Skip to main content

Investigation of Schizophrenia with Human Induced Pluripotent Stem Cells

  • Chapter
  • First Online:
Neurodevelopmental Disorders

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 25))

Abstract

Schizophrenia is a chronic and severe neuropsychiatric condition manifested by cognitive, emotional, affective, perceptual, and behavioral abnormalities. Despite decades of research, the biological substrates driving the signs and symptoms of the disorder remain elusive, thus hampering progress in the development of treatments aimed at disease etiologies. The recent emergence of human induced pluripotent stem cell (hiPSC)-based models has provided the field with a highly innovative approach to generate, study, and manipulate living neural tissue derived from patients, making possible the exploration of fundamental roles of genes and early-life stressors in disease-relevant cell types. Here, we begin with a brief overview of the clinical, epidemiological, and genetic aspects of the condition, with a focus on schizophrenia as a neurodevelopmental disorder. We then highlight relevant technical advancements in hiPSC models and assess novel findings attained using hiPSC-based approaches and their implications for disease biology and treatment innovation. We close with a critical appraisal of the developments necessary for both further expanding knowledge of schizophrenia and the translation of new insights into therapeutic innovations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carpenter Jr., W. T., Strauss, J. S., & Bartko, J. J. (1974). An approach to the diagnosis and understanding of schizophrenia. Introduction. Schizophrenia Bulletin (11), 35–36. https://doi.org/10.1093/schbul/1.11.35

  2. Crow, T. J. (1985). The two-syndrome concept: origins and current status. Schizophrenia Bulletin, 11(3), 471–486.

    CAS  PubMed  Google Scholar 

  3. Sartorius, N., Shapiro, R., Kimura, M., & Barrett, K. (1972). WHO international pilot study of schizophrenia. Psychological Medicine, 2(4), 422–425.

    CAS  PubMed  Google Scholar 

  4. Strauss, J. S., Carpenter Jr., W. T., & Bartko, J. J. (1974). The diagnosis and understanding of schizophrenia. Summary and conclusions. Schizophrenia Bulletin (11), 70–80.

    Google Scholar 

  5. Kay, S. R., Opler, L. A., & Lindenmayer, J. P. (1988). Reliability and validity of the positive and negative syndrome scale for schizophrenics. Psychiatry Research, 23(1), 99–110.

    CAS  PubMed  Google Scholar 

  6. Lindenmayer, J. P., Bernstein-Hyman, R., & Grochowski, S. (1994). A new five factor model of schizophrenia. Psychiatric Quarterly, 65(4), 299–322.

    CAS  PubMed  Google Scholar 

  7. Wallwork, R. S., Fortgang, R., Hashimoto, R., Weinberger, D. R., & Dickinson, D. (2012). Searching for a consensus five-factor model of the Positive and Negative Syndrome Scale for schizophrenia. Schizophrenia Research, 137(1–3), 246–250. https://doi.org/10.1016/j.schres.2012.01.031

    Article  CAS  PubMed  Google Scholar 

  8. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: Author.

    Google Scholar 

  9. Staehelin, J. E., & Kielholz, P. (1953). Largactil, a new vegetative damping agent in mental disorders. Schweizerische Medizinische Wochenschrift, 83(25), 581–586.

    CAS  PubMed  Google Scholar 

  10. Carlsson, A., & Lindqvist, M. (1963). Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain. Acta Pharmacologica et Toxicologica, 20, 140–144.

    CAS  PubMed  Google Scholar 

  11. Creese, I., Burt, D. R., & Snyder, S. H. (1976). Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science, 192(4238), 481–483.

    CAS  PubMed  Google Scholar 

  12. Seeman, P., & Lee, T. (1975). Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science, 188(4194), 1217–1219.

    CAS  PubMed  Google Scholar 

  13. Borison, R. L., Pathiraja, A. P., Diamond, B. I., & Meibach, R. C. (1992). Risperidone: clinical safety and efficacy in schizophrenia. Psychopharmacology Bulletin, 28(2), 213–218.

