Skip to main content

Plant Nutrients for Crop Growth, Development and Stress Tolerance

  • Chapter
  • First Online:
Sustainable Agriculture in the Era of Climate Change

Abstract

Abiotic stress is a problem of grave concern for the growth and productivity of plants in modern times. Abiotic stresses, such as drought, salinity, extreme temperatures and extreme radiation, are responsible for huge crop losses globally. Plants face a combination of different abiotic stresses under field conditions that are lethal to plant growth and production. Exposure of plants to biotic and abiotic stress induces a disruption in plant metabolism implying physiological costs and thus leads to a reduction in fitness and, ultimately, in productivity. Abiotic stress is one of the most important features of and has a huge impact on growth, and consequently, it is responsible for severe losses in the field. The resulting growth reductions can reach more than 50% in most plant species. One of the physiological processes greatly affected by these stresses in plants is photosynthesis. The decline in photosynthetic capacity of plants due to these stresses is directly associated with reduction in yield. Application of nutrients to overcome nutrient stress positively affects plant growth, yield and quality. Transition/heavy metals such as zinc, manganese and copper are essential minerals for healthy plant growth. Micronutrients are essential for balanced nutrition in plants under abiotic stress conditions. The present chapter describes the role of macro- and micronutrients under stress conditions. In this chapter, we have discussed a variety of macro- and micronutrients which are beneficial for plant physiological development under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaspour N, Kaiser B, Tyerman S (2013) Chloride transport and compartmentation within main and lateral roots of two grapevine rootstocks differing in salt tolerance. Trees 27(5):1317ā€“1325

    CASĀ  Google ScholarĀ 

  • Ahmed, M, Asif M, Goyal A (2012) Silicon the non-essential beneficial plant nutrient to enhanced drought tolerance in wheat. Chapter 2 Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia

    Google ScholarĀ 

  • Ahmed M, Hassen F, Qadeer U, Aslam MA (2011a) Silicon application and drought tolerance mechanism of sorghum. Afr J Agric Res 6(3):594ā€“607

    Google ScholarĀ 

  • Ahmed M, Fayyaz ul H, Khurshid Y (2011b) Does silicon and irrigation have impact on drought tolerance mechanism of sorghum? Agric Water Manag 98(12):1808ā€“1812. https://doi.org/10.1016/j.agwat.2011.07.003

  • Ahmed M, Kamran A, Asif M, Qadeer U, Ahmed ZI, Goyal A (2013) Silicon priming: a potential source to impart abiotic stress tolerance in wheat: A review. Australian Journal of Crop Science 7(4):4

    Google ScholarĀ 

  • Ahmed M, Asif M, Hassan F-U (2014a) Augmenting drought tolerance in sorghum by silicon nutrition. Acta Physiol Plant 36(2):473ā€“483. https://doi.org/10.1007/s11738-013-1427-2

  • Ahmed M, Fayyaz ul H, Asif M (2014b) Amelioration of Drought in Sorghum (Sorghum bicolor L.) by Silicon. Communications in Soil Science and Plant Analysis 45 (4):470ā€“486. https://doi.org/10.1080/00103624.2013.863907

  • Ahmed M, Stockle CO (2016) Quantification of climate variability, adaptation and mitigation for agricultural sustainability: Springer Nature Singapore Pvt. Ltd., pp. 437. https://doi.org/10.1007/978-3-319-32059-5. https://www.springer.com/gp/book/9783319320571

  • Ahmad S, Hasanuzzaman M (2020) Cotton Production and Uses. Springer Nature Singapore Pvt. Ltd., pp. 641. https://doi.org/10.1007/978-981-15-1472-2.) (https://link.springer.com/book/10.1007/978-981-15-1472-2)

  • Ahmed M (2020) Systems Modeling: Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-15-4728-7_6

  • Ahmad R, Waraich EA, Nawaz F, Ashraf MY, Khalid M (2016) Selenium (Se) improves drought tolerance in crop plantsĀ ā€“ a myth or fact? J Sci Food Agric 96(2):372ā€“380

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Alpaslan M, Gunes A (2001) Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants. Plant Soil 236(1):123ā€“128

