Skip to main content

Abstract

Mitochondria are the energy houses of cells. Cell functioning and stability are critical responsibilities of mitochondria. The other functioning of cells includes ATP production, intracellular calcium ion regulation, production of reactive oxygen species, radical scavenging property, regulation of the cell survival and death, and caspase family of protease stimulation. Mitochondrial dysfunction can be described as abnormality in functioning in addition to the production of reactive species. Mitochondrial dysfunction leads to the development of metabolic syndromes such as obesity, diabetes, and neurodegenerative disorders. Since the past, many studies have been done on morphology, physiology, and pharmacology of mitochondria involved in metabolic diseases. By adopting interventions that include lifestyle intervention, pharmacologic approaches, and the targeted-mitochondrial methodologies, the progression of metabolic disease decelerates. These approaches are involved in maintaining mitochondrial number and morphology, eliminate dysfunctional mitochondria, and reduce oxidative stress in metabolic disorders. The aim of the study is to illuminate the role of mitochondria in the metabolic disorder and sum up the process of the targeted mitochondrial molecule to treat metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008;102:401–14.

    CAS  Google Scholar 

  2. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford: Oxford University Press; 2007.

    Google Scholar 

  3. Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV. Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int. 2014;2014:238463.

    Google Scholar 

  4. Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006;141:312–22.

    CAS  Google Scholar 

  5. Dhalla NS, Temsah RM, Netticadan T. Role of oxidative stress in cardiovascular diseases. J Hypertens. 2000;18:655–73.

    CAS  Google Scholar 

  6. Schwarz PE, Reimann M, Li J, Bergmann A, Licinio J, Wong ML, Bornstein SR. The metabolic syndrome - a global challenge for prevention. Horm Metab Res. 2007;39:777–80.

    CAS  Google Scholar 

  7. Pollex RL, Hegele RA. Genetic determinants of the metabolic syndrome. Nat Clin Pract Cardiovasc Med. 2006;3:482–9.

    CAS  Google Scholar 

  8. Reddy PH, Reddy TP, Manczak M, Calkins MJ, Shirendeb U, Mao P. Dynaminrelated protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res Rev. 2011;67:103–18.

    CAS  Google Scholar 

  9. Chen XJ, Butow RA. The organization and inheritance of the mitochondrial genome. Nat Rev Genet. 2005;6:815–25.

    CAS  Google Scholar 

  10. Sherratt HS. Mitochondria: structure and function. Rev Neurol. 1991;147(6–7):417–30.

    CAS  Google Scholar 

  11. Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochem Biokhimiia. 2005;70:200–14.

    CAS  Google Scholar 

  12. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.

    CAS  Google Scholar 

  13. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.

    CAS  Google Scholar 

  14. Canto C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol. 2009;20:98–105.

    CAS  Google Scholar 

  15. Reddy PH. Mitochondrial oxidative damage in aging and Alzheimer’s disease: implications for mitochondrially targeted antioxidant therapeutics. J Biomed Biotechnol. 2006;2006:31372.

    Google Scholar 

  16. Ventura-Clapier R, Garnier A, Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res. 2008;79:208–17.

    CAS  Google Scholar 

  17. Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci U S A. 1994;91:1309–13.

    CAS  Google Scholar 

  18. Reznick RM, Shulman GI. The role of AMP-activated protein kinase in mitochondrial biogenesis. J Physiol. 2006;574:33–9.

    CAS  Google Scholar 

  19. Hales KG. The machinery of mitochondrial fusion, division, and distribution, and emerging connections to apoptosis. Mitochondrion. 2004;4:285–308.

    CAS  Google Scholar 

  20. Shaw JM, Nunnari J. Mitochondrial dynamics and division in budding yeast. Trends Cell Biol. 2002;12:178–84.

    CAS  Google Scholar 

  21. Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 2012;393:547–64.

    CAS  Google Scholar 

  22. Wai T, Langer T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 2016;27:105–17.

    CAS  Google Scholar 

  23. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A. 2004;101:15927–32.

    CAS  Google Scholar 

  24. Twig G, Hyde B, Shirihai OS. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta. 2008;1777:1092–7.

    CAS  Google Scholar 

  25. Reddy PH, Tripathi R, Troung Q, Tirumala K, Reddy TP, Anekonda V, Shirendeb UP, Calkins MJ, Reddy AP, Mao P, Manczak M. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease: implications to mitochondria-targeted antioxidant therapeutics. Biochim Biophys Acta. 2012;1822:639–49.

    CAS  Google Scholar 

  26. Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 2007;83:84–92.

    CAS  Google Scholar 

  27. Harper ME, Bevilacqua L, Hagopian K, Weindruch R, Ramsey JJ. Ageing, oxidative stress, and mitochondrial uncoupling. Acta Physiol Scand. 2004;182:321–31.

    CAS  Google Scholar 

  28. Gastaldi G, Giacobino JP, Ruiz J. Metabolic syndrome, a mitochondrial disease? Rev Med. 2008;4:1387–8.

    CAS  Google Scholar 

  29. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic Biol Med. 2009;47:333–43.

    CAS  Google Scholar 

  30. Choksi KB, Boylston WH, Rabek JP, Widger WR, Papaconstantinou J. Oxidatively damaged proteins of heart mitochondrial electron transport complexes. Biochim Biophys Acta. 2004;1688:95–101.

    CAS  Google Scholar 

  31. Woo C-Y, Jang JE, Lee SE, Koh EH, Lee K-U. Mitochondrial dysfunction in adipocytes as a primary cause of adipose tissue inflammation. Diabetes Metab J. 2019;43(3):247–56.

    Google Scholar 

  32. Zhang E, Al-Amily IM, Mohammed S, Luan C, Asplund O, Ahmed M, Ye Y, Ben-Hail D, Soni A, Vishnu N, Bompada P, De Marinis Y, Groop L, Shoshan-Barmatz V, Renström E, Wollheim CB, Salehi A. Preserving insulin secretion in diabetes by inhibiting VDAC1 overexpression and surface translocation in β cells. Cell Metab. 2019;29:64–77. https://doi.org/10.1016/j.cmet.2018.09.008.

    Article  CAS  Google Scholar 

  33. Sparks LM, Xie H, Koza RA, Mynatt R, Hulver MW, Bray GA, Smith SR. A highfat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes. 2005;54:1926–33.

    CAS  Google Scholar 

  34. Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure. Circulation. 2007;116:434–48.

    CAS  Google Scholar 

  35. Ajayi EIO, Molehin OR, Oloyede OI, Kumar V, Amara VR, Kaur J, Karpe P, Tikoo K. Liver mitochondrial membrane permeability modulation in insulin-resistant, uninephrectomised male rats by Clerodendrum volubile P. Beauv and Manihot esculenta Crantz. Clin Phytosci. 2019;5:31. https://doi.org/10.1186/s40816-019-0124-0.

    Article  CAS  Google Scholar 

  36. Sergi D, Naumovski N, Heilbronn LK, Abeywardena M, O’Callaghan N, Lionetti L, Luscombe-Marsh N. Mitochondrial (Dys)function and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Front Physiol. 2019;10:532. https://doi.org/10.3389/fphys.2019.00532.

    Article  Google Scholar 

  37. Sung HK, Song E, Jahng JWS, Pantopoulos K, Sweeney G. Iron induces insulin resistance in cardiomyocytes via regulation of oxidative stress. Sci Rep. 2019;9:4668. https://doi.org/10.1038/s41598-019-41111-6.

    Article  CAS  Google Scholar 

  38. Irving BA, Nair KS. Aging and diabetes: mitochondrial dysfunction. Curr Diab Rep. 2007;7:249–51.

    CAS  Google Scholar 

  39. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003;100:8466–71.

    CAS  Google Scholar 

  40. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet. 1992;2:324–9.

    CAS  Google Scholar 

  41. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115–24.

    CAS  Google Scholar 

  42. Brown GC, Borutaite V. There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion. 2012;12:1–4.

    CAS  Google Scholar 

  43. Rigotto G, Basso E. Mitochondrial dysfunctions: a thread sewing together alzheimer’s disease, diabetes, and obesity. Oxid. Med. Cell. Longev. 2019;2019:7210892. https://doi.org/10.1155/2019/7210892.

    Article  CAS  Google Scholar 

  44. Wardelmann K, Blümel S, Rath M, Alfine E, Chudoba C, Schell M, Cai W, Hauffe R, Warnke K, Flore T, Ritter K, Weiß J, Kahn CR, Kleinridders A. Insulin action in the brain regulates mitochondrial stress responses and reduces diet-induced weight gain. Molecular Metabolism. 2019;21:68–81.

    CAS  Google Scholar 

  45. Zhang J, Bao Y, Zheng L, Zhou X. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod Biol Endocrinol. 2019;17:67. https://doi.org/10.1186/s12958-019-0509-4.

    Article  CAS  Google Scholar 

  46. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev. 2007;54:34–66.

    CAS  Google Scholar 

  47. Dallner G, Sindelar PJ. Regulation of ubiquinone metabolism. Free Radic Biol Med. 2000;29(3–4):285–94.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murtaza, G., Tariq, M., Shawahna, R. (2021). Mitochondrial Dysfunction in Metabolic Disorders. In: Akash, M.S.H., Rehman, K., Hashmi, M.Z. (eds) Endocrine Disrupting Chemicals-induced Metabolic Disorders and Treatment Strategies. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-45923-9_3

Download citation

Publish with us

Policies and ethics