Skip to main content

Principles of Rehabilitation: Occupational and Physical Therapy

  • Chapter
  • First Online:
Orthopedic Care of Patients with Cerebral Palsy

Abstract

The theoretical and scientific foundation of the rehabilitative field supports the acquisition, restoration, maintenance, and promotion of optimal physical function for individuals with movement challenges. Focused rehabilitation is on the quantitative and qualitative aspects of a person’s daily living activities, not on identifying a person’s disability. Outcome measures provide an objective gauge of activities and participation within the client’s environment. Rehabilitative goals, developed with the client and caregivers, support enhancing a person’s function, ability, and performance quality in order to obtain maximal opportunity for participation within an individual’s community. Intervention approaches include manual therapies directed at increasing strength, coordination, and endurance, as well as the individualized use of adaptive or assistive equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO. Towards a common language for functioning, disability and health: ICF the international classification of functioning, disability and health: World Health Organization; 2002. https://www.who.int/classifications/icf/icfbeginnersguide.pdf. Accessed July 24, 2019.

  2. American Occupational Therapy Association. Occupational therapy practice framework: domain and process (3rd edition). Am J Occup Ther. 2014;68(Supplement_1):S1–S48. https://doi.org/10.5014/ajot.2014.682006.

    Article  Google Scholar 

  3. AOTA. What is OT- children? American Occupational Therapy Association. 2013. https://www.aota.org/~/media/Corporate/Files/AboutAOTA/Centennial/Brand/Toolbox/Brand-Material/What-Is-OT-Children.pdf. Accessed 24 Jul 2019.

  4. AOTA. What is occupational therapy? American Occupational Therapy Association. 2019. https://www.aota.org/Conference-Events/OTMonth/what-is-OT.aspx. Accessed 24 July 2019.

  5. American Physical Therapy Association. 2017, Sept 12. https://www.apta.org/. Accessed 2 Apr 2019.

  6. Guide to Physical Therapist Practice 3.0. Alexandria, VA: American Physical Therapy Association; 2014. Available at: http://guidetoptpractice.apta.org/. Accessed April 2019.

  7. Individuals with Disabilities Education Act. https://sites.ed.gov/idea/about-idea/ Accessed Mar 2019.

  8. Murphy K, Molnar G, Lankansky K. Employment and social issues in adults with cerebral palsy. Arch Phys Med Rehabil. 2000;81:807–11.

    CAS  PubMed  Google Scholar 

  9. Cerebral Palsy Foundation. Adults with Cerebral Palsy. Retired April 19, 2019 from https://www.yourcpf.org/adults-with-cp/

  10. Peterson MD, Ryan JM, Hurvitz EA, Mahmoudi E. Chronic conditions in adults with cerebral palsy. JAMA. 2015;314(21):2303–5. https://doi.org/10.1001/jama.2015.11025.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Peterson M, Gordon P, Hurvitz E. Chronic disease risk among adults with cerebral palsy: the role of premature sarcopoenia, obesity and sedentary behaviour. Obes Rev. 2012;14(2):171–82.

    PubMed  Google Scholar 

  12. Roebroeck ME, Jahnsen R, Carona C, Kent RM, Chamberlain MA. Adult outcomes and lifespan issues for people with childhood-onset physical disability. Dev Med Child Neurol. 2009;51(8):670–8.

    PubMed  Google Scholar 

  13. Children with disabilities. In: Batshaw, Pellegrino L, Roizen, N, editors. Cerebral palsy. Children with disabilities. 6th ed. Baltimore: Brooks. 2007, pp. 387–408.

    Google Scholar 

  14. CDC. Data and statistics for cerebral palsy: Centers for Disease Control and Prevention; 2018. https://www.cdc.gov/ncbddd/cp/data.html. Accessed July 24, 0219.

  15. Parham LD, Mailloux Z. Sensory integration. In: Case-Smith J, O’Brien JC, editors. Occupational therapy for children. Missouri: Mosby Elsevier. Maryland Heights; 2010.

    Google Scholar 

  16. Weinstock-Zlotnick G, Hinojosa J. Bottom-up or top-down evaluation: is one better than the other? Am J Occup Ther. 2004;58(5):594–9. https://doi.org/10.5014/ajot.58.5.594.

    Article  PubMed  Google Scholar 

  17. Chisholm D, Boyt Schell BA. Overview of occupational therapy process and outcomes. In: Boyt Schell BA, Scaffa M, editors. Occupational therapy. 12th ed. Baltimor, MD: Wolters Kluwe/Lippincot Williams & Wilkins; 2014.

    Google Scholar 

  18. Glanzman AM, Swenson AE, Kim H. Intrarater range of motion reliability in cerebral palsy: a comparison of assessment methods. Pediatr Phys Ther. 2008;20(4):369–72.

    PubMed  Google Scholar 

  19. Herrero P, Carrera P, García E, Gómez-Trullén E, Oliván-Blázquez B. Reliability of goniometric measurements in children with cerebral palsy: a comparative analysis of universal goniometer and electronic inclinometer. A pilot study. BMC Musculoskelet Disord. 2011;12(1)

    Google Scholar 

  20. Kilgour G, McNair P, Stott N. Intrarater reliability of lower limb sagittal range-of-motion measures in children with spastic diplegia. Dev Med Child Neurol. 2003;45(06):391–9.