    CASĀ  Google ScholarĀ 

  • Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581(12):2247ā€“2254

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Asharani PV, Wu YL, Gong ZY, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:25

    Google ScholarĀ 

  • Ashraf M, Akram NA, Al-Qurainy F, Foolad MR (2011) Chapter five - drought tolerance: roles of organic osmolytes, growth regulators, mineral nutrients. In: Donald LS (ed) Advances in agronomy, vol 111. Academic, pp 249ā€“296

    Google ScholarĀ 

  • Awomi TA, Singh AK, Kumar M, Bordoloi LJ (2012) Effect of phosphorus, molybdenum and cobalt nutrition on yield and quality of mungbean (Vigna radiata L.) in acidic soil of Northeast India. Indian J Hill Farm 25(2):22ā€“26

    Google ScholarĀ 

  • Bahrami-Rad S, Hajiboland R (2017) Effect of potassium application in drought-stressed tobacco (Nicotiana rustica L.) plants: comparison of root with foliar application. Ann Agric Sci 62(2):121ā€“130

    Google ScholarĀ 

  • Barałkiewicz D, Siepak J (1999) Chromium, nickel and cobalt in environmental samples and existing legal norms. Polish J Environ Stud 8(4):201ā€“208

    Google ScholarĀ 

  • Bell RW, Rerkasem B (eds) (2012) Boron in soils and plants: proceedings of the international symposium on boron in soils and plants held at Chiang Mai, Thailand, vol. 76, 7ā€“11 September, 1997. Springer, New York

    Google ScholarĀ 

  • Besada C, Gil R, Bonet L, QuiƱones A, Intrigliolo D, Salvador A (2016) Chloride stress triggers maturation and negatively affects the postharvest quality of persimmon fruit. Involvement of calyx ethylene production. Plant Physiol Biochem 100:105ā€“112

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158ā€“1203

    Google ScholarĀ 

  • Bulantseva EA, Glinka EM, Protsenko MA, Salā€™kova EG (2001) A protein inhibitor of poly galacturonase in apple fruits treated with amino ethoxy vinyl glycine and cobalt chloride. Prikl Biokhim Mikrobiol 37:100ā€“104

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Cakmak I, Kutman UB (2018) Agronomic biofortification of cereals with zinc: a review. Eur J Soil Sci 69(1):172ā€“180

    Google ScholarĀ 

  • Cameron KC, Di HJ, Moir JL (2013) Nitrogen losses from the soil/plant system: a review. Ann Appl Biol 162:145ā€“173

    CASĀ  Google ScholarĀ 

  • Chu J, Yao X, Zhang Z (2010) Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol Trace Elem Res 136(3):355ā€“363

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Croft H, Chen JM (2018) 3.09 ā€“ Leaf Pigment Content. In Comprehensive Remote Sensing, ed. S. Liang, 117ā€“142. Oxford: Elsevier

    Google ScholarĀ 

  • Daniel-Vedele F, Filleur S, Caboche M (1998) Nitrate transport: a key step in nitrate assimilation. Curr Opin Plant Biol 1:235ā€“239

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Daszkowska-Golec A, Szarejko I (2013) Open or close the gate - stomata action under the control of phytohormones in drought stress conditions. Front Plant Sci 4:138

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Daur I, Alghabari F, Alzamanan S, Rizwan S, Ahmad M, Waqas M, Shafqat W (2019) Heat stress and plant development: role of sulphur metabolites and management strategies AU - Ihsan, Muhammad Zahid. Acta Agric Scand Sect B Soil Plant Sci:1ā€“11

    Google ScholarĀ 

  • de Macedo FG, Bresolin JD, Santos EF, Furlan F, Lopes da Silva WT, Polacco JC, Lavres J (2016) Nickel availability in soil as influenced by liming and its role in soybean nitrogen metabolism. Front Plant Sci 7:1358

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ding L, Lu Z, Gao L, Guo S, Shen Q (2018) Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress? Front Plant Sci 9:1143

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Djanaguiraman M, Prasad PV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48(12):999ā€“1007

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Egilla JN, Davies FT, Boutton TW (2005) Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica 43(1):135ā€“140

