Skip to main content

Emerging Roles of Potassium in Plants

  • Chapter
  • First Online:
Role of Potassium in Plants

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

Abstract

Extensive studies on K implying its importance for agriculture have significantly contributed to understanding the role of K at broader level. Reports have emerged claiming its role in biotic stress tolerance. Another layer of information that needs further experimental evidences suggests a signaling role of K+, which needs to be revisited in order to qualify K+ as a second messenger. The limitation that contradicts its role as a second messenger has been discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Pizarro, J. C., Gomes-Filho, E., de Lacerda, C. F., Alencar, N. L. M., & Prisco, J. T. (2009). Salt-induced changes on H+-ATPase activity, sterol and phospholipid content and lipid peroxidation of root plasma membrane from dwarf-cashew (Anacardium occidentale L.) seedlings | SpringerLink. Plant Growth Regulation, 59, 125–135.

    Article  CAS  Google Scholar 

  • Amtmann, A., Troufflard, S., & Armengaud, P. (2008). The effect of potassium nutrition on pest and disease resistance in plants. Physiologia Plantarum, 133, 682–691.

    Article  CAS  Google Scholar 

  • Ashley, M. K., Grant, M., & Grabov, A. (2006). Plant responses to potassium deficiencies: A role for potassium transport proteins. Journal of Experimental Botany, 57, 425–436.

    Article  CAS  Google Scholar 

  • Berridge, M. J. (2006). Calcium microdomains: Organization and functions. Cell Calcium, 40(5–6), 405–412.

    Article  CAS  Google Scholar 

  • Carafoli, E., & Krebs, J. (2016). Why Calcium? How Calcium became the best communicator. The Journal of Biological Chemistry, 29, 20849–20857.

    Article  Google Scholar 

  • Chakraborty, K., Bose, J., Shabala, L., Eyles, A., & Shabala, S. (2016). Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species. Physiologia Plantarum, 158, 135–151.

    Article  CAS  Google Scholar 

  • Chen, Z., Newman, I., Zhou, M., Mendham, N., Zhang, G., & Shabala, S. (2005). Screening plants for salt tolerance by measuring K+ flux: A case study for barley. Plant, Cell & Environment, 28, 1230–1246.

    Article  CAS  Google Scholar 

  • Chen, Z., Pottosin, I. I., Cuin, T. A., Fuglsang, A. T., Tester, M., Jha, D., Zepeda-Jazo, I., Zhou, M., Palmgren, M. G., Newman, I. A., & Shabala, S. (2007). Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiology, 145, 1714–1725.

    Article  CAS  Google Scholar 

  • Demidchik, V. (2014). Mechanisms and physiological roles of K+ efflux from root cells. Journal of Plant Physiology, 171(9), 696–707.

    Google Scholar 

  • Demidchik, V., Cuin, T. A., Svistunenko, D., Smith, S. J., Miller, A. J., Shabala, S., Sokolik, A., & Yurin, V. (2010). Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: Single-channel properties, genetic basis and involvement in stress-induced cell death. Journal of Cell Science, 123, 1468–1479.

    Article  CAS  Google Scholar 

  • Holzmueller, E. J., Jose, S., & Jenkins, M. A. (2007). Influence of calcium, potassium, and magnesium on Cornus florida L. density and resistance to dogwood anthracnose | SpringerLink. Plant and Soil, 290, 189–199.

    Article  CAS  Google Scholar 

  • Jinglan, W., & Seliskar, D. M. (1998). Salinity adaptation of plasma membrane H+-ATPase in the salt marsh plant Spartina patens: ATP hydrolysis and enzyme kinetics. Journal of Experimental Botany, 49, 1005–1013.

    Article  Google Scholar 

  • Mengel, K., & Kirkby, E. A. (2001). Principles of plant nutrition. Dordrecht: Springer.

    Book  Google Scholar 

  • Nam, M. H., Jeong, S. K., Lee, Y. S., Choi, J. M., & Kim, H. G. (2006). Effects of nitrogen, phosphorus, potassium and calcium nutrition on strawberry anthracnose. Plant Pathology, 55, 246–249.

    Article  Google Scholar 

  • Neupärtl, M., Meyer, C., Woll, I., Frohns, F., Kang, M., Van Etten, J.L., Kramer, D., Hertel, B., Moroni, ., Thiel, G. (2008). Chlorella viruses evoke a rapid release of K+ from host cells during the early phase of infection. Virology, 372(2), 340–348.

    Google Scholar 

  • Newton, A. C., Bootman, M. D., & Scott, J. D. (2016). Second messengers. Cold Spring Harbor Perspectives in Biology, 8(8).

    Google Scholar 

  • Sarwar, M. H. (2012). Effects of potassium fertilization on population build up of rice stem borers (lepidopteron pests) and rice (Oryza sativa L.) yield. Journal of Cereals and Oilseeds, 3, 6–9.

    Article  CAS  Google Scholar 

  • Shabala, S. (2017). Signalling by potassium: Another second messenger to add to the list? Journal of Experimental Botany, 68, 4003–4007.

    Article  CAS  Google Scholar 

  • Shabala, S., & Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiologia Plantarum, 151, 257–279.

    Article  CAS  Google Scholar 

  • Shabala, S., Babourina, O., Rengel, Z., & Nemchinov, L. G. (2010). Non-invasive microelectrode potassium flux measurements as a potential tool for early recognition of virus-host compatibility in plants. Planta, 232, 807–815.

    Article  CAS  Google Scholar 

  • Stael, S., Wurzinger, B., Mair, A., Mehlmer, N., Vothknecht, U. C., & Teige, M. (2012). Plant organellar calcium signaling: An emerging field. Journal of Experimental Botany, 63(4), 1525–1542.

    Article  CAS  Google Scholar 

  • Wang, Y., & Wu, W. H. (2013). Potassium transport and signaling in higher plants. Annual Review of Plant Biology, 64, 451–476.

    Article  CAS  Google Scholar 

  • Williams, J., & Smith, S. G. (2001). Correcting potassium deficiency can reduce rice stem diseases. Better Crops, 85, 7–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, G.K., Mahiwal, S. (2020). Emerging Roles of Potassium in Plants. In: Role of Potassium in Plants. SpringerBriefs in Plant Science. Springer, Cham. https://doi.org/10.1007/978-3-030-45953-6_9

Download citation

Publish with us

Policies and ethics