Skip to main content

Herbivory in Cacti: Fitness Effects of Two Herbivores, One Tending Ant on Myrtillocactus geometrizans (Cactaceae)

  • Chapter
  • First Online:
Evolutionary Ecology of Plant-Herbivore Interaction

Abstract

Plants in the cacti family are almost entirely restricted to the American continent; one third of the species are endemic to Mexico and many of them are threatened, with herbivory being one of the factors affecting their species populations. A range of herbivores has been reported for cacti, ranging from those that consume tissues from the stems, flowers, pollen, fruits and seeds to those that feed on fluids such as sap and nectar. Although the occurrence of this interaction is well documented, relatively few studies have assessed its effect on the plants’ demography and fitness; even fewer studies have examined how the interaction of herbivores with other species (competitors, mutualistic species, predators, etc.) affects the plants’ growth and net performance. This chapter briefly reviews the occurrence and effects of herbivory on cacti and how this is affected by the presence of other species and interactions. In addition, we use a biological system associated with the garambullo cactus Myrtillocactus geometrizans—two phytophagous species and other insects—to show how, depending on the phytophagous species and its interactions with other species also associated with the plant, the final effects on the growth, reproductive success and progeny’s quality of M. geometrizans vary. We found that both phytophagous species affect the plant negatively, but with different intensity. The soft scale Toumeyella martinezae often has a greater negative effect on M. geometrizans, affecting its growth, reproductive effort and progeny’s quality and performance. We also showed that the two scale insects compete asymmetrically: Under natural conditions, the soft scale affects Opuntiaspis philococcus more heavily, but the competitive advantage of T. martinezae is facilitated by the presence of the mutualistic ant Liometopum apiculatum. Thus, by eliciting a high abundance of the soft scale, the species that most affects the plant, the ant has a negative net effect on the plant. The parasitoids found in this system would compete with the ants for the phytophagous resource and, although they have a “moderate” effect (25% incidence) on the herbivore populations, they would favour the plant by reducing the population of phytophagous insects. The complex multitrophic system hereby studied clearly shows that analysing interspecific interactions by examining only species pairs in isolation is insufficient to understand and predict the overall impact on plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdala-Roberts L, Agrawal AA, Mooney KA (2012) Ant-aphid interactions on Asclepias syriaca are mediated by plant genotype and caterpillar damage. Oikos 121:1905–1913

    Google Scholar 

  • Agrawal AA (2004) Resistance and susceptibility of milkweed: competition, root herbivory, and plant genetic variation. Ecology 85:2118–2133

    Google Scholar 

  • Ali JG, Alborn HT, Campos-Herrera R, Kaplan F, Duncan LW, Rodriguez-Saona C, Koppenhöfer MA, Stelinsk LL (2012) Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats. PLoS ONE 7(6):e38146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson EF (2001) The cactus family. Timber Press, Portland

    Google Scholar 

  • Arias S, Gama S, Guzmán L (1997) Flora del Valle de Tehuacán-Cuicatlán. Fascículo 14. Cactaceae. Universidad Nacional Autónoma de México, Mexico City

    Google Scholar 

  • Arias S, Guzmán U, Mandujano MC, Soto M, Golubov J (2005) Las especies mexicanas de cactáceas en riesgo de extinción. I. Una comparación entre los listados NOM-059-ECOL-2001 (México), La lista Roja (UICN) y CITES. Cact Suc Mex 50:100–125

    Google Scholar 

  • Bárcenas RT, Yesson C, Hawkins JA (2011) Molecular systematics of the Cactaceae. Cladistics 27:470–489

    Google Scholar 

  • Bashan Y, Toledo G, Holguin G (1995) Flat top decay syndrome of the giant cardon cactus (Pachycereus pringlei): description and distribution in Baja California Sur, Mexico. Can J Bot 73:683–692

    Google Scholar 

  • Berenbaum MR (1986) Target site insensitivity in insect-plant interactions. In: Brattsten LB, Ahmad S (eds) Molecular aspects of insect-plant associations. Springer, Boston, MA, pp 257–272