    CASĀ  Google ScholarĀ 

  • Elanz E, Mohsen R, Ahmed B (2011) Influence of salt stress on cations concentration quality and quantity of sunflower cultivars. J Food Agric Environ 2:469ā€“476

    Google ScholarĀ 

  • Epstein I, Bloom EJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer, Sunderland

    Google ScholarĀ 

  • Etesami H, Jeong BR (2018) Silicon (Si): review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol Environ Saf 147:881ā€“896

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Fabiano C, Tezotto T, Favarin JL, Polacco JC, Mazzafera P (2015) Essentiality of nickel in plants: a role in plant stresses. Front Plant Sci 6:754

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S (2009) Plant drought stress: effects, mechanisms and management sustainable agriculture. Springer, Berlin, pp 153ā€“188

    Google ScholarĀ 

  • Franco-Navarro JD, Rosales MA, Cubero-Font P, Colmenero-Flores JM, BrumĆ³s J, TalĆ³n M (2015) Chloride regulates leaf cell size and water relations in tobacco plants. J Exp Bot 67(3):873ā€“891

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gad N (2006) Increasing the efficiency of nitrogen fertilization through cobalt application to pea plant. Res J Agric Biol Sci 2:433ā€“442

    Google ScholarĀ 

  • Gad N (2012) Role and importance of cobalt nutrition on groundnut (Arachis hypogaea) production. World Appl Sci J 20:359ā€“367

    CASĀ  Google ScholarĀ 

  • Gad N, Kandil H (2008) Response of sweet potato (Ipomoea batatas L.) plants to different levels of cobalt. Aust J Basic Appl Sci 2:945ā€“955

    Google ScholarĀ 

  • George H (2011) Iron (Fe) nutrition of plants. http://edis.ifas.ufl.edu

  • Gheeth RHM, Moustafa YMM, Abdel-Hakeem WM (2013) Enhancing growth and increasing yield of peas (Pissum sativum L.) by application of ascorbic acid and cobalt chloride. J Nov Appl Sci 2:106ā€“115

    Google ScholarĀ 

  • Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254ā€“261

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169(2):313ā€“321

    CASĀ  Google ScholarĀ 

  • Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut 159:1551ā€“1559

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Guntzer F, Keller C, Meunier JD (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201ā€“213

    Google ScholarĀ 

  • Hasanuzzaman M, Fujita M (2011a) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143:1758ā€“1776

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hasanuzzaman M, Fujita M (2011b) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143:1758ā€“1776

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hasanuzzaman M, Hossain MA, Fujita M (2010) Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance. J Plant Sci 5(4):354ā€“375

    CASĀ  Google ScholarĀ 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143(3):1704ā€“1721

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hasanuzzaman M, Hossain MA, Fujita M (2012a) Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating the antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 149(2):248ā€“261

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hasanuzzaman M, Hossain MA, Teixeira da Silva JA, Fujita M (2012b) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateswarlu B, Shanker AK, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, New York, pp 261ā€“315

    Google ScholarĀ 

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2014a) Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res 161:297ā€“307

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hasanuzzaman M, Nahar K, Fujita M (2014b) Silicon and selenium: two vital trace elements in conferring abiotic stress tolerance to plants. In: Parvaiz A, Rasool SL (eds) Emerging technologies and management of crop stress tolerance vol. 1ā€“biological techniques. Academic/Elsevier, New York, pp 375ā€“420

    Google ScholarĀ 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Front Plant Sci 8:ā€“1061

    Google ScholarĀ 

  • Hasanuzzaman M, Fujita M, Nahar K, Hawrylak-Nowak B (2018a) Plant nutrients and abiotic stress tolerance. Springer, Singapore, p 590

    Google ScholarĀ 

  • Hasanuzzaman M, Nahar K, Anee TI, Khan MIR, Fujita M (2018b) Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L. S Afr J Bot 115:50ā€“57