    CAS  PubMed  Google Scholar 

  14. Jones, P. B., Barnes, T. R., Davies, L., Dunn, G., Lloyd, H., Hayhurst, K. P., et al. (2006). Randomized controlled trial of the effect on quality of life of second- vs first-generation antipsychotic drugs in schizophrenia: cost utility of the latest antipsychotic drugs in schizophrenia study (CUtLASS 1). Archives of General Psychiatry, 63(10), 1079–1087. https://doi.org/10.1001/archpsyc.63.10.1079

    Article  CAS  PubMed  Google Scholar 

  15. Lieberman, J. A., Stroup, T. S., McEvoy, J. P., Swartz, M. S., Rosenheck, R. A., Perkins, D. O., et al. (2005). Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. The New England Journal of Medicine, 353(12), 1209–1223. https://doi.org/10.1056/NEJMoa051688

    Article  CAS  PubMed  Google Scholar 

  16. Kane, J., Honigfeld, G., Singer, J., & Meltzer, H. (1988). Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Archives of General Psychiatry, 45(9), 789–796.

    CAS  PubMed  Google Scholar 

  17. Fusar-Poli, P., Papanastasiou, E., Stahl, D., Rocchetti, M., Carpenter, W., Shergill, S., et al. (2015). Treatments of negative symptoms in schizophrenia: meta-analysis of 168 randomized placebo-controlled trials. Schizophrenia Bulletin, 41(4), 892–899. https://doi.org/10.1093/schbul/sbu170

    Article  PubMed  Google Scholar 

  18. Leucht, S., Cipriani, A., Spineli, L., Mavridis, D., Orey, D., Richter, F., et al. (2013). Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet, 382(9896), 951–962. https://doi.org/10.1016/S0140-6736(13)60733-3

    Article  CAS  PubMed  Google Scholar 

  19. Naber, D., & Lambert, M. (2009). The CATIE and CUtLASS studies in schizophrenia: results and implications for clinicians. CNS Drugs, 23(8), 649–659. https://doi.org/10.2165/00023210-200923080-00002

    Article  PubMed  Google Scholar 

  20. Downing, A. M., Kinon, B. J., Millen, B. A., Zhang, L., Liu, L., Morozova, M. A., et al. (2014). A double-blind, placebo-controlled comparator study of LY2140023 monohydrate in patients with schizophrenia. BMC Psychiatry, 14, 351. https://doi.org/10.1186/s12888-014-0351-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jablensky, A., Sartorius, N., Ernberg, G., Anker, M., Korten, A., Cooper, J. E., et al. (1992). Schizophrenia: manifestations, incidence and course in different cultures. A World Health Organization ten-country study. Psychological Medicine. Monograph Supplement, 20, 1–97.

    CAS  PubMed  Google Scholar 

  22. Hjorthoj, C., Sturup, A. E., McGrath, J. J., & Nordentoft, M. (2017). Years of potential life lost and life expectancy in schizophrenia: a systematic review and meta-analysis. Lancet Psychiatry, 4(4), 295–301. https://doi.org/10.1016/S2215-0366(17)30078-0

    Article  PubMed  Google Scholar 

  23. Palmer, B. A., Pankratz, V. S., & Bostwick, J. M. (2005). The lifetime risk of suicide in schizophrenia: a reexamination. Archives of General Psychiatry, 62(3), 247–253. https://doi.org/10.1001/archpsyc.62.3.247

    Article  PubMed  Google Scholar 

  24. Caldwell, C. B., & Gottesman, I. I. (1990). Schizophrenics kill themselves too: a review of risk factors for suicide. Schizophrenia Bulletin, 16(4), 571–589.