    Google Scholar 

  • Blom PE (1987) Host plants of Moneilema michelbacheri Linsley in Baja California Mexico (Coleoptera: Cerambycidae). Coleopterists Bull 41:358–360

    Google Scholar 

  • Bonet A (2009) Parasitoid wasps, natural enemies of insects. In: Del Claro K, Oliveira PS, Rico-Gray V (eds) Tropical biology and conservation management, volume 7: phytopathology and entomology. Eolss Publishers, Paris, pp 185–207

    Google Scholar 

  • Brattsten LB (1986) Fate of ingested plant allelochemicals in herbivorous insects. In: Brattsten LB, Ahmad S (eds) Molecular aspects of insect-plant associations. Plenum Press, New York, pp 211–256

    Google Scholar 

  • Bravo-Hollis H, Sánchez-Mejorada H (1978) Las cactáceas de México. 2ª Ed., vol I y III. Universidad Nacional Autónoma de México, Mexico City

    Google Scholar 

  • Britton NL, Rose JN (1963) The cactaceae, vols 1 y 2. Dover Publications Inc., New York

    Google Scholar 

  • Brummitt RK, Powell CE (1992) Authors of plant names. Royal Botanic Gardens, Kew

    Google Scholar 

  • Buckley R (1987) Interactions involving plants, homoptera, and ants. Annu Rev Ecol System 18:111–135

    Google Scholar 

  • Burger JG, Louda SM (1995) Interaction of diffuse competition and insect herbivory in limiting brittle prickly pear cactus, Opuntia fragilis (Cactaceae). Am J Bot 82:1558–1566

    Google Scholar 

  • Callejas-Chavero A, Martínez-Hernández DG, Nicolás DE (2013). Diversidad de artrópodos asociados a Myrtillocactus geometrizans (MART) en tres poblaciones del Valle de México. In: Equihua MA, Estrada VE, Acuña SJ, Chaires GP (eds) Entomología Mexicana, 12: 685–689

    Google Scholar 

  • Cascante-Marín A, Wolf JH, Oostermeijer JGB (2009) Wasp florivory decreases reproductive success in an epiphytic bromeliad. Plant Ecol 203:149–153

    Google Scholar 

  • Celorio-Mancera MP, Labavitch JM (2016) Salivary gland secretions of phytophagous arthropods. In: Cohen E, Moussian B (eds) Extracellular composite matrices in arthropods. Springer International Publishing, Cham, pp 621–623

    Google Scholar 

  • Céspedes CL, Salazar JR, Martínez M, Aranda E (2005) Insect growth regulatory effects of some extracts and sterols from Myrtillocactus geometrizans (Cactaceae) against Spodoptera frugiperda and Tenebrio molitor. Phytochemistry 66:2481–2493

    PubMed  Google Scholar 

  • Chávez-Moreno CK, Tecante A, Casas A (2009) The Opuntia (Cactaceae) and Dactylopius (Hemiptera: Dactylopiidae) in Mexico: a historical perspective of use, interaction and distribution. Biodivers Conserv 18:3337–3355

    Google Scholar 

  • Contreras-González A, Arizmendi MC (2014) Pre-dispersal seed predation of the columnar cactus (Neobuxbaumia tetetzo, Cactaceae) by birds in Central Mexico. Ornitol Trop 25(4):373–387

    Google Scholar 

  • Coronado BJM, Ruiz E, Trjapitzin V (1998) Nuevo registro de Plagiomerus diaspidis Crawford en Tamaulipas, México, sobre la escama Diaspis echinocacti (Bouche). Acta Zool Mex 75:203–204

    Google Scholar 

  • Cortés D, Vigueras AL, Portillo L (2005) Relación del aparato reproductor femenino de Dactylopius coccus Costa (Hemiptera: Dactylopiidae) en la síntesis del ácido carmínico. Scientia-Cucba 7:131–138