    CASĀ  Google ScholarĀ 

  • Hasanuzzaman M, Nahar K, Rohman MM, Anee TI, Huang Y, Fujita M (2018c) Exogenous silicon protects Brassica napus plants from salinity-induced oxidative stress through the modulation of AsA-GSH pathway, thiol-dependent antioxidant enzymes and glyoxalase systems. Gesunde Pflanzen 70:185ā€“194

    CASĀ  Google ScholarĀ 

  • Hasanuzzaman M, Shabala S, Fujita M (2019a) Halophytes and climate change: adaptive mechanisms and potential uses. CABI, Wallingford, p xi

    Google ScholarĀ 

  • Hasanuzzaman M, Alam MM, Nahar K, Mohsin SM, Bhuyan MHMB, Parvin K, Hawrylak-Nowak B, Fujita M (2019b) Silicon-induced antioxidant defense and methylglyoxal detoxification works coordinately in alleviating nickel toxicity in Oryza sativa L. Ecotoxicology 28:261ā€“276

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hasegawa K, Kimura Y, Ono TA (2002) Chloride cofactor in the photosynthetic oxygen-evolving complex studied by fourier transform infrared spectroscopy. Biochemistry 41(46):13839ā€“13850

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hawrylak-Nowak B, Dreslerb S, Rubinowskaa K, Matraszek-Gawrona R, Wocha W, Hasanuzzaman M (2018a) Selenium biofortification enhances the growth and alters the physiological response of lambā€™s lettuce grown under high temperature stress. Plant Physiol Biochem 127:446ā€“456

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Hawrylak-Nowak B, Hasanuzzaman M, Matraszek-Gawron R (2018b) Mechanisms of selenium-induced enhancement of abiotic stress tolerance in plants. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B (eds) Plant nutrients and abiotic stress tolerance. Springer, Singapore

    Google ScholarĀ 

  • Heinen M, Dimkpa CO, Bindraban PS (2017) Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency AUĀ ā€“ Rietra, RenĆ© P. J. J. Commun Soil Sci Plant Anal 48(16):1895ā€“1920

    Google ScholarĀ 

  • Hellemans T, Landschoot S, Dewitte K, Van Bockstaele F, Vermeir P, Eeckhout M, Haesaert G (2018) Impact of crop husbandry practices and environmental conditions on wheat composition and quality: a review. J Agricd Food Chem 66:2491ā€“2509

    CASĀ  Google ScholarĀ 

  • HernĆ”ndez G, RamĆ­rez M, ValdĆ©s-LĆ³pez O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F, Wu HC, Lara M, Town CD, Kopka J, Udvardi MK, Vance CP (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144:752ā€“767

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hillel D (2008) Soil fertility and plant nutrition. In: Hillel D (ed) Soil in the environment. Academic, San Diego, pp 151ā€“162

    Google ScholarĀ 

  • Hussain MB, Ali S, Azam A, Hina S, Farooq MA, Ali B et al (2013) Morphological, physiological and biochemical responses of plants to nickel stress: a review. Afr J Agric Res 8:1596ā€“1602

    Google ScholarĀ 

  • Hussain J, Husain I, Arif M, Gupta N (2017) Studies on heavy metal contamination in Godavari river basin. Appl Water Sci 7(8):4539ā€“4548

    CASĀ  Google ScholarĀ 

  • Jarosick J, Vara PZ, Koneeny J, Obdrzalek M (1988) Dynamics of cobalt 60 uptake by roots of pea plants. Sci Total Environ 71:225ā€“229

    Google ScholarĀ 

  • Jayakumar K, Jaleel CA (2009) Uptake and accumulation of cobalt in plants: a study based on exogenous cobalt in soybean. Bot Res Int 2:310ā€“314

    CASĀ  Google ScholarĀ 

  • Jiang H, Li M, Chang F, Li W, Yin L (2012) Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Toxicol Chem 31:1880ā€“1996

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Kaur N, Siddique KHM, Nayyar H (2016) Beneficial elements for agricultural crops and their functional relevance in defence against stresses AU - Kaur, Simranjeet. Arch Agron Soil Sci 62(7):905ā€“920

    Google ScholarĀ 

  • Kumar S, Trivedi PK (2016) Heavy metal stress signaling in plants, in Plant Metal Interaction- Emerging Remediation Techniques, ed. P. Ahmad (Amsterdan: Elsevier), 585ā€“603. https://doi.org/10.1016/B978-0-12-803158-2.00025-4

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243ā€“5246

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu CH, Chao YY, Kao CH (2013) Effect of potassium deficiency on antioxidant status and cadmium toxicity in rice seedlings. Bot Stud 54(1):2

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lu WW, Zhang HL, Shi WM (2013) Dissimilatory nitrate reduction to ammonium in an anaerobic agricultural soil as affected by glucose and free sulfide. Eur J Soil Biol 58:98ā€“104

    CASĀ  Google ScholarĀ 

  • Ma JF, Miyake Y, Takahashi E (2001) Chapter 2 Silicon as a beneficial element for crop plants. Stud Plant Sci 8:17ā€“39

    CASĀ  Google ScholarĀ 

  • Maathuis F (2009) Physiological functions of mineral nutrients. Curr Opin Plant Biol 12:250ā€“258

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Mahmood T, Qureshi RH, Aslam M, Qadir M, Ashraf M (1990) Effect of salinity on germination, growth and chemical composition of some members of Gramineae, in 3rd National Congress of Soil Science, March 20ā€“22 (Lahore)

    Google ScholarĀ 

  • Marschner H, Rƶmheld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165:261ā€“274

    CASĀ  Google ScholarĀ 

  • Miao AJ, Schwehr KA, Xu C, Zhang SJ, Luo ZP et al (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034ā€“3041

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Mitra GN (2015) Cobalt (Co), Selenium (Se), Vanadium (V), Cadmium (Cd), Lead (Pb) and Titanium (Ti). In: Garrity G et al (eds) Regulation of nutrient uptake by plants. Springer, New Delhi, pp 189ā€“195

    Google ScholarĀ 

  • Miwa K, Fujiwara T (2010) Boron transport in plants: co-ordinated regulation of transporters. Ann Bot 105(7):1103ā€“1108

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mohamed AKSH, Qayyum MF, Shahzad AN, Gul M, Wakeel A (2015) Interactive effect of boron and salinity on growth, physiological and biochemical attributes of wheat (Triticum aestivum). Int J Agric Biol 18:238ā€“244

    Google ScholarĀ 

  • Mohammadkhani N, Abbaspour N (2018) Absorption kinetics and efflux of chloride and sodium in the roots of four grape genotypes (Vitis L.) differing in salt tolerance. Iran J Sci Technol Trans A Sci 42(4):1779ā€“1793

    Google ScholarĀ 

  • Naim MA, Matin MA, Anee TI, Hasanuzzaman M, Chowdhury IF, Razafindrabe BH, Hasanuzzaman M (2017) Exogenous selenium improves growth, water balance and chlorophyll content in indica and japonica rice exposed to salinity. Transylv Rev XXV(16):4047ā€“4057

    Google ScholarĀ 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R et al (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959ā€“8964

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Nazar R, Iqbal N, Masood A, Syeed S, Khan NA (2011a) Understanding the significance of sulfur in improving salinity tolerance in plants. Environ Exp Bot 70(2ā€“3):80ā€“87

    CASĀ  Google ScholarĀ 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011b) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168(8):807ā€“815

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Nikolic M, Rƶmheld V (1999) Mechanism of Fe uptake by the leaf symplast: is Fe inactivation in leaf a cause of Fe deficiency chlorosis? Plant Soil 215(2):229ā€“237

    CASĀ  Google ScholarĀ 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31ā€“43

    Google ScholarĀ 

  • Oliveira Neto W, Muniz AS, Silva MAG, Castro C, Borkert CM (2009) Boron extraction and vertical mobility in ParanĆ” State Oxisol, Brazil. Rev Bras Cienc Solo 33:1259ā€“1267

    Google ScholarĀ 

  • Palit S, Sharma A, Talukder G (1994) Effect of cobalt on plants. Bot Rev 60:149ā€“181

    Google ScholarĀ 

  • Patade VY, Bhargava S, Suprasanna P (2009) Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agric Ecosyst Environ 134(1ā€“2):24ā€“28