    CAS  PubMed  Google Scholar 

  25. Phillips, M. R., Yang, G., Li, S., & Li, Y. (2004). Suicide and the unique prevalence pattern of schizophrenia in mainland China: a retrospective observational study. Lancet, 364(9439), 1062–1068. https://doi.org/10.1016/S0140-6736(04)17061-X

    Article  PubMed  Google Scholar 

  26. Brown, S. (1997). Excess mortality of schizophrenia. A meta-analysis. The British Journal of Psychiatry, 171, 502–508.

    CAS  PubMed  Google Scholar 

  27. Weinmann, S., Read, J., & Aderhold, V. (2009). Influence of antipsychotics on mortality in schizophrenia: systematic review. Schizophrenia Research, 113(1), 1–11. https://doi.org/10.1016/j.schres.2009.05.018

    Article  PubMed  Google Scholar 

  28. Nielsen, P. R., Laursen, T. M., & Agerbo, E. (2016). Comorbidity of schizophrenia and infection: a population-based cohort study. Social Psychiatry and Psychiatric Epidemiology, 51(12), 1581–1589. https://doi.org/10.1007/s00127-016-1297-1

    Article  PubMed  Google Scholar 

  29. Goff, D. C., Cather, C., Evins, A. E., Henderson, D. C., Freudenreich, O., Copeland, P. M., et al. (2005). Medical morbidity and mortality in schizophrenia: guidelines for psychiatrists. Journal of Clinical Psychiatry, 66(2), 183–194; quiz 147, 273-184.

    PubMed  Google Scholar 

  30. Winklbaur, B., Ebner, N., Sachs, G., Thau, K., & Fischer, G. (2006). Substance abuse in patients with schizophrenia. Dialogues in Clinical Neuroscience, 8(1), 37–43.

    PubMed  PubMed Central  Google Scholar 

  31. Brekke, J. S., Prindle, C., Bae, S. W., & Long, J. D. (2001). Risks for individuals with schizophrenia who are living in the community. Psychiatric Services, 52(10), 1358–1366. https://doi.org/10.1176/appi.ps.52.10.1358

    Article  CAS  PubMed  Google Scholar 

  32. Rapoport, J. L., Addington, A. M., Frangou, S., & Psych, M. R. (2005). The neurodevelopmental model of schizophrenia: update 2005. Molecular Psychiatry, 10(5), 434–449. https://doi.org/10.1038/sj.mp.4001642

    Article  CAS  PubMed  Google Scholar 

  33. Rapoport, J. L., Giedd, J. N., & Gogtay, N. (2012). Neurodevelopmental model of schizophrenia: update 2012. Molecular Psychiatry, 17(12), 1228–1238. https://doi.org/10.1038/mp.2012.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychology Review, 20(4), 327–348. https://doi.org/10.1007/s11065-010-9148-4

    Article  PubMed  PubMed Central  Google Scholar 

  35. Muraki, K., & Tanigaki, K. (2015). Neuronal migration abnormalities and its possible implications for schizophrenia. Frontiers in Neuroscience, 9, 74. https://doi.org/10.3389/fnins.2015.00074

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schoenfeld, T. J., & Cameron, H. A. (2015). Adult neurogenesis and mental illness. Neuropsychopharmacology, 40(1), 113–128. https://doi.org/10.1038/npp.2014.230

    Article  PubMed  Google Scholar 

  37. Schmidt, M. J., & Mirnics, K. (2015). Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology, 40(1), 190–206. https://doi.org/10.1038/npp.2014.95

    Article  PubMed  Google Scholar 

  38. Bartzokis, G. (2002). Schizophrenia: breakdown in the well-regulated lifelong process of brain development and maturation. Neuropsychopharmacology, 27(4), 672–683. https://doi.org/10.1016/S0893-133X(02)00364-0

