Skip to main content

Potassium Uptake and Transport System in Plant

  • Chapter
  • First Online:
Role of Potassium in Plants

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

Abstract

Eminent requirement of K+ in each tissue of plant is fulfilled via efficient K+ uptake from the soil and ensuring K+ transport/distribution at the whole plant level. Numerous channels/transporters participate in these processes in plants. The number of K+ transport systems varies depending on the plant species. So far, 71 genes encoding K+ transport systems have been characterized in Arabidopsis thaliana. Based on their function, these transport systems have been assigned to different families. In plants, K+ channels and transporters are regulated in a proper manner at transcriptional as well as post-translational level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Principles of membrane transport. In Molecular biology of the cell (4th ed.). New York: Garland Science.

    Google Scholar 

  • Aleman, F., Nieves-Cordones, M., Martinez, V., & Rubio, F. (2011). Root K(+) acquisition in plants: The Arabidopsis thaliana model. Plant & Cell Physiology, 52, 1603–1612.

    Article  CAS  Google Scholar 

  • Ashley, M. K., Grant, M., & Grabov, A. (2006). Plant responses to potassium deficiencies: A role for potassium transport proteins. Journal of Experimental Botany, 57, 425–436.

    Article  CAS  Google Scholar 

  • Becker, D., Geiger, D., Dunkel, M., Roller, A., Bertl, A., Latz, A., Carpaneto, A., Dietrich, P., Roelfsema, M. R., Voelker, C., Schmidt, D., Mueller-Roeber, B., Czempinski, K., & Hedrich, R. (2004). AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+−dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 101, 15621–15626.

    Article  CAS  Google Scholar 

  • Behera, S., Long, Y., Schmitz-Thom, I., Wang, X. P., Zhang, C., Li, H., Steinhorst, L., Manishankar, P., Ren, X. L., Offenborn, J. N., Wu, W. H., Kudla, J., & Wang, Y. (2017). Two spatially and temporally distinct Ca(2+) signals convey Arabidopsis thaliana responses to K(+) deficiency. The New Phytologist, 213, 739–750.

    Article  CAS  Google Scholar 

  • Brauer, E. K., Ahsan, N., Dale, R., Kato, N., Coluccio, A. E., Pineros, M. A., Kochian, L. V., Thelen, J. J., & Popescu, S. C. (2016). The Raf-like kinase ILK1 and the high affinity K+ transporter HAK5 are required for innate immunity and abiotic stress response. Plant Physiology, 171, 1470–1484.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dreyer, I., Antunes, S., Hoshi, T., Müller-Röber, B., Palme, K., Pongs, O., Reintanz, B., Hedrich, R. (1997) Plant K+ channel alpha-subunits assemble indiscriminately. Biophysical Journal, 72(5), 2143–2150.

    Google Scholar 

  • Dreyer, I., & Uozumi, N. (2011). Potassium channels in plant cells. The FEBS Journal, 278, 4293–4303.

    Article  CAS  Google Scholar 

  • Dreyer, I., Plant Biophysics and Heisenberg Group of Biophysics and Molecular Plant Biology, C.d.B.y.G.d.P, Universidad Politécnica de Madrid, Spain, Uozumi, N., Department of Biomolecular Engineering, G.S.o.E, & Tohoku University, Japan. (2011). Potassium channels in plant cells. The FEBS Journal, 278, 4293–4303.

    Article  CAS  Google Scholar 

  • Dunkel, M., Latz, A., Schumacher, K., Muller, T., Becker, D., & Hedrich, R. (2008). Targeting of vacuolar membrane localized members of the TPK channel family. Molecular Plant, 1, 938–949.

    Article  CAS  Google Scholar 

  • Gajdanowicz, P., Garcia-Mata, C., Gonzalez, W., Morales-Navarro, S. E., Sharma, T., Gonzalez-Nilo, F. D., Gutowicz, J., Mueller-Roeber, B., Blatt, M. R., & Dreyer, I. (2009). Distinct roles of the last transmembrane domain in controlling Arabidopsis K+ channel activity. The New Phytologist, 182, 380–391.

    Article  CAS  Google Scholar 

  • Gierth, M., & Maser, P. (2007). Potassium transporters in plants – involvement in K+ acquisition, redistribution and homeostasis. FEBS Letters, 581, 2348–2356.