    CASĀ  Google ScholarĀ 

  • Peltzer DA, Wardle DA, Allison VJ, Baisden WT, Bardgett RD, Chadwick OA, Condron LM, Parfitt RL, Porder S, Richardson SJ, Turner BL, Vitousek PM, Walker J, Walker LR (2010) Understanding ecosystem retrogression. Ecol Monogr 80:509ā€“529

    Google ScholarĀ 

  • Pourgholam M, Nemati N, Oveysi M (2013) Effect of zinc and iron under the influence of drought on yield and yield components of rapeseed (Brassica napus). Ann Biol Res 4:186ā€“189

    CASĀ  Google ScholarĀ 

  • Qiu Z, Guo J, Zhu A, Zhang L, Zhang M (2014) Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Saf 104:202ā€“208

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Rahman A, Nahar K, Hasanuzzaman M, Fujita M (2016) Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00609

  • Rashid A, Rafique E (2017) Boron deficiency diagnosis and management in field crops in calcareous soils of Pakistan: a mini review. Bor Dergisi 2(3):142ā€“152

    Google ScholarĀ 

  • Rashid A, Rafique E, Ryan J (2002) Establishment and management of boron deficiency in field crops in Pakistan. In: Goldbach H, Brown PH, Rerkasem B, Thellier M, Wimmer MA, Bell RW (eds) Boron in plant and animal nutrition. Springer, Boston, pp 339ā€“348

    Google ScholarĀ 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10(10):503ā€“509

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Raven JA (2016) Chloride: essential micronutrient and multifunctional beneficial ion. J Exp Bot 68(3):359ā€“367

    Google ScholarĀ 

  • Ray JG, George KJ (2010) Calcium accumulation in grasses in relation to their root cation exchange capacity. J Agron 9:70ā€“74

    CASĀ  Google ScholarĀ 

  • Raza MAS, Saleem MF, Shah GM, Jamil M, Khan IH (2013) Potassium applied under drought improves physiological and nutrient uptake performances of wheat (Triticum aestivum L.). J Soil Sci Plant Nutr 13(1):175ā€“185

    Google ScholarĀ 

  • Rotaru V (2011) The effect of phosphorus and iron on plant growth and nutrient status of two soybean (Glycine max L.) cultivars under suboptimal water regime of soil. Lucrări Stiintifice Suplimentseria Agronomie 54:11ā€“16

    Google ScholarĀ 

  • Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agric Sci 3:1ā€“24

    Google ScholarĀ 

  • Roychowdhury R, Khan MH, Choudhury S (2018) Arsenic in rice: an overview on stress implications, tolerance and mitigation strategies. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Plants under metal and metalloid stress. Springer, Singapore, pp 401ā€“415

    Google ScholarĀ 

  • Roychowdhury R, Khan MH, Choudhury S (2019) Physiological and molecular responses for metalloid stress in rice - a comprehensive overview. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas J (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publishing/Elsevier, pp 341ā€“369

    Google ScholarĀ 

  • Ryan BM, Kirby JK, Degryse F, Harris H, McLaughlin MJ, Scheiderich K (2013) Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms. New Phytol 199:367ā€“378

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85ā€“91

    CASĀ  Google ScholarĀ 

  • Schulz P, Herde M, Romeis T (2013) Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol 163(2):523ā€“530

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Shekari L, Kamelmanesh MM, Mozafariyan M, Hasanuzzaman M, Sadeghi F (2017) Role of selenium in mitigation of cadmium toxicity in pepper grown in hydroponic condition. J Plant Nutr 40(6):761ā€“772

    CASĀ  Google ScholarĀ 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248(3):447ā€“455

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Soares CRFS, Siqueira JO, Carvalho JGD, Guilherme LRG (2007) Phosphate nutrition and arbuscular mycorrhiza on amelioration of cadmium toxicity in Trema [Trema micrantha (L.) Blum.]. Revista Ć”rvore 31(5):783ā€“792

    CASĀ  Google ScholarĀ 

  • Sommer SG, Schjoerring JK, Denmead OT (2004) Ammonia emission from mineral fertilizers and fertilized crops. Adv Agron 82:558ā€“622

    Google ScholarĀ 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473ā€“9479

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Sultana N, Ikeda T, Kashem MA (2001) Effect of foliar spray of nutrient solutions on photosynthesis, dry matter accumulation and yield in seawater-stressed rice. Environ Exp Bot 46:129ā€“140

    CASĀ  Google ScholarĀ 

  • Suzuki N (2005) Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings. Plant Biotechnol 22(1):19ā€“25

    CASĀ  Google ScholarĀ 

  • Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Tian ZD, Zhang Y, Liu J, Xie CH (2010) Novel potato C2H2-type zinc finger protein gene, StZFP1, which responds to biotic and abiotic stress, plays a role in salt tolerance. Plant Biol 12(5):689ā€“697

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Tripathi DK, Singh VP, Gangwar S, Prasad SM, Maurya JN, Chauhan DK (2014) Role of silicon in enrichment of plant nutrients and protection from biotic and abiotic stresses. In: Improvement of crops in the era of climatic changes. Springer, New York, pp 39ā€“56

    Google ScholarĀ 

  • Tripathi DK, Tripathi A, Shweta SS, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Dubey NK, Lee Y, Chauhan DK (2017) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:7

    Google ScholarĀ 

  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290ā€“2300

    CASĀ  PubMedĀ  Google ScholarĀ 

  • van de Wiel CCM, van der Linden CG, Scholten OE (2016) Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica 207(1):1ā€“22

    Google ScholarĀ 

  • van der Zande M, Peters RJB, Peijnenburg AA, Bouwmeester H (2011) Biodistribution and toxicity of silver nanoparticles in rats after subchronic oral administration. Toxicol Lett 205:S289ā€“S289

    Google ScholarĀ 

  • Wan J, Zhang M, Adhikari B (2018) Advances in selenium-enriched foods: from the farm to the fork. Trend Food Sci Technol 76:1ā€“5

    CASĀ  Google ScholarĀ 

  • Wang CQ, Song H (2009) Calcium protects Trifolium repens L. seedlings against cadmium stress. Plant Cell Rep 28(9):1341ā€“1349

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wang YI, Wu WH (2010) Plant sensing and signaling in response to K+-deficiency. Mol Plant 3(2):280ā€“287

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14(4):7370ā€“7390

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wegner LH (2013) Root pressure and beyond: energetically uphill water transport into xylem vessels? J Exp Bot 65(2):381ā€“393

    PubMedĀ  Google ScholarĀ 

  • Wei J, Li C, Li Y, Jiang G, Cheng G, Zheng Y (2013) Effects of external potassium (K) supply on drought tolerances of two contrasting winter wheat cultivars. PLoS One 8(7):e69737

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yao X, Chu J, Ba C (2010a) Responses of wheat roots to exogenous selenium supply under enhanced ultraviolet-B. Biol Trace Elem Res 137(2):244ā€“252

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Yao X, Chu J, Ba C (2010b) Antioxidant responses of wheat seedlings to exogenous selenium supply under enhanced ultraviolet-B. Biol Trace Elem Res 136(1):96ā€“105

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Yin LY, Cheng YW, Espinasse B, Colman BP, Auffan M et al (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360ā€“2367

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Yin L, Wang S, Tanaka K, Fujihara S, Itai A, Den X et al (2016) Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant Cell Environ 39:245ā€“258

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17(1):145ā€“156

    CASĀ  Google ScholarĀ 

  • Zhu H, Shipp E, Sanchez RJ, Liba A, Stine JE, Hart PJ, Gralla EB, Nersissian AM, Valentine JS (2000) Cobalt (2) binding to tomato copper chaperone for superoxide dismutase: implications for the metal ion transfer mechanism. Biochemistry 39:5413ā€“5542

    CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhtar Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, M., Hasanuzzaman, M., Raza, M.A., Malik, A., Ahmad, S. (2020). Plant Nutrients for Crop Growth, Development and Stress Tolerance. In: Roychowdhury, R., Choudhury, S., Hasanuzzaman, M., Srivastava, S. (eds) Sustainable Agriculture in the Era of Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-45669-6_3

Download citation

Publish with us

Policies and ethics