    Article  PubMed  Google Scholar 

  39. Forsyth, J. K., & Lewis, D. A. (2017). Mapping the consequences of impaired synaptic plasticity in schizophrenia through development: an integrative model for diverse clinical features. Trends in Cognitive Sciences, 21(10), 760–778. https://doi.org/10.1016/j.tics.2017.06.006

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hirayasu, Y., Shenton, M. E., Salisbury, D. F., Dickey, C. C., Fischer, I. A., Mazzoni, P., et al. (1998). Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects. The American Journal of Psychiatry, 155(10), 1384–1391. https://doi.org/10.1176/ajp.155.10.1384

    Article  CAS  PubMed  Google Scholar 

  41. Wilke, M., Kaufmann, C., Grabner, A., Putz, B., Wetter, T. C., & Auer, D. P. (2001). Gray matter-changes and correlates of disease severity in schizophrenia: a statistical parametric mapping study. NeuroImage, 13(5), 814–824. https://doi.org/10.1006/nimg.2001.0751

    Article  CAS  PubMed  Google Scholar 

  42. Salgado-Pineda, P., Baeza, I., Perez-Gomez, M., Vendrell, P., Junque, C., Bargallo, N., et al. (2003). Sustained attention impairment correlates to gray matter decreases in first episode neuroleptic-naive schizophrenic patients. NeuroImage, 19(2 Pt 1), 365–375.

    PubMed  Google Scholar 

  43. Berge, D., Carmona, S., Rovira, M., Bulbena, A., Salgado, P., & Vilarroya, O. (2011). Gray matter volume deficits and correlation with insight and negative symptoms in first-psychotic-episode subjects. Acta Psychiatrica Scandinavica, 123(6), 431–439. https://doi.org/10.1111/j.1600-0447.2010.01635.x

    Article  CAS  PubMed  Google Scholar 

  44. Hirayasu, Y., Tanaka, S., Shenton, M. E., Salisbury, D. F., DeSantis, M. A., Levitt, J. J., et al. (2001). Prefrontal gray matter volume reduction in first episode schizophrenia. Cerebral Cortex, 11(4), 374–381.

    CAS  PubMed  Google Scholar 

  45. Paillere-Martinot, M., Caclin, A., Artiges, E., Poline, J. B., Joliot, M., Mallet, L., et al. (2001). Cerebral gray and white matter reductions and clinical correlates in patients with early onset schizophrenia. Schizophrenia Research, 50(1–2), 19–26.

    CAS  PubMed  Google Scholar 

  46. Crespo-Facorro, B., Roiz-Santianez, R., Perez-Iglesias, R., Rodriguez-Sanchez, J. M., Mata, I., Tordesillas-Gutierrez, D., et al. (2011). Global and regional cortical thinning in first-episode psychosis patients: relationships with clinical and cognitive features. Psychological Medicine, 41(7), 1449–1460. https://doi.org/10.1017/S003329171000200X

    Article  CAS  PubMed  Google Scholar 

  47. Whitford, T. J., Grieve, S. M., Farrow, T. F., Gomes, L., Brennan, J., Harris, A. W., et al. (2006). Progressive grey matter atrophy over the first 2–3 years of illness in first-episode schizophrenia: a tensor-based morphometry study. NeuroImage, 32(2), 511–519. https://doi.org/10.1016/j.neuroimage.2006.03.041

    Article  PubMed  Google Scholar 

  48. Hirayasu, Y., Shenton, M. E., Salisbury, D. F., Kwon, J. S., Wible, C. G., Fischer, I. A., et al. (1999). Subgenual cingulate cortex volume in first-episode psychosis. The American Journal of Psychiatry, 156(7), 1091–1093. https://doi.org/10.1176/ajp.156.7.1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kasai, K., Shenton, M. E., Salisbury, D. F., Onitsuka, T., Toner, S. K., Yurgelun-Todd, D., et al. (2003). Differences and similarities in insular and temporal pole MRI gray matter volume abnormalities in first-episode schizophrenia and affective psychosis. Archives of General Psychiatry, 60(11), 1069–1077. https://doi.org/10.1001/archpsyc.60.11.1069

    Article  PubMed  Google Scholar 

  50. Rothlisberger, M., Riecher-Rossler, A., Aston, J., Fusar-Poli, P., Radu, E. W., & Borgwardt, S. (2012). Cingulate volume abnormalities in emerging psychosis. Current Pharmaceutical Design, 18(4), 495–504.