    PubMed  Google Scholar 

  21. Damiano D, Dodd K, Taylor N. Should we be testing and training muscle strength in cerebral palsy? Dev Med Child Neurol. 2002;44(01):68.

    PubMed  Google Scholar 

  22. Fowler E, Staud L, Greenberg M, Oppenhiem W. Selective Control Assessment of the Lower Extremity (SCALE): development, validation, and interrater reliability of a clinical tool for patients with cerebral palsy. Dev Med Child Neurol. 2009;51(8):607–14.

    PubMed  Google Scholar 

  23. Wagner L, Davids J, Hardin J. Selective Control of the Upper Extremity Scale: validation of a clinical assessment tool for children with hemiplegic cerebral palsy. Dev Med Child Neurol. 2015;58(6):612–7.

    PubMed  Google Scholar 

  24. Campbell S, Palisano R, Orlin M. Physical therapy for children. 4th ed. St Louis: Saunders; 2012.

    Google Scholar 

  25. Mutlu A, Livanelioglu A, Gunel M. Reliability of Ashworth and modified Ashworth scales in children with spastic cerebral palsy. BMC Musculoskelet Disord. 2008;9(1).

    Google Scholar 

  26. Haugh AB, Pandyan AD, Johnson GR. A systematic review of the Tardieu Scale for the measurement of spasticity. Disabil Rehabil. 2006;28(15):899–907.

    CAS  PubMed  Google Scholar 

  27. Alhusaini AA, Dean CM, Crosbie J, Shepherd RB, Lewis J. Evaluation of spasticity in children with cerebral palsy using Ashworth and Tardieu Scales compared with laboratory measures. J Child Neurol. 2010 Oct;25(10):1242–7. https://doi.org/10.1177/0883073810362266.

    Article  PubMed  Google Scholar 

  28. Thompson P, Beath T, Bell J, Jacobson G, Phair T, Salbach N, et al. Test-retest reliability of the 10-metre fast walk test and 6-minute walk test in ambulatory school-aged children with cerebral palsy. Dev Med Child Neurol. 2008;50(5):370–6.

    PubMed  Google Scholar 

  29. Verschuren O, Bosma L, Takken T. Reliability of a shuttle run test for children with cerebral palsy who are classified at Gross Motor Function Classification System level III. Dev Med Child Neurol. 2011;53(5):470–2.

    PubMed  Google Scholar 

  30. Verschuren O, Zwinkels M, Obeid J, Kerkhof N, Ketelaar M, Takken T. Reliability and validity of short-term performance tests for wheelchair-using children and adolescents with cerebral palsy. Dev Med Child Neurol. 2013;55:1129–35. https://doi.org/10.1111/dmcn.12214.

    Article  PubMed  Google Scholar 

  31. O’Neil ME, Fragala-Pinkham M, Lennon N, George A, Forman J, Trost SG. Reliability and validity of objective measures of physical activity in youth with cerebral palsy who are ambulatory. Phys Ther. 2016;96(1):37–45. https://doi.org/10.2522/ptj.20140201. Epub 2015 Jun 18.

    Article  PubMed  Google Scholar 

  32. Randall KE, Bartlett DJ, McCoy SW. Measuring postural stability in young children with cerebral palsy: a comparison of 2 instruments. Pediatr Phys Ther. 2014;26(3):332–7. https://doi.org/10.1097/PEP.0000000000000062.

    Article  PubMed  Google Scholar 

  33. https://www.aacpdm.org/UserFiles/file/fact-sheet-pain-011516.pdf. Accessed 1 Mar 2019.

  34. Harvey AR. The Gross Motor Function Measure (GMFM). J Physiother. 2017;63:187. https://doi.org/10.1016/j.jphys.2017.05.007.

    Article  PubMed  Google Scholar 

  35. Nicolini-Panisson RD, Donadio MVF. Timed “Up & Go” test in children and adolescents. Rev Paul Pediatr. 2013;31(3):377–83.

    PubMed  PubMed Central  Google Scholar 

  36. Shirley Ryan Ability Lab. https://www.sralab.org/rehabilitation-measures/timed-and-go. Accessed 7 Aug 2019.

  37. Zaino CA, Marchese VG, Westcott SL. Timed up and down stairs test: preliminary reliability and validity of a new measure of functional mobility. Pediatr Phys Ther. 2004;16(2):90–8.

    PubMed  Google Scholar 

  38. Nightingale EJ, Pourkazemi F, Hiller CE. Systematic review of timed stair tests. J Rehabil Res Dev. 2014;51(3):335–50. https://doi.org/10.1682/JRRD.2013.06.0148.

    Article  PubMed  Google Scholar 

  39. Orozco DPD, et al. Reliability and validity of Edinburgh Visual Gait Score as an evaluation tool for children with cerebral palsy. Dev Med Child Neurol. 2016;58:79–80. https://doi.org/10.1111/dmcn.117_13224.