    Article  CAS  Google Scholar 

  • Gierth, M., Mäser, P., & Schroeder, J. I. (2005). The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots1[w]. Plant Physiology, 137, 1105–1114.

    Article  CAS  Google Scholar 

  • Grabov, A. (2007). Plant KT/KUP/HAK potassium transporters: Single family – Multiple functions. Annals of Botany, 99, 1035–1041.

    Article  CAS  Google Scholar 

  • Held, K., Pascaud, F., Eckert, C., Gajdanowicz, P., Hashimoto, K., Corratgé-Faillie, C., Offenborn, J. N., Lacombe, B., Dreyer, I., Thibaud, J. B., & Kudla, J. (2011). Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Research, 21, 1116–1130.

    Article  CAS  Google Scholar 

  • Jung, J. Y., Shin, R., & Schachtman, D. P. (2009). Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis[W]. Plant Cell, 21, 607–621.

    Article  CAS  Google Scholar 

  • Kato, Y., Sakaguchi, M., Mori, Y., Saito, K., Nakamura, T., Bakker, E. P., Sato, Y., Goshima, S., & Uozumi, N. (2001). Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters. Proceedings of the National Academy of Sciences of the United States of America, 98, 6488–6493.

    Article  CAS  Google Scholar 

  • Kunz, H. H., Gierth, M., Herdean, A., Satoh-Cruz, M., Kramer, D. M., Spetea, C., & Schroeder, J. I. (2014). Plastidial transporters KEA1, −2, and −3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 111, 7480–7485.

    Article  CAS  Google Scholar 

  • Lan, W. Z., Lee, S. C., Che, Y. F., Jiang, Y. Q., & Luan, S. (2011). Mechanistic analysis of AKT1 regulation by the CBL-CIPK-PP2CA interactions. Molecular Plant, 4, 527–536.

    Article  CAS  Google Scholar 

  • Lebaudy, A., Very, A. A., & Sentenac, H. (2007). K+ channel activity in plants: Genes, regulations and functions. FEBS Letters, 581, 2357–2366.

    Article  CAS  Google Scholar 

  • Lebaudy, A., Hosy, E., Simonneau, T., Sentenac, H., Thibaud, J. B., & Dreyer, I. (2008). Heteromeric K+ channels in plants. The Plant Journal, 54, 1076–1082.

    Article  CAS  Google Scholar 

  • Lee, S. C., Lan, W. Z., Kim, B. G., Li, L., Cheong, Y. H., Pandey, G. K., Lu, G., Buchanan, B. B., & Luan, S. (2007). A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proceedings of the National Academy of Sciences of the United States of America, 104, 15959–15964.

    Article  CAS  Google Scholar 

  • Lejay, L., Wirth, J., Pervent, M., Cross, J. M. F., Tillard, P., & Gojon, A. (2008). Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis1[W]. Plant Physiology, 146, 2036–2053.

    Article  CAS  Google Scholar 

  • Li, L., Kim, B. G., Cheong, Y. H., Pandey, G. K., & Luan, S. (2006). A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 103, 12625–12630.

    Article  CAS  Google Scholar 

  • Luan, S., Lan, W., & Chul Lee, S. (2009). Potassium nutrition, sodium toxicity, and calcium signaling: Connections through the CBL-CIPK network. Current Opinion in Plant Biology, 12, 339–346.

    Article  CAS  Google Scholar 

  • O’Connell, K. M. S., Rolig, A. S., Whitesell, J. D., & Tamkun, M. M. (2006). Kv2.1 potassium channels are retained within dynamic cell surface microdomains that are defined by a perimeter fence. The Journal of Neuroscience, 26, 9609–9618.

    Article  Google Scholar 

  • Pilot, G., Gaymard, F., Mouline, K., Cherel, I., & Sentenac, H. (2003a). Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Molecular Biology, 51, 773–787.

    Article  CAS  Google Scholar 

  • Pilot, G., Pratelli, R., Gaymard, F., Meyer, Y., & Sentenac, H. (2003b). Five-group distribution of the Shaker-like K+ channel family in higher plants. Journal of Molecular Evolution, 56, 418–434.