    Google Scholar 

  • De Castro F, Bolker B (2005) Mechanisms of disease-induced extinction. Ecol Lett 8:117–126

    Google Scholar 

  • Denno RF, McClure MS, Ott JR (1995) Interspecific interactions in phytophagous insects: competition reexamined and resurrected. Annual Rev Entomol 40:297–331

    CAS  Google Scholar 

  • De Souza Born F, Cerqueira de Araújo MJ, Monaísy Alencar Lima H, de Melo Rodrigues V, Forti Broglio-Micheletti SM, Prédes Trindade RC, Pinto de Lemos E, Passos da Silva DM (2009) Control of Diaspis echinocacti (Bouché, 1833) (Hemiptera: Diaspididae) in Prickly-Pear. Proceedings of the VI International Congress on cactus and Cochineal. Acta Hortic 811:223–226

    Google Scholar 

  • Ehlers BK, Olesen JM (2003) Flower and fruit herbivory in a population of Centaurea scabiosa (Asteraceae): importance of population size and isolation. Ecoscience 10:45–48

    Google Scholar 

  • Evans PH, Becerra JX, Venable DL, Bowers WS (2000) Chemical analysis of squirt-gun defense in Bursera and counter defense by chrysomelid beetles. J Chem Ecol 26:745–754

    CAS  Google Scholar 

  • Farrell BD, Dussourd DE, Mitter C (1991) Escalation of plant defense: Do latex and resin canals spur plant diversification? Am Nat 138:881–900

    Google Scholar 

  • Fogleman JC, Danielson PB (2001) Chemical interactions in the cactus-microorganism-Drosophila model system of the Sonoran Desert. Am Zool 41:877–889

    CAS  Google Scholar 

  • Ford KR, Ness JH, Bronstein JL, Morris WF (2015) The demographic consequences of mutualism: ants increase host plant fruit production but no population growth. Oecologia 179:435–446

    PubMed  Google Scholar 

  • Flores J, Briones O, Flores A, Sánchez-Colón S (2004) Effect of predation and solar exposure on the emergence and survival of desert seedlings of contrasting life forms. J Arid Environ 58:1–18

    Google Scholar 

  • García-Chávez J, Sosa VJ, Montaña C (2010) Variation in post dispersal predation of cactus seeds under nurse plant canopies in three plant associations of a semiarid scrubland in central Mexico. J Arid Environ 74:54–62

    Google Scholar 

  • García Morales M, Denno BD, Miller DR, Gary LM, Ben-Dov Y, Hardly NB (2016) Scale Net: a literature-based model of scale insect biology and systematics. Database vol 2016

    Google Scholar 

  • Galetti M, Pedroni F (1994) Seasonal diet of capuchin monkeys (Cebus apella) in a semideciduous forest in south-east Brazil. J Trop Ecol 10:27–39

    Google Scholar 

  • Gibernau M, Dejean A (2000) Ant protection of a Heteropteran trophobiont against a parasitoid wasp. Oecologia 126:53–57

    Google Scholar 

  • Godínez-Álvarez H, Valiente-Banuet A, Rojas-Martínez A (2002) The role of seed dispersers in the population dynamics of the columnar cactus Neobuxbaumia tetetzo. Ecology 83(9):2617–2629

    Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton

    Google Scholar 

  • Goettsch B, Hilton-Taylor C, Cruz-Piñón G, Duffy JP, Frances A, Hernández HM, Inger R et al (2015) High proportion of cactus species threatened with extinction. Nat Plants 1:15142

    CAS  PubMed  Google Scholar 

  • Gomes VGN, Meiado MV, Quirino ZGM, Machado IC (2016) Seed removal by lizard and effect of gut passage on germination in a columnar cactus of the Caatinga, a tropical dry forest in Brazil. J Arid Environ 135:85–89