    Article  Google Scholar 

  40. Ammann-Reiffer C, Bastiaenen CHG, Van Hedel HJA. Measuring change in gait performance of children with motor disorders: assessing the Functional Mobility Scale and the Gillette Functional Assessment Questionnaire walking scale. Dev Med Child Neurol. 2019;61(6):717–24. https://doi.org/10.1111/dmcn.14071.

    Article  PubMed  Google Scholar 

  41. Gillen. Motor function and occupational performance. In: Schell B, Gillen S, editors. Occupational therapy. 12th ed. Baltimor, MD: Wolters Kluwe/ Lippincot Williams & Wilkins; 2014.

    Google Scholar 

  42. Case-Smith J, Heaphy T, Marr D, Galvin B, Koch V, Ellis MG, Perez I. Fine motor and functional performance outcomes in preschool children. Am J Occup Ther. 1998;52(10):788–96. https://doi.org/10.5014/ajot.52.10.78.

    Article  Google Scholar 

  43. Case-Smith J. The relationships among sensorimotor components, fine motor skill, and functional performance in preschool children. Am J Occup Ther. 1995;49(7):645–52. https://doi.org/10.5014/ajot.49.7.645.

    Article  CAS  PubMed  Google Scholar 

  44. Piller A, Torrez E. Effectiveness of occupational therapy interventions for fine motor skills in school-age children. Am J Occup Ther. 2018;72(4_Supplement_1):7211515275p1. https://doi.org/10.5014/ajot.2018.72S1-PO6037.

    Article  Google Scholar 

  45. Nelson CA. A neurobiological perspective on early human deprivation. Child Dev Perspect. 2007;1:13–8. https://doi.org/10.1111/j.1750-8606.2007.00004.x.

    Article  Google Scholar 

  46. Pfeiffer B, Clark GF, Arbesman M. Effectiveness of cognitive and occupation-based interventions for children with challenges in sensory processing and integration: a systematic review. Am J Occup Ther. 2017;72(1):7201190020p1–9. https://doi.org/10.5014/ajot.2018.028233.

    Article  Google Scholar 

  47. Schaaf RC, Dumont RL, Arbesman M, May-Benson TA. Efficacy of occupational therapy using Ayres sensory integration®: a systematic review. Am J Occup Ther. 2014;72(1):7201190010p1–7201190010p10. https://doi.org/10.5014/ajot.2018.028431.

    Article  Google Scholar 

  48. Auld ML, Boyd R, Moseley GL, Ware R, Johnston LM. Tactile function in children with unilateral cerebral palsy compared to typically developing children. Disabil Rehabil. 2012;34(17):1488–94. https://doi.org/10.3109/09638288.2011.650314.

    Article  PubMed  Google Scholar 

  49. McLean B, Taylor S, Blair E, Valentine J, Carey L, Elliott C. Somatosensory discrimination intervention improves body position sense and motor performance in children with hemiplegic cerebral palsy. Am J Occup Ther. 2017;71(3):7103190060p1–9. https://doi.org/10.5014/ajot.2016.024968.

    Article  PubMed  Google Scholar 

  50. Morress C, Ito M, Winkler S, Adams J. The participation of young children with cerebral palsy: relationship to child, environmental, and family factors. Am J Occup Ther. 2017;71(4_Supplement_1):7111505085p1. https://doi.org/10.5014/ajot.2017.71S1-PO1147.

    Article  Google Scholar 

  51. Berg KL, Medrano J, Acharya K, Lynch A, Msall ME. Health impact of participation for vulnerable youth with disabilities. Am J Occup Ther. 2018;72(5):7205195040p1–9. https://doi.org/10.5014/ajot.2018.023622.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Majnemer A, Shevell M, Law M, Birnbaum R, Chilingaryan G, Rosenbaum P, Poulin C. Participation and enjoyment of leisure activities in school-aged children with cerebral palsy. Dev Med Child Neurol. 2008;50:751–8. https://doi.org/10.1111/j.1469-8749.2008.03068.x.

    Article  PubMed  Google Scholar 

  53. Espín-Tello SM, Dickinson HO, Bueno-Lozano M, Jiménez-Bernadó MT, Caballero-Navarro AL. Functional capacity and self-esteem of people with cerebral palsy. Am J Occup Ther. 2018;72(3):7203205120p1–8. https://doi.org/10.5014/ajot.2018.025940.

    Article  PubMed  Google Scholar 

  54. Uniform Data Systems for Medical Rehabilitation. Underlying principles for use of the WeeFim instrument. Amherst, NY: Uniform Data Systems; 2003.

    Google Scholar 

  55. Uniform Data System for Medical Rehabilitation. The FIM Instrument: It’s Background, STructure, and Usefulness. Buffalo: UDSMR; 2012.

    Google Scholar 

  56. Ottenbacher KJ, Msall ME, Lyon N, Duffy LC, Ziviani J, Granger CG, Braun S, Feidler RC. The WeeFIM instrument: its utility in detecting change in children with developmental disabilities. Arch Phys Med Rehabil. 2000;81:1317–26.

    CAS  PubMed  Google Scholar 

  57. Ottenbacher K, Msall M, Lyon N, Duffy L, Granger C, Braun S. Measuring developmental and functional status in children with disabilities. Dev Med Child Neurol. 1999;41(3):186–94.