    Article  CAS  Google Scholar 

  • Poree, F., Wulfetange, K., Naso, A., Carpaneto, A., Roller, A., Natura, G., Bertl, A., Sentenac, H., Thibaud, J. B., & Dreyer, I. (2005). Plant K(in) and K(out) channels: Approaching the trait of opposite rectification by analyzing more than 250 KAT1-SKOR chimeras. Biochemical and Biophysical Research Communications, 332, 465–473.

    Article  CAS  Google Scholar 

  • Qi, Z., Hampton, C. R., Shin, R., Barkla, B. J., White, P. J., & Schachtman, D. P. (2008). The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. Journal of Experimental Botany, 59, 595–607.

    Article  CAS  Google Scholar 

  • Ragel, P., Rodenas, R., Garcia-Martin, E., Andres, Z., Villalta, I., Nieves-Cordones, M., Rivero, R. M., Martinez, V., Pardo, J. M., Quintero, F. J., & Rubio, F. (2015). The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots. Plant Physiology, 169, 2863–2873.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ragel, P., Raddatz, N., Leidi, E. O., Quintero, F. J., & Pardo, J. M. (2019). Regulation of K+ nutrition in plants. Frontiers in Plant Science, 10.

    Google Scholar 

  • Ren, X. L., Qi, G. N., Feng, H. Q., Zhao, S., Zhao, S. S., Wang, Y., & Wu, W. H. (2013). Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Arabidopsis. The Plant Journal, 74, 258–266.

    Article  CAS  Google Scholar 

  • Sharma, T., Dreyer, I., & Riedelsberger, J. (2013). The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana. Frontiers in Plant Science, 4.

    Google Scholar 

  • Shin, R., & Schachtman, D. P. (2004). Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proceedings of the National Academy of Sciences of the United States of America, 101, 8827–8832.

    Article  CAS  Google Scholar 

  • Shin, R., Berg, R. H., & Schachtman, D. P. (2005). Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant & Cell Physiology, 46, 1350–1357.

    Article  CAS  Google Scholar 

  • Very, A. A., & Sentenac, H. (2003). Molecular mechanisms and regulation of K+ transport in higher plants. Annual Review of Plant Biology, 54, 575–603.

    Article  CAS  Google Scholar 

  • Voelker, C., Schmidt, D., Mueller-Roeber, B., & Czempinski, K. (2006). Members of the Arabidopsis AtTPK/KCO family form homomeric vacuolar channels in planta. The Plant Journal, 48, 296–306.

    Article  CAS  Google Scholar 

  • Voelker, C., Gomez-Porras, J. L., Becker, D., Hamamoto, S., Uozumi, N., Gambale, F., Mueller-Roeber, B., Czempinski, K., & Dreyer, I. (2010). Roles of tandem-pore K+ channels in plants – A puzzle still to be solved. Plant Biology (Stuttgart), 12(Suppl 1), 56–63.

    Article  CAS  Google Scholar 

  • Wang, Y., Tang, R. J., Yang, X., Zheng, X., Shao, Q., Tang, Q. L., Fu, A., & Luan, S. (2019). Golgi-localized cation/proton exchangers regulate ionic homeostasis and skotomorphogenesis in Arabidopsis. Plant, Cell & Environment, 42, 673–687.

    Article  CAS  Google Scholar 

  • Xu, J., Li, H. D., Chen, L. Q., Wang, Y., Liu, L. L., He, L., & Wu, W. H. (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 125, 1347–1360.

    Article  CAS  Google Scholar 

  • Zhao, S., Zhang, M. L., Ma, T. L., & Wang, Y. (2016). Phosphorylation of ARF2 relieves its repression of transcription of the K+ transporter gene HAK5 in response to low potassium stress[OPEN]. Plant Cell, 28, 3005–3019.

    Article  CAS  Google Scholar 

  • Zheng, S., Pan, T., Fan, L., & Qiu, Q. S. (2013). A novel AtKEA gene family, homolog of bacterial K+/H+ antiporters, plays potential roles in K+ homeostasis and osmotic adjustment in Arabidopsis. PLoS One, 8, e81463.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, G.K., Mahiwal, S. (2020). Potassium Uptake and Transport System in Plant. In: Role of Potassium in Plants. SpringerBriefs in Plant Science. Springer, Cham. https://doi.org/10.1007/978-3-030-45953-6_3

Download citation

Publish with us

Policies and ethics