    Google Scholar 

  • Goñalons C, Varone L, Logarzo G, Guala M, Rodriguero M, Hight SD, Carpenter JE (2014) Geographical range and laboratory studies on Apanteles opuntiarum (Hymenoptera: Braconidae) in Argentina, a candidate for biological control of Cactoblastis cactorum (Lepidoptera: Pyralidae) in North America. Fla Entomol 97:1458–1468

    Google Scholar 

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 94:421–425

    Google Scholar 

  • Halpern S, Underwood N (2006) Approaches for testing herbivore effects on plant population dynamics. J Appl Ecol 43:922–929

    Google Scholar 

  • Hamon AB (1980) Opuntiaspis philococcus (Cockerell) (Homoptera: Coccoidea: Diaspididae). Entomol Circ 214:1–2

    Google Scholar 

  • Hayes CL, Talbot WA, Wolf BO (2013) Woodrat herbivory influences saguaro (Carnegiea gigantea) reproductive output. J Arid Environ 89:110–115

    Google Scholar 

  • Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178:41–61

    CAS  PubMed  Google Scholar 

  • Hernández-López D, Vaillant F, Reynoso-Camacho R, Guzman-Maldonado SH (2008) Myrtillocactus (cactaceae): botanical, agronomic, physicochemical and chemical characteristics of fruits. Fruits 63:269–276

    Google Scholar 

  • Holland JN, Fleming TH (1999) Mutualistic interactions between Upiga virescens (Pyralidae), a pollinating seed-consumer, and Lophocereus schottii (Cactaceae). Ecology 80(6):2074–2084

    Google Scholar 

  • Hoffmann JH, Moran VC, Zeller DA (1998) Evaluation of Cactoblastis cactorum (Lepidoptera: Phycitidae) as a biological control agent of Opuntia stricta (Cactaceae) in the Kruger National Park, South Africa. Biol Control 12:20–24

    Google Scholar 

  • Hulme PE, Benkman C (2002) Granivory. In: Herrera C, Pellmyr O (eds) Plant–animal interactions. Blackwell Sciences, Oxford, pp 132–154

    Google Scholar 

  • Hunter M, Price PW (1992) Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73:724–732

    Google Scholar 

  • Islas- Estrada SA (2020) Ciclo de vida de Oputiaspis philococcus (Cockerell 1983) y sus enemigos naturales asociados a Myrtillocactus geometrizans en Hidalgo, México. (Tesis de Licenciatura). Instituto Politécnico Nacional, México

    Google Scholar 

  • Janczur MK, León-Solano HJ, Solache-Ramos LT, Mendoza-Reyes CH, Oro-Cerro Mdel C, Mariezcurrena-Berasain MD, Rivas-Manzano IV, Manjarrez J, Villareal-Benitez JL, Czarnoleski M (2014) Chemical and physical defense traits in two sexual forms of Opuntia robusta in Central Eastern Mexico. PLoS ONE 9(3):e89535

    Google Scholar 

  • Japoshvili GO, Stathas GJ, Kampouris SG (2010) Natural enemies of Diaspis echinocacti in Greece and first records of Aphytis debachi and Plagiomerus diaspidis. Phytoparasitica 38:121–123

    Google Scholar 

  • Kaplan I, Denno RF (2007) Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecol Lett 10:977–994

    PubMed  Google Scholar 

  • Keller KR, Carabajal S, Navarro F, Lau JA (2018) Effects of multiple mutualists on plants and their associated arthropod communities. Oecologia 186:185–194

    PubMed  Google Scholar 

  • Koptur S, Jones IM, Peña JE (2015) The influence of host plant extrafloral nectaries on multitrophic interactions: An experimental investigation. PLoS ONE 10(9):1–18

    Google Scholar 

  • Krupnick GA, Weis AE, Campbell DR (1999) The consequences of floral herbivory for pollinator service to Isomeris arborea. Ecology 80:125–134

    Google Scholar 

  • Krupnick GA, Weis AE (1999) The effect of floral herbivory on male and female reproductive success in Isomeris arborea. Ecology 80:135–149