    CAS  PubMed  Google Scholar 

  58. Centers for Medicare and Medicaid Services. IRF PAI and IRF QRP Manual. 2019. https://www.cms.gov/medicare/quality-initiatives-patient-assessment-instruments/irf-quality-reporting/irf-pai-and-irf-qrp-manual.html

  59. Fisher AG, Bray Jones K. Assessment of motor and process skills, User manual, vol. 2. 8th ed. Fort Collins, CO: Three Star Press; 2014.

    Google Scholar 

  60. Chien C, Bond T. Measurement properties of fine motor scale of Peabody developmental motor scales-second edition: a Rasch analysis. Am J Phys Med Rehabil. 2009;88(5):376–86. https://doi.org/10.1097/PHM.0b013e318198a7c9.

    Article  PubMed  Google Scholar 

  61. Wang H, Liao H, Hsieh C. Reliability, sensitivity to change, and responsiveness of the Peabody developmental motor scales-second edition for children with cerebral palsy. Phys Ther. 2006;86(10):1351–9. https://doi.org/10.2522/ptj.20050259.

    Article  PubMed  Google Scholar 

  62. Deitz JC, Kartin D, Kopp K. Review of the Bruininks-Oseretsky Test of Motor Proficiency, Second Edition (BOT-2). Phys Occup Ther Pediatr. 2007;27(4):87–102. https://doi.org/10.1080/J006v27n04_06.

    Article  PubMed  Google Scholar 

  63. Frankenburg WK, Dodds J, Archer P, Shapiro H, Bresnick B. The Denver II: a major revision and restandardization of the Denver developmental screening test. Pediatrics. Jan 1992;89(1):91–7.

    CAS  PubMed  Google Scholar 

  64. Milne S, McDonald J, Comino EJ. The use of the Bayley Scales of Infant and Toddler Development III with clinical populations: a preliminary exploration. Phys Occup Ther Pediatr. 2012;32(1):24–33. https://doi.org/10.3109/01942638.2011.592572.

    Article  PubMed  Google Scholar 

  65. Griffiths A, Toovey R, Morgan PE, Spittle AJ. Psychometric properties of gross motor assessment tools for children: a systematic review. BMJ Open. 2018;8(10):e021734. https://doi.org/10.1136/bmjopen-2018-021734.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Plint AC, Gaboury I, Owen J, Young NL. Activities Scale for Kids: an analysis of normal. J Pediatr Orthop. 2003;23:788–90.

    PubMed  Google Scholar 

  67. Holmefur M, Aarts P, Hoare B, Krumlinde-Sundholm L. Test-retest and alternate forms reliability of the Assisting Hand Assessment. J Rehabil Med. 2009;41:886–91. Available in full-text from www.medicaljournals.se.

    PubMed  Google Scholar 

  68. Krumlinde-Sundholm L, Holmefur M, Kottorp A, Eliasson A-C. The Assisting Hand Assessment: current evidence of validity, reliability and responsiveness to change. Dev Med Child Neurol. 2007;49:259–64.

    PubMed  Google Scholar 

  69. Koziatek S, Powell N. A validity study of the evaluation tool of children’s handwriting–cursive. Am J Occup Ther. 2002;56(4):446–53. https://doi.org/10.5014/ajot.56.4.446.

    Article  PubMed  Google Scholar 

  70. Milone M. Test of handwriting skills revised. Novato, CA: Academic Therapy Publications; 2007.

    Google Scholar 

  71. Hwangg J, Davies P. Rasch analysis of the school function assessment provides additional evidence for the internal validity of the activity performance scales. Am J Occup Ther. 2009;63(3):369–73. https://doi.org/10.5014/ajot.63.3.369.

    Article  Google Scholar 

  72. Hwang J, Davies P, Taylor M, Gavin W. Validation of school function assessment with elementary school children. OTJR. 2002;22(2):48–58. https://doi.org/10.1177/153944920202200202.

    Article  Google Scholar 

  73. Sakzewski L, et al. Clinimetric properties of participation measures for 5- to 13- year-old children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2007;49:232–40.

    PubMed  Google Scholar 

  74. Oeffinger D, Bagley A, Rogers S, et al. Outcome tools used for ambulatory children with cerebral palsy: responsiveness and minimum clinically important differences. Dev Med Child Neurol. 2008;50(12):918–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. O’Brien V, Cermak SA, Murray E. The relationship between visual-perceptual motor abilities and clumsiness in children with and without learning disabilities. Am J Occup Ther. 1988;42(6):359–63. https://doi.org/10.5014/ajot.42.6.359.

    Article  PubMed  Google Scholar 

  76. Beery K, Beery N. The Beery developmental test of visual-motor integration (6th ed.). J Psychoeduc Assess. 2010;30(6):588–92. https://doi.org/10.1177/07341282912438816.

    Article  Google Scholar 

  77. Burtner PA, Qualls C, Ortega SG, Morris CG, Scott K. Test-retest reliability of the motor-free visual perception test revised (MVPT-R) in children with and without learning disabilities. Phys Occup Ther Pediatr. 2002;22:3–4, 23–36. https://doi.org/10.1080/J006v22n03_03.