    CAS  PubMed  Google Scholar 

  51. Liu, J., Pearlson, G., Windemuth, A., Ruano, G., Perrone-Bizzozero, N. I., & Calhoun, V. (2009). Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA. Human Brain Mapping, 30(1), 241–255. https://doi.org/10.1002/hbm.20508

    Article  PubMed  Google Scholar 

  52. Carpenter, D. M., Tang, C. Y., Friedman, J. I., Hof, P. R., Stewart, D. G., Buchsbaum, M. S., et al. (2008). Temporal characteristics of tract-specific anisotropy abnormalities in schizophrenia. Neuroreport, 19(14), 1369–1372. https://doi.org/10.1097/WNR.0b013e32830abc35

    Article  PubMed  PubMed Central  Google Scholar 

  53. Karlsgodt, K. H., van Erp, T. G., Poldrack, R. A., Bearden, C. E., Nuechterlein, K. H., & Cannon, T. D. (2008). Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biological Psychiatry, 63(5), 512–518. https://doi.org/10.1016/j.biopsych.2007.06.017

    Article  PubMed  Google Scholar 

  54. Perez-Iglesias, R., Tordesillas-Gutierrez, D., Barker, G. J., McGuire, P. K., Roiz-Santianez, R., Mata, I., et al. (2010). White matter defects in first episode psychosis patients: a voxelwise analysis of diffusion tensor imaging. NeuroImage, 49(1), 199–204. https://doi.org/10.1016/j.neuroimage.2009.07.016

    Article  PubMed  Google Scholar 

  55. Ruef, A., Curtis, L., Moy, G., Bessero, S., Badan Ba, M., Lazeyras, F., et al. (2012). Magnetic resonance imaging correlates of first-episode psychosis in young adult male patients: combined analysis of grey and white matter. Journal of Psychiatry & Neuroscience, 37(5), 305–312. https://doi.org/10.1503/jpn.110057

    Article  Google Scholar 

  56. White, T., Anjum, A., & Schulz, S. C. (2006). The schizophrenia prodrome. The American Journal of Psychiatry, 163(3), 376–380. https://doi.org/10.1176/appi.ajp.163.3.376

    Article  PubMed  Google Scholar 

  57. Yung, A. R., & McGorry, P. D. (1996a). The initial prodrome in psychosis: descriptive and qualitative aspects. The Australian and New Zealand Journal of Psychiatry, 30(5), 587–599. https://doi.org/10.3109/00048679609062654

    Article  CAS  PubMed  Google Scholar 

  58. Beiser, M., Erickson, D., Fleming, J. A., & Iacono, W. G. (1993). Establishing the onset of psychotic illness. The American Journal of Psychiatry, 150(9), 1349–1354. https://doi.org/10.1176/ajp.150.9.1349

    Article  CAS  PubMed  Google Scholar 

  59. Lencz, T., Cornblatt, B., & Bilder, R. M. (2001). Neurodevelopmental models of schizophrenia: pathophysiologic synthesis and directions for intervention research. Psychopharmacology Bulletin, 35(1), 95–125.

    CAS  PubMed  Google Scholar 

  60. Tsuang, M. T., Faraone, S. V., Bingham, S., Young, K., Prabhudesai, S., Haverstock, S. L., et al. (2000). Department of Veterans Affairs Cooperative Studies Program genetic linkage study of schizophrenia: ascertainment methods and sample description. American Journal of Medical Genetics, 96(3), 342–347.