    Google Scholar 

  • Luna P, Anjos D, García-Chávez JH, Dáttilo W (2018) Exploring the vegetation: Seed harvester ants climb and remove seed from a giant cactus in a semiarid environment. J Arid Environ 156:106–109

    Google Scholar 

  • Malo JE, Acebes P, Giannoni SM, Traba J (2010) Feral livestock threatens landscapes dominated by columnar cacti. Acta Oecol 37:249–255

    Google Scholar 

  • Mann J (1969) Cactus-feeding insects and mites. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Maron JL, Crone E (2006) Herbivory: Effects on plant abundance, distribution and population growth. Proc R Soc B Biol Sci 273:2575–2584

    Google Scholar 

  • Marquis RJ (1992) The selective impact of herbivores. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores and pathogens: ecology, evolution, and genetics. University of Chicago Press, Chicago, pp 301–325

    Google Scholar 

  • Martínez-Ávalos GM, Golubov J, Mandujano MC, Jurado E (2007) Causes of individual mortality in the endangered star cactus Astrophytum asterias (Cactaceae): The effect of herbivores and disease in Mexican populations. J Arid Environ 71:250–258

    Google Scholar 

  • Martínez Peralta C, Mandujano MC (2012) Biología de la polinización y fenología reproductiva del género Ariocarpus Scheidweiler (Cactaceae). Cactá Suc Mex 57:114–127

    Google Scholar 

  • Martínez-Hernández DG (2015) Efecto de Liometopum apiculatum (Hymenoptera: Formicidae) sobre la tasa de parasitoidismo de Toumeyella martinezi (Hemiptera: Coccidae) asociados a Myrtillocactus geometrizans (Cactaceae) en un Matorral Xerófilo de Huichapan, Hidalgo (Tesis de Licenciatura). Instituto Politécnico Nacional, Ciudad de México

    Google Scholar 

  • Martínez-Hernández DG (2017) Efecto de las interacciones que establecen los herbívoros Toumeyella martinezi y Opuntiaspis philococcus sobre la calidad y reproducción de Myrtillocactus geometrizans (Tesis de Maestría). Instituto Politécnico Nacional, Ciudad de México

    Google Scholar 

  • McCall AC, Irwin RE (2006) Florivory: the intersection of pollination and herbivory. Ecol Lett 9:1351–1365

    PubMed  Google Scholar 

  • Mead FW, Herring JL (2011) Cactus bug, Chelinidea vittiger aequoris McAtee (Insecta: Hemiptera: Coreidae). University of Florida Cooperative Extension Service Institute of Food and Agricultural Sciences, EDIS

    Google Scholar 

  • Mellink E, Riojas-López ME (2002) Consumption of Platyopuntias by wild vertebrates. In: Nobel PS (ed) Cacti: biology and uses, vol 7. University of California Press, Berkeley, pp 109–123

    Google Scholar 

  • Miller DR, Davidson JA (2005) Armored scale insect pests of trees and shrubs (Hemiptera: Diaspididae). Cornell University Press, Ithaca/London

    Google Scholar 

  • Miller TEX (2007) Does having multiple partners weaken the benefits of facultative mutualism? A test with cacti and cactus-tending ants. Oikos 116:500–512

    Google Scholar 

  • Miller TEX (2008) Bottom-up, top-down, and within-trophic level pressures on a cactus-feeding insect. Ecol Entomol 33:261–268

    Google Scholar 

  • Miller TEX, Louda MS, Rose AK, Eckberg J (2009) Impacts of insect herbivory on cactus population dynamics: experimental demography across an environmental gradient. Ecol Monogr 79(1):155–172

    Google Scholar 

  • Miranda-Jácome A, Flores J (2018) Effects of nurse plant and the granivore guild in the associational susceptibility of seeds from the columnar cactus Pilocereus leucocephalus. J Arid Environ 151:9–14

    Google Scholar 

  • Moncada AJ (2019) Competencia entre Toumeyella martinezae (Coccidae) y Opuntiaspis philococcus (Diaspididae) en presencia y ausencia de la hormiga Liometopum apiculatum (Formicidae) asociadas a Myrtillocactus geometrizans (Cactaceae) (Tesis de Maestría). Instituto Politécnico Nacional, Ciudad de México

    Google Scholar 

  • Munguía-Rosas MA, Jácome-Flores ME, Sosa VJ, Quiroz-Cerón LM (2009) Removal of Pilosocereus leucocephalus (Cactacea, tribe Cereeae) seeds by ants and their potential role as primary seed dispersers. J Arid Environ 73:578–581

    Google Scholar 

  • Myers JH, Sarfraz RM (2017) Impacts of insect herbivores on plant populations. Annu Rev Entomol 62:207–230

    CAS  PubMed  Google Scholar 

  • Narváez ERE, Silva MLE, Breen MW (2018) El brebaje del desierto: usos del peyote (Lophophora williamsii, Cactaceae) entre los cazadores recolectores de Nuevo León. Centro de Investigación Científica de Yucatán, A.C. (CICY) 10:186–196.

    Google Scholar 

  • Nóbrega GVG, Koroiva R, Araujo CA (2016) Vertebrate florivory on the short-columnar cactus Echinopsis rhodotricha K Schum. in the Brazilian Chaco. Plant Ecol 217(2):1481–1487

    Google Scholar 

  • NOM-059-SEMARNAT-2010. Diario Oficial de la Federación, Distrito Federal, México. 30 de diciembre de 2010

    Google Scholar 

  • Oguro M, Sakai S (2009) Floral herbivory at different stages of flower development changes reproduction in Iris gacilipes (Iridaceae). Plant Ecol 202:221–234

    Google Scholar 

  • Oliveira PS, Rico-Gray V, Díaz-Castelazo C, Castillo-Guevara C (1999) Interaction between ants, extrafloral nectaries and insect herbivores in Neotropical coastal sand dunes: herbivore deterrence by visiting ants increases fruit set in Opuntia stricta (Cactaceae). Funct Ecol 13:623–631

    Google Scholar 

  • Oksanen L, Fretwell SD, Arruda J, Niemala P (1981) Exploitation ecosystems in gradients of primary productivity. Am Nat 118:240–261

    Google Scholar 

  • Ozaki K, Takashima S, Suko O (2000) Ant predation suppresses populations of the scale insects Aulacaspis marina in natural mangrove forest. Biotropica 32:764–768

    Google Scholar 

  • Pacelhe FT, Costa FV, Neves FS, Bronstein J, Mello MA (2019) Nectar quality affects ant aggressiveness and biotic defense provided to plants. Biotropica 51:196–204

    Google Scholar 

  • Palafox-Luna JA, Rodríguez-Leyva E, Lomelí-Flores JR, Vigueras-Guzmán AL, Vanegas-Rico JM (2018) Ciclo de vida y fecundidad de Dactylopiu sopuntiae (Hemiptera: Dactylopiidae) en Opuntia ficus-indica (Caryophyllales: Cactaceae). Agrociencia 52:103–114

    Google Scholar 

  • Palomares PM (2018) Alternativas de control biológico de la palomilla del nopal Cactoblastis cactorum (Parasitoides, depredadores y entomopatógenos). SENASICA

    Google Scholar 

  • Peco B, Borghi CE, Malo JE, Acebes P, Almirón M, Campos CM (2011) Effects of bark damage by feral herbivores on columnar cactus Echinopsis (=Trichocereus) terscheckii reproductive output. J Arid Environ 75:981–985

    Google Scholar 

  • Pérez-Villafaña MG, Valiente-Banuet A (2009) Effectiveness of dispersal of an ornithocorous cactus Myrtillocactus geometrizans (Cactaceae) in a patchy environment. Open Biol J 2:101–113

    Google Scholar 

  • Portilla-Alonso RM, Martorell C (2011) Demographic consequences of chronic anthropogenic disturbance on three populations of the endangered globose cactus Coryphantha werdermannii. J Arid Environ 72:509–515

    Google Scholar 

  • Portillo L, Vigueras AL (1998) Natural enemies of cochineal (Dactylopius coccus Costa): Importance in Mexico. J Prof Assoc Cactus Dev 3:43–49

    Google Scholar 

  • Pratt GF, Pierce CL (2001) Incisalia henrici (Grote and Robinson) (Lepidoptera: Lycaenidae) reared on reproductive and non-reproductive tissues of three different plant species. Proc Entomol Soc Washington 103:403–408

    Google Scholar 

  • Quintana-Ascencio PF, Koontz SM, Smith SA, Sclater VL, David AS, Menges ES (2018) Predicting landscape-level distribution and abundance: integrating demography, fire, elevation and landscape habitat configuration. J Ecol 106:2395–2408

    Google Scholar 

  • Ramos A, Serna F (2004) Coccoidea de Colombia, con énfasis en las cochinillas harinosas (Hemiptera: Pseudococcidae). Revista Facultad Nacional de Agronomía Medellín 57:2383–2411

    Google Scholar 

  • Rico-Gray V, Oliveira PS (2007) The ecology and evolution of ant-plant interactions. The University of Chicago Press, Chicago, 331 p

    Google Scholar 

  • Robles-Zepeda RE, Jiménez-Estrada M, Navarro-Ocaña A, Saad-Villegas I, Brunner I, Ruiz-Bustos E (2009) Secondary metabolites induction in Mammillaria huitzilopochtli (Cactaceae) and evaluation of the fungicidal activity. Afr J Biotechnol 8:3874–3878

    CAS  Google Scholar 

  • Rocha RG, García O, Villarreal J, Sánchez S (2017) Especies de Hemiptera-Heteroptera asociadas a Opuntia spp. y Nopalea spp. en el desierto chihuahuense mexicano. Revista Mexicana de Ciencias Agrícolas 8:1773–1784

    Google Scholar 

  • Rosumek FB, Silveira FA, Neves F, Barbosa N, Diniz L, Oki Y, Pezzini F, Fernandez GW, Cornelissen T (2009) Ant on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia 160:537–549

    PubMed  Google Scholar 

  • Russo A, Siscaro G (1994) Diaspis echinocacti fitomizo del ficod’India in Sicilia. Informatore Agrario 50:73–76

    Google Scholar 

  • Stefani V, Pires TL, Torezan-Silingardi HM, Del-Claro K (2015) Beneficial effects of ants and spiders on the reproductive value of Eriotheca gracilipes (Malvaceae) in a tropical savanna. PLoS ONE 10(7):1–12

    Google Scholar 

  • Schmitz OJ, Hambäck PA, Beckerman AP (2000) Trophic Cascades in Terrestrial Systems: A Review of the Effects of Carnivore Removals on Plants. Am Nat 155:141–153

    PubMed  Google Scholar 

  • Schupp EW, Jordano P, Gomez JM (2017) A general framework for effectiveness concepts in mutualism. Ecol Lett 20:577–590

    PubMed  Google Scholar 

  • Styrsky JD, Eubanks MD (2007) Ecological consequences of interaction between ants and honeydew-producing insects. Proc R Soc B 274:151–164

    PubMed  Google Scholar 

  • Trager MD, Bhotika S, Hostetler JA, Andrade GV, Rodriguez-Cabal M, McKeon AS, Osenberg CW, Bolker BM (2010) Benefits for Plants in Ant-Plant Protective Mutualisms: A Meta-Analysis. PLoS ONE 5:e14308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Traveset A, Olesen J, Nogales M, Vargas P, Jaramillo P, Antolín M, Trigo M, Heleno R (2015) Bird-flower Networks in the Galápagos unveil a widespread interaction release. Nat Commun 6:6376

    CAS  PubMed  Google Scholar 

  • van Dam NM (2009) Belowground herbivory and plant defenses. Annu Rev Ecol Evol Syst 40:373–391

    Google Scholar 

  • van Dam NM, Heil M (2011) Multitrophic interactions below and above ground: en route to the next level. J Ecol 99:77–88

    Google Scholar 

  • Vanegas-Rico JM, Lomelí-Flores JR, Rodríguez-Leyva E, Mora-Aguilera G, Valdez JM (2010) Enemigos naturales de Dactylopius opuntiae (Cockerell) en Opuntia ficus-indica (L.) Miller en el centro de México. Acta Zool Mex 26:415–433

    Google Scholar 

  • Vázquez-Castillo S, Miranda-Jácome A, Ruelas-Inzunza E (2019) Patterns of frugivory in the columar cactus Pilosocereus leucocephalus. Ecol Evol 9:1268–1277

    Google Scholar 

  • Vázquez-Sánchez M, Terrazas T, Arias S (2012) El hábito y la forma de crecimiento en la tribu Cactaceae (Cactaceae, Cactoideae). Bot Sci 90:97–108

    Google Scholar 

  • Valiente-Banuet A, Ezcurra E (1991) Shade as a cause of the association between the cactus Neobuxbaumia tetetzo and nurse plant Mimosa luisana in the Tehuacan Valley, Mexico. J Ecol 79:961–971

    Google Scholar 

  • Vila M, Gimeno I (2003) Seed predation of two alien Opuntia species invading Mediterranean communities. Plant Ecol 167:1–8

    Google Scholar 

  • Vilela A, Del-Claro K (2018) Effects on different ant species on the abundance of neighboring hemipteran colonies and the outcome for the host plant. J Nat Hist 52:415–428

    Google Scholar 

  • Völkl W, Woodring J, Fischer M, Lorenz M, Hoffmann K (1999) Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia 118:483–491

    PubMed  Google Scholar 

  • Wennström A, Niemi Hjulström L, Hjältén J, Julkunen-Tiittoet R (2010) Mother really knows best: host choice of adult phytophagous insect females reflects a within-host variation in suitability as larval food. Chemoecology 20:35–42

    Google Scholar 

  • Winotai A, Wright T, Goolsby JA (2005) Herbivores in Thailand on Rhodomyrtus tomentosa (Myrtaceae), an invasive weed in Florida. Fla Entomol 88:104–105

    Google Scholar 

  • Zeilinger A, Olson D, Andow D (2011) Competition between stink bug and heliothine caterpillar pests on cotton at within-plant spatial scales. Entomologia Experimentalis et Applicata 141:59–70

    Google Scholar 

  • Zimmermann HG, Granata G (2002) Insect pests and diseases. In: Nobel PS (ed) Cacti: biology and uses, vol 14. University of California Press, Berkeley: 235–254

    Google Scholar 

  • Zimmermann HG, Pérez-Sandi M (2010) La amenaza de los piojos harinosos Hypogeococus pungens e Hypogeococus festerianus (Hemiptera: Pseudococcidae) a las cactáceas mexicanas y del Caribe. Cact Suc Mex 55:4–17

    Google Scholar 

Download references

Acknowledgements

We thank the authorities of the Ejido Zequeteje, Hidalgo, and our field guide, Mr. Vicente Ángeles. Thanks also to Sonia Sánchez, Pamela López, Brandon Estrada and Arturo Cruz for their assistance in field and laboratory work and also to M.E. Sánchez Salazar and S. Sánchez Colón for translating the text into English. This study was funded by grants SIP-20195598 and SIP-20181233.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Callejas-Chavero, A., Martínez-Hernández, D., Flores-Martínez, A., Moncada-Orellana, A., Diaz-Quiñones, Y., Vargas-Mendoza, C.F. (2020). Herbivory in Cacti: Fitness Effects of Two Herbivores, One Tending Ant on Myrtillocactus geometrizans (Cactaceae). In: Núñez-Farfán, J., Valverde, P. (eds) Evolutionary Ecology of Plant-Herbivore Interaction. Springer, Cham. https://doi.org/10.1007/978-3-030-46012-9_6

Download citation

Publish with us

Policies and ethics