    Article  Google Scholar 

  78. Tsai LT, Lin KC, Liao HF, Hsieh CL. Reliability of two visual perceptual test for children with cerebral palsy. Am J Occup Ther. 2009;63(4):473–80.

    PubMed  Google Scholar 

  79. Dunn. Sensory profile 2: what’s new and what stayed the same? 2018. Accessed from https://www.occupationaltherapy.com/ask-the-experts/sensory-profile-2-what-s-4248-4248

  80. Dunn W. Sensory profile 2 user’s manual. Bloomington, IN: Pearson; 2014.

    Google Scholar 

  81. Dean, Dunn, Little. Validity of the sensory profile 2: a confirmatory factor analysis. Am J Occup Ther. 2016;70(4_Supplement_1):7011500075p1. https://doi.org/10.5014/ajot.2016.70S1-PO7054.

    Article  Google Scholar 

  82. Schoen SA, Miller LJ, Green KE. Pilot study of the sensory over-responsivity scales: assessment and inventory. Am J Occup Ther. 2008;62(4):393–406. https://doi.org/10.5014/ajot.62.4.393.

    Article  PubMed  Google Scholar 

  83. Mailloux Z. An overview of the sensory integration and praxis tests. Am J Occup Ther. 1990;44(7):589–94. https://doi.org/10.5014/ajot.44.7.589.

    Article  CAS  PubMed  Google Scholar 

  84. Cermak SA, Murray EA. The validity of the constructional subtests of the sensory integration and praxis tests. Am J Occup Ther. 1991;45(6):539–43. https://doi.org/10.5014/ajot.45.6.539.

    Article  CAS  PubMed  Google Scholar 

  85. Law M, Baptiste S, McColl M, Opzoomer A, Polatajko H, Pollock N. The Canadian occupational performance measure: an outcome measure for occupational therapy. Can J Occup Ther. 1990;57(2):82–7. https://doi.org/10.1177/000841749005700207.

    Article  CAS  PubMed  Google Scholar 

  86. Ostensjø S, Oien I, Fallang B. Goal-oriented rehabilitation of preschoolers with cerebral palsy—a multi-case study of combined use of the Canadian Occupational Performance Measure (COPM) and the Goal Attainment Scaling (GAS). Dev Neurorehabil. 2008;11(4):252–9. https://doi.org/10.1080/17518420802525500.

    Article  PubMed  Google Scholar 

  87. Cusick A, Lannin NA, Lowe K. Adapting the Canadian Occupational Performance Measure for use in a paediatric clinical trial. Disabil Rehabil. 2007;29(10):761–6. https://doi.org/10.1080/09638280600929201.

    Article  PubMed  Google Scholar 

  88. Imms. Review of the children’s assessment of participation and enjoyment and the preferences for activity of children. Phys Occup Ther Pediatr. 2008;28(4):389–404. https://doi.org/10.1080/01942630802307135.

    Article  PubMed  Google Scholar 

  89. Bundy A, Nelson L, Metzger M, Bingaman K. Validity and reliability of a test of playfulness. OTJR. 2001;21(4):276–92. https://doi.org/10.1177/153944920102100405.

    Article  Google Scholar 

  90. Harkness L, Bundy A. The test of playfulness and children with physical disabilities. OTJR. 2001;21(2):73–89. https://doi.org/10.1177/153944920102100203.

    Article  Google Scholar 

  91. Jankovich M, Mullen J, Rinear E, Tanta K, Deitz J. Revised Knox Preschool Play Scale: interrater agreement and construct validity. Am J Occup Ther. 2008;62(2):221–7.

    PubMed  Google Scholar 

  92. PEM-CY. CanCHILD Accessed July 8, 2019. https://canchild.ca/en/shop/2-pem-cy-participation-and-environment-measure-children-and-youth

  93. Ayşe Numanoğlu Akbaş. Assessments and outcome measures of cerebral palsy, Cerebral Palsy – Current Steps, Mintaze Kerem Gunel, IntechOpen, 2016. https://doi.org/10.5772/64254. Accessed from: https://www.intechopen.com/books/cerebral-palsy-current-steps/assessments-and-outcome-measures-of-cerebral-palsy

  94. Carlon S, Shields N, Yong K, Gilmore R, Sakzewski L, Boyd R. A systematic review of the psychometric properties of quality of life measures for school aged children with cerebral palsy. BMC Pediatr. 2010;10:81. Published 2010 Nov 9. https://doi.org/10.1186/1471-2431-10-81.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Novak I. Evidence-based diagnosis, health care, and rehabilitation for children with cerebral palsy. J Child Neurol. 2014;29(8):1141–56. https://doi.org/10.1177/0883073814535503. Epub 2014 Jun 22.

    Article  PubMed  Google Scholar 

  96. Paleg G, Livingstone R. Outcomes of gait trainer use in home and school settings for children with motor impairments: a systematic review. Clin Rehabil. 2015;29(11):1077–91. https://doi.org/10.1177/0269215514565947. Epub 2015 Jan 30.

    Article  PubMed  Google Scholar 

  97. Paleg GS, Smith BA, Glickman LB. Systematic review and evidence-based clinical recommendations for dosing of pediatric supported standing programs. Pediatr Phys Ther. 2013;25(3):232–47. https://doi.org/10.1097/PEP.0b013e318299d5e7.

    Article  PubMed  Google Scholar 

  98. Jackman M, Novak I, Lannin N. Effectiveness of hand splints in children with cerebral palsy: a systematic review with meta-analysis. Dev Med Child Neurol. 2014;56:138–47.

    PubMed  Google Scholar 

  99. Kenyon L, Jones M, Livingstone R, Breaux B, Tsotsoros J, Williams K. Power mobility for children: a survey study of American and Canadian therapists’ perspectives and practices. Dev Med Child Neurol. 2018;60:1018–25.

    PubMed  Google Scholar 

  100. Kenyon L, Farris J, Cain B, King E, VandenBerg A. Development and content validation of the power mobility training tool. Disabil Rehabil Assist Technol. 2018;13(1):10–24.

    PubMed  Google Scholar 

  101. Kenyon L, Mortenson W, Miller W. ‘Power in Mobility’: parents and therapist perspectives of the experiences of children learning to use powered mobility. Dev Med Child Neurol. 2018;60:1012–7.

    PubMed  Google Scholar 

  102. Lucas BR, Elliott EJ, Coggan S, Pinto RZ, Jirikowic T, McCoy SW, Latimer J. Interventions to improve gross motor performance in children with neurodevelopmental disorders: a meta-analysis. BMC Pediatr. 2016;16(1):193.

    PubMed  PubMed Central  Google Scholar 

  103. Novak I, McIntyre S, Morgan C, Campbell L, Dark L, Morton N, Stumbles E, Wilson SA, Goldsmith S. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol. 2013;55(10):885–910. https://doi.org/10.1111/dmcn.12246. Epub 2013 Aug 21.

    Article  PubMed  Google Scholar 

  104. Anaby D, Korner-Bitensky N, Steven E, Tremblay S, Snider L, Avery L, Law M. Current rehabilitation practices for children with cerebral palsy: focus and gaps. Phys Occup Ther Pediatr. 2017;37(1):1–15. https://doi.org/10.3109/01942638.2015.1126880. Epub 2016 Feb 11.

    Article  PubMed  Google Scholar 

  105. Hoare B, Greaves S. Unimanual versus bimanual therapy in children with unilateral cerebral palsy: same, but different. J Pediatr Rehabil Med. 2017;10:47–59.

    PubMed  Google Scholar 

  106. Chen Y, Pope S, Tyler D, Warren G. Effectiveness of constraint-induced movement therapy on upper-extremity function in children with cerebral palsy: a systematic review and meta-analysis of randomized controlled trials. Clin Rehabil. 2014;28(10):939–53.

    PubMed  Google Scholar 

  107. Chiu HC, Ada L. Constraint-induced movement therapy improves upper limb activity and participation in hemiplegic cerebral palsy: a systematic review. J Physiother. 2016;62(3):130–7. https://doi.org/10.1016/j.jphys.2016.05.013. Epub 2016 Jun 17.

    Article  PubMed  Google Scholar 

  108. Charles J, Gordon A. Development of hand-arm bimanual intensive training (HABIT) for improving bimanual coordination in children with hemiplegic cerebral palsy. Dev Med Child Neurol. 2006;48(11):931–6.

    PubMed  Google Scholar 

  109. Bleyenheuft Y, Ebner-Karestinos D, Surana B, Paradis J, Sidiropoulos A, Renders A, Friel KM, Brandao M, Rameckers E, Gordon AM. Intensive upper- and lower-extremity training for children with bilateral cerebral palsy: a quasi-randomized trial. Dev Med Child Neurol. 2017;59(6):625–33. https://doi.org/10.1111/dmcn.13379. Epub 2017 Jan 30.

    Article  PubMed  Google Scholar 

  110. Verschuren O, Peterson MD, Balemans AC, Hurvitz EA. Exercise and physical activity recommendations for people with cerebral palsy. Dev Med Child Neurol. 2016;58(8):798–808. https://doi.org/10.1111/dmcn.13053. Epub 2016 Feb 7.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ryan JM, Cassidy EE, Noorduyn SG, O’Connell NE. Exercise interventions for cerebral palsy. Cochrane Database Syst Rev. 2017;6:CD011660. https://doi.org/10.1002/14651858.CD011660.

    Article  PubMed  Google Scholar 

  112. Kruijsen-Terpstra AJA, Ketelaar M, Verschuren O, Gorter JW, Vos RC, Verheijden J, Jongmans MJ, Visser-Meily A. Efficacy of three therapy approaches in preschool children with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2016;58(7):758–66. https://doi.org/10.1111/dmcn.12966. Epub 2015 Nov 24.

    Article  PubMed  Google Scholar 

  113. Salazar AP, Pagnussat AS, Pereira GA, Scopel G, Lukrafka JL. Neuromuscular electrical stimulation to improve gross motor function in children with cerebral palsy: a meta-analysis. Braz J Phys Ther. 2019;23(5):378–86.

    PubMed  PubMed Central  Google Scholar 

  114. Qi YC, Niu XL, Gao YR, Wang HB, Hu M, Dong LP, Li YZ. Therapeutic effect evaluation of neuromuscular electrical stimulation with or without strengthening exercise on spastic cerebral palsy. Clin Pediatr (Phila). 2018;57(5):580–3.

    Google Scholar 

  115. Mukhopadhyay R, Lenka PK, Biswas A, Mahadevappa M. Evaluation of functional mobility outcomes following electrical stimulation in children with spastic cerebral palsy. J Child Neurol. 2017;32(7):650–6. https://doi.org/10.1177/0883073817700604. Epub 2017 Apr 9.

    Article  PubMed  Google Scholar 

  116. Moll I, et al. Functional electrical stimulation of the ankle dorsiflexors during walking in spastic cerebral palsy: a systematic review. Dev Med Child Neurol. 2017;59(12):1230–6. https://doi.org/10.1111/dmcn.13501. Epub 2017 Aug 17.

    Article  PubMed  Google Scholar 

  117. MacIntosh A, Lam E, Vigneron V, Vignais N, Biddiss E. Biofeedback interventions for individuals with cerebral palsy: a systematic review. Disabil Rehabil. 2018;41:2369–91. https://doi.org/10.1080/09638288.2018.1468933.

    Article  PubMed  Google Scholar 

  118. Bourke-Taylor H, O’Shea R, Gaebler-Spira D. Conductive education: a functional skills program for children with cerebral palsy. Phys Occup Ther Pediatr. 2007;27(1):45–62.

    PubMed  Google Scholar 

  119. Lai CJ, Liu WY, Yang TF, Chen CL, Wu CY, Chan RC. Pediatric aquatic therapy on motor function and enjoyment in children diagnosed with cerebral palsy of various motor severities. J Child Neurol. 2015;30(2):200–8. https://doi.org/10.1177/0883073814535491.Epub 2014 Jun 5.

    Article  PubMed  Google Scholar 

  120. APTA. Aquatic therapy. Accessed 26 June 2019. https://pediatricapta.org/includes/fact-sheets/pdfs/17%20Aquatic%20PT%20for%20Children%20Fact%20Sheet.pdf

  121. Kwon JY, Chang HJ, Yi SH, Lee JY, Shin HY, Kim YH. Effect of hippotherapy on gross motor function in children with cerebral palsy: a randomized controlled trial. J Altern Complement Med. 2015;21(1):15–21. https://doi.org/10.1089/acm.2014.0021. Epub 2014 Dec 31.

    Article  PubMed  Google Scholar 

  122. Champagne D, Corriveau H, Dugas C. Effect of hippotherapy on motor proficiency and function in children with cerebral palsy who walk. Phys Occup Ther Pediatr. 2017;37(1):51–63. https://doi.org/10.3109/01942638.2015.1129386. Epub 2016 Mar 1.

    Article  PubMed  Google Scholar 

  123. Martín Lorenzo T, Rocon E, Martínez Caballero I, Ramírez Barragán A, Lerma LS. Prolonged stretching of the ankle plantarflexors elicits muscle-tendon adaptations relevant to ankle gait kinetics in children with spastic cerebral palsy. Med Hypotheses. 2017;109:65–9. https://doi.org/10.1016/j.mehy.2017.09.025. Epub 2017 Sep 28.

    Article  PubMed  Google Scholar 

  124. Theis N, Korff T, Kairon H, Mohagheghi AA. Does acute passive stretching increase muscle length in children with cerebral palsy? Clin Biomech (Bristol, Avon). 2013;28(9–10):1061–7. https://doi.org/10.1016/j.clinbiomech.2013.10.001. Epub 2013 Oct 10.

    Article  Google Scholar 

  125. Pin T, Dyke P, Chan M. The effectiveness of passive stretching in children with cerebral palsy. Dev Med Child Neurol. 2006;48(10):855–62. Review.

    PubMed  Google Scholar 

  126. APTA. Partial Weight Bearing gait training. Accessed on https://pediatricapta.org/includes/fact-sheets/pdfs/Body-Weight-Supported-Treadmill.pdf

  127. APTA. Pediatric fitness and health. Accessed 26 June 2019. https://pediatricapta.org/includes/fact-sheets/pdfs/12%20Role%20and%20Scope%20in%20Fitness%20Health%20Promo.pdf

  128. Almeida KM, Fonseca ST, Figueiredo PRP, Aquino AA, Mancini MC. Effects of interventions with therapeutic suits (clothing) on impairments and functional limitations of children with cerebral palsy: a systematic review. Braz J Phys Ther. 2017;21(5):307–20. https://doi.org/10.1016/j.bjpt.2017.06.009. Epub 2017 Jul 5.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Martins E, Cordovil R, Oliveira R, Letras S, Lourenço S, Pereira I, Ferro A, Lopes I, Silva CR, Marques M. Efficacy of suit therapy on functioning in children and adolescents with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2016;58(4):348–60. https://doi.org/10.1111/dmcn.12988. Epub 2015 Nov 27.