    CAS  PubMed  Google Scholar 

  61. Yung, A. R., & McGorry, P. D. (1996b). The prodromal phase of first-episode psychosis: past and current conceptualizations. Schizophrenia Bulletin, 22(2), 353–370.

    CAS  PubMed  Google Scholar 

  62. Cornblatt, B., Lencz, T., & Obuchowski, M. (2002). The schizophrenia prodrome: treatment and high-risk perspectives. Schizophrenia Research, 54(1–2), 177–186.

    PubMed  Google Scholar 

  63. Cornblatt, B., Obuchowski, M., Roberts, S., Pollack, S., & Erlenmeyer-Kimling, L. (1999). Cognitive and behavioral precursors of schizophrenia. Development and Psychopathology, 11(3), 487–508.

    CAS  PubMed  Google Scholar 

  64. Lappin, J. M., Dazzan, P., Morgan, K., Morgan, C., Chitnis, X., Suckling, J., et al. (2007). Duration of prodromal phase and severity of volumetric abnormalities in first-episode psychosis. The British Journal of Psychiatry. Supplement, 51, s123–s127. https://doi.org/10.1192/bjp.191.51.s123

    Article  PubMed  Google Scholar 

  65. Fusar-Poli, P., Tantardini, M., De Simone, S., Ramella-Cravaro, V., Oliver, D., Kingdon, J., et al. (2017). Deconstructing vulnerability for psychosis: meta-analysis of environmental risk factors for psychosis in subjects at ultra high-risk. European Psychiatry, 40, 65–75. https://doi.org/10.1016/j.eurpsy.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  66. Clarke, M. C., Tanskanen, A., Huttunen, M., Leon, D. A., Murray, R. M., Jones, P. B., et al. (2011). Increased risk of schizophrenia from additive interaction between infant motor developmental delay and obstetric complications: evidence from a population-based longitudinal study. The American Journal of Psychiatry, 168(12), 1295–1302. https://doi.org/10.1176/appi.ajp.2011.11010011

    Article  PubMed  Google Scholar 

  67. Jones, P., Rodgers, B., Murray, R., & Marmot, M. (1994). Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet, 344(8934), 1398–1402.

    CAS  PubMed  Google Scholar 

  68. Kremen, W. S., Buka, S. L., Seidman, L. J., Goldstein, J. M., Koren, D., & Tsuang, M. T. (1998). IQ decline during childhood and adult psychotic symptoms in a community sample: a 19-year longitudinal study. The American Journal of Psychiatry, 155(5), 672–677. https://doi.org/10.1176/ajp.155.5.672

    Article  CAS  PubMed  Google Scholar 

  69. Wood, S. J., Pantelis, C., Proffitt, T., Phillips, L. J., Stuart, G. W., Buchanan, J. A., et al. (2003). Spatial working memory ability is a marker of risk-for-psychosis. Psychological Medicine, 33(7), 1239–1247.

    CAS  PubMed  Google Scholar 

  70. Brewer, W. J., Francey, S. M., Wood, S. J., Jackson, H. J., Pantelis, C., Phillips, L. J., et al. (2005). Memory impairments identified in people at ultra-high risk for psychosis who later develop first-episode psychosis. The American Journal of Psychiatry, 162(1), 71–78. https://doi.org/10.1176/appi.ajp.162.1.71

    Article  PubMed  Google Scholar 

  71. Dickson, H., Laurens, K. R., Cullen, A. E., & Hodgins, S. (2012). Meta-analyses of cognitive and motor function in youth aged 16 years and younger who subsequently develop schizophrenia. Psychological Medicine, 42(4), 743–755. https://doi.org/10.1017/S0033291711001693

    Article  CAS  PubMed  Google Scholar 

  72. Erlenmeyer-Kimling, L., Rock, D., Roberts, S. A., Janal, M., Kestenbaum, C., Cornblatt, B., et al. (2000). Attention, memory, and motor skills as childhood predictors of schizophrenia-related psychoses: the New York High-Risk Project. The American Journal of Psychiatry, 157(9), 1416–1422. https://doi.org/10.1176/appi.ajp.157.9.1416

    Article  CAS  PubMed  Google Scholar 

  73. Done, D. J., Crow, T. J., Johnstone, E. C., & Sacker, A. (1994). Childhood antecedents of schizophrenia and affective illness: social adjustment at ages 7 and 11. BMJ, 309(6956), 699–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Davidson, M., Reichenberg, A., Rabinowitz, J., Weiser, M., Kaplan, Z., & Mark, M. (1999). Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. The American Journal of Psychiatry, 156(9), 1328–1335. https://doi.org/10.1176/ajp.156.9.1328

    Article  CAS  PubMed  Google Scholar 

  75. Klosterkotter, J., Hellmich, M., Steinmeyer, E. M., & Schultze-Lutter, F. (2001). Diagnosing schizophrenia in the initial prodromal phase. Archives of General Psychiatry, 58(2), 158–164.

    CAS  PubMed  Google Scholar 

  76. Pantelis, C., Velakoulis, D., McGorry, P. D., Wood, S. J., Suckling, J., Phillips, L. J., et al. (2003). Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet, 361(9354), 281–288. https://doi.org/10.1016/S0140-6736(03)12323-9

    Article  PubMed  Google Scholar 

  77. Borgwardt, S. J., McGuire, P. K., Aston, J., Berger, G., Dazzan, P., Gschwandtner, U., et al. (2007). Structural brain abnormalities in individuals with an at-risk mental state who later develop psychosis. The British Journal of Psychiatry. Supplement, 51, s69–s75. https://doi.org/10.1192/bjp.191.51.s69

    Article  PubMed  Google Scholar 

  78. Fornito, A., Yung, A. R., Wood, S. J., Phillips, L. J., Nelson, B., Cotton, S., et al. (2008). Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk individuals. Biological Psychiatry, 64(9), 758–765. https://doi.org/10.1016/j.biopsych.2008.05.032

    Article  PubMed  Google Scholar 

  79. Takahashi, T., Wood, S. J., Soulsby, B., Kawasaki, Y., McGorry, P. D., Suzuki, M., et al. (2009a). An MRI study of the superior temporal subregions in first-episode patients with various psychotic disorders. Schizophrenia Research, 113(2–3), 158–166. https://doi.org/10.1016/j.schres.2009.06.016

    Article  PubMed  Google Scholar 

  80. Takahashi, T., Wood, S. J., Yung, A. R., Phillips, L. J., Soulsby, B., McGorry, P. D., et al. (2009b). Insular cortex gray matter changes in individuals at ultra-high-risk of developing psychosis. Schizophrenia Research, 111(1–3), 94–102. https://doi.org/10.1016/j.schres.2009.03.024

    Article  PubMed  Google Scholar 

  81. Mechelli, A., Riecher-Rossler, A., Meisenzahl, E. M., Tognin, S., Wood, S. J., Borgwardt, S. J., et al. (2011). Neuroanatomical abnormalities that predate the onset of psychosis: a multicenter study. Archives of General Psychiatry, 68(5), 489–495. https://doi.org/10.1001/archgenpsychiatry.2011.42

    Article  PubMed  Google Scholar 

  82. Fusar-Poli, P., Broome, M. R., Woolley, J. B., Johns, L. C., Tabraham, P., Bramon, E., et al. (2011). Altered brain function directly related to structural abnormalities in people at ultra high risk of psychosis: longitudinal VBM-fMRI study. Journal of Psychiatric Research, 45(2), 190–198. https://doi.org/10.1016/j.jpsychires.2010.05.012

    Article  CAS  PubMed  Google Scholar 

  83. Jung, W. H., Kim, J. S., Jