kumar JS (2004) Genetic analysis of some economic traits in main season cauliflower. Agric Res J 41(1):68–73

    Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC et al (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Till BJ, Burtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32:2632–2641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tonguc M, Griffiths PD (2004) Transfer of powdery mildew resistance from Brassica carinata to Brassica oleracea through embryo rescue. Plant Breed 123:587–589

    Google Scholar 

  • Triques K, Piednoir E, Dalmais M, Schmidt J, Le Signor C et al (2008) Mutation detection using ENDO1: application to disease diagnostics in humans and TILLING and EcoTILLING in plants. BMC Mol Biol 9:9

    Google Scholar 

  • Tsunoda S, Hirata K, Gomez-Campo C (1980) Brassica crops and wild allies. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Vanlalneihi B, Saha P, Kalia P, Singh S, Saha ND, Kundu A, Singh N, Bhowmik A (2019a) Genetic and principal component analysis for agro-morphological traits, bioactive compounds, antioxidant activity variation in breeding lines of early Indian cauliflower and their suitability for breeding. J Hortic Sci Biotechnol 15:1–3

    Google Scholar 

  • Vanlalneihi B, Saha P, Kalia P, Jaiswal S, Kundu A, Saha ND, Sirowa SS, Singh N (2019b) Chemometric approach based characterization and selection of mid-early cauliflower for bioactive compounds and antioxidant activity. J Food Sci Technol 57:293. https://doi.org/10.1007/s13197-019-04060-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varalakshmi V (2009) Heterosis and combining ability for yield and its components in early cauliflower. Indian J Hortic 66:198–203

    Google Scholar 

  • Varshney RK, Tuberosa R (2007) Genomics-assisted crop improvement vol. 1: genomics approaches and platforms. Springer, New York

    Google Scholar 

  • Vaughan DA, Balasz E, Heslop-Harrison JS (2007) From crop domestication to super-domestication. Ann Bot 100:893–901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B et al (2009) Glucosiolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53:S219–S265

    PubMed  Google Scholar 

  • Verma VK, Kalia P (2016) Comparative analysis of genetic diversity and its relation to heterosis in early and mid-maturity Indian cauliflower (Brassica oleracea var. botrytis L.). Indian J Hortic 73(4):518–525

    Google Scholar 

  • Verma VK, Kalia P (2017) Combining ability analysis and its relationship with gene action and heterosis in early maturity cauliflower. Proc Natl Acad Sci India Sect B Biol Sci 87(3):877–884

    CAS  Google Scholar 

  • Verma VK, Kalia P, Prasanna BM (2017) Genetic characterization of self-incompatible lines and strategies for heterosis breeding in cauliflower. Int J Veg Sci 23:411–429

    Google Scholar 

  • Walters TW, Earle ED (1993) Organellar segregation, rearrangement and recombination in protoplast fusion-derived Brassica oleracea calli. Theor Appl Genet 85:761–769

    CAS  PubMed  Google Scholar 

  • Wang N, Shi L, Tian F, Ning H, Wu X, Long Y, Meng J (2010) Assessment of FAE1 polymorphisms in three Brassica species using EcoTILLING and their association with differences in seed erucic acid contents. BMC Plant Biol 10(1):137

    PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhang D, Yu S, Liu J, Wang D, Zhang F, Yu Y et al (2014) Mapping the BrPur gene for purple leaf color on linkage group A03 of Brassica rapa. Euphytica 199(3):293–302

    CAS  Google Scholar 

  • Wang G, Lv J, Zhang J, Han S, Zong M, Guo N et al (2016) Genetic and epigenetic alterations of Brassica nigra introgression lines from somatic hybridization: a resource for cauliflower improvement. Front Plant Sci 7:1258. https://doi.org/10.3389/fpls.2016.01258

    Article  PubMed  PubMed Central  Google Scholar 

  • Warwick SI, Black LD (1991) Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae) chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92

    CAS  PubMed  Google Scholar 

  • Yamagishi H, Bhat SR (2014) Cytoplasmic male sterility in Brassicaceae crops. Breed Sci 64(1):38–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagishi H, Nakagawa S, Kinoshita D, Ishibashi A, Yamashita Y (2008) Somatic hybrids between arabidopsis thaliana and cabbage (Brassica oleracea L.) with all chromosomes derived from A. thaliana and low levels of fertile seed. J Jpn Soc Hortic Sci 77(3):277–282

    CAS  Google Scholar 

  • Yang K, Nath UK, Biswas MK, Kayum MA, Yi GE, Lee J, Yang TJ, Nou IS (2018) Whole-genome sequencing of Brassica oleracea var. capitata reveals new diversity of the mitogenome. PloS one 13(3):e0194356

    PubMed  PubMed Central  Google Scholar 

  • Yarrow SA, Burnett LA, Wildeman RP, Kemble RJ (1990) The transfer of ‘Polima’ cytoplasmic male sterility from oilseed rape (Brassica napus) to broccoli (B. oleracea) by protoplast fusion. Plant Cell Rep 9:185–188

    CAS  PubMed  Google Scholar 

  • Yousef EA, Mueller T, Boerner A, Schmid KJ (2018) Comparative analysis of genetic diversity and differentiation of cauliflower (Brassica oleracea var. botrytis) accessions from two ex situ genebanks. PloS One 13(2):e0192062

    PubMed  PubMed Central  Google Scholar 

  • Yu H, Ito T, Zhao Y, Peng J, Kumar P, Meyerowitz EM (2004) Floral homeotic genes are targets of gibberellin signaling in flower development. Proc Natl Acad Sci USA 101:7827–7832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Chiu LW, Li L (2009) Transcriptional regulation of anthocyanin biosynthesis in red cabbage. Planta 230:1141–1153

    CAS  PubMed  Google Scholar 

  • Yumei L, Xiaowu W, Yuan F, Peitian S, Limei Y, Anfu H (1998) Investigation and utilization of heterosis in kohlrabi (Brassica oleracea var. gongylodes). Acta Hortic 467:127–132

    Google Scholar 

  • Zeng CL, Wang GY, Wang JB, Yan GX, Chen BY et al (2012) High-throughput discovery of chloroplast and mitochondrial DNA polymorphisms in Brassicaceae species by ORG-EcoTILLING. PloS one 7(11):e47284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Wang S, Yu F, Tang J, Shan X, Bao K, Yu L et al (2019) Genome-wide characterization and expression profiling of SWEET genes in cabbage (Brassica oleracea var. capitata L.) reveal their roles in chilling and clubroot disease responses. BMC Genomics 20(1):93

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalia, P., Singh, S. (2020). Accelerated Improvement of Cole Vegetable Crops. In: Gosal, S., Wani, S. (eds) Accelerated Plant Breeding, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-47298-6_5

Download citation

Publish with us

Policies and ethics