    Article  PubMed  Google Scholar 

  130. Saquetto M, Carvalho V, Silva C, Conceição C, Gomes-Neto M. The effects of whole body vibration on mobility and balance in children with cerebral palsy: a systematic review with meta-analysis. J Musculoskelet Neuronal Interact. 2015;15(2):137–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ritzmann R, Stark C, Krause A. Vibration therapy in patients with cerebral palsy: a systematic review. Neuropsychiatr Dis Treat. 2018;14:1607–25. https://doi.org/10.2147/NDT.S152543. eCollection 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Oppenheim WL. Complementary and alternative methods in cerebral palsy. Dev Med Child Neurol. 2009;51 Suppl 4:122–9.

    PubMed  Google Scholar 

  133. Unger M, Carstens JP, Fernandes N, Pretorius R, Pronk S, Robinson AC, Scheepers K. The efficacy of kinesiology taping for improving gross motor function in children with cerebral palsy: a systematic review. S Afr J Physiother. 2018;74(1):459. https://doi.org/10.4102/sajp.v74i1.459. eCollection 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Chen Y, Howard A. Effects of robotic therapy on upper-extremity function in children with cerebral palsy: a systematic review. Dev Neurorehabil. 2016;19(1):64–71.

    PubMed  Google Scholar 

  135. Wallard L, Dietrich G, Kerlirzin Y, Bredin J. Effect of robotic-assisted gait rehabilitation on dynamic equilibrium control in the gait of children with cerebral palsy. Gait Posture. 2018;60:55–60. https://doi.org/10.1016/j.gaitpost.2017.11.007. Epub 2017 Nov 11.

    Article  CAS  PubMed  Google Scholar 

  136. Park J, You J. Innovative robotic hippotherapy improves postural muscle size and postural stability during the quiet stance and gait initiation in a child with cerebral palsy: a single case study. NeuroRehabilitation. 2018;42:247–53.

    PubMed  Google Scholar 

  137. Cimolin V, Germiniasi C, Galli M, Condoluci C, Beretta E, Piccinini L. Robot-assisted upper limb training for hemiplegic children with cerebral palsy. J Dev Phys Disabil. 2019;31:89–101.

    Google Scholar 

  138. Gilliaux M, Renders A, Dispa D, Holvoet D, Sapin J, Dehez B, Detrembleur C, Lejeune T, Stoquart G. Upper limb robot assisted therapy in cerebral palsy: a single blind randomized controlled trial. Neurorehabil Neural Repair. 2015;29(2):183–92.

    PubMed  Google Scholar 

  139. Ravi D, Kumar N, Singi P. Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: an updated evidence-based systemic review. Physiotherapy. 2017;103:245–58.

    CAS  PubMed  Google Scholar 

  140. Chen Y, Fanchiang H, Howard A. Effectiveness of virtual reality in children with cerebral palsy: a systematic review and meta-analysis of randomized controlled trials. Phys Ther. 2018;98(1):63–77.

    PubMed  Google Scholar 

  141. Thieme H, Morkisch N, Mehrholz J, Pohl M, Behren K, Borgetto B, Dohle C. Mirror therapy for improving motor function after stroke (review). Cochrane Database Syst Rev. 2018;7:1–181.

    Google Scholar 

  142. Zeng W, Guo Y, Wu G, Liu X, Fang Q. Mirror therapy for motor function of the upper extremity in patients with stroke: a meta-analysis. J Rehabil Med. 2018;50:8–15.

    PubMed  Google Scholar 

  143. Park E, Baek S, Park S. Systematic review of the effects of mirror therapy in children with cerebral palsy. J Phys Ther Scis. 2016;28:3227–31.

    Google Scholar 

  144. Bodison SC, Parham LD. Specific sensory techniques and sensory environmental modifications for children and youth with sensory integration difficulties: a systematic review. Am J Occup Ther. 2017;72(1):7201190040p1–7201190040p11. https://doi.org/10.5014/ajot.2018.029413.

    Article  Google Scholar 

  145. May-Benson TA, Koomar JA. Systematic review of the research evidence examining the effectiveness of interventions using a sensory integrative approach for children. Am J Occup Ther. 2010;64(3):403–14. https://doi.org/10.5014/ajot.2010.09071.

    Article  PubMed  Google Scholar 

  146. Parham LD, et al. Fidelity in sensory integration intervention research. Am J Occup Ther. 2007;61(2):216–27. https://doi.org/10.5014/ajot.61.2.216.

    Article  PubMed  Google Scholar 

  147. Thomason P, Graham HK. Rehabilitation of children with cerebral palsy after single-event multilevel surgery. http://www.cre-cp.org.au/wordpress/wp-content/uploads/2014/10/Thomason-HKG-Rehabilitation-children-CP-after-SEMLS-Ch-18.pdf

  148. Stout J, Walt K. Rehabilitation protocols after single-event multilevel surgery. 2013 AACPDM Breakfast Session #14 October 19, 2013. Center for Gait & Motion Analysis; Gillette Children’s Specialty Healthcare, St. Paul, MN, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Cherry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Newell, A., Cherry, S., Fraser, M. (2020). Principles of Rehabilitation: Occupational and Physical Therapy. In: Nowicki, P. (eds) Orthopedic Care of Patients with Cerebral Palsy. Springer, Cham. https://doi.org/10.1007/978-3-030-46574-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46574-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46573-5

  • Online ISBN: 978-3-030-46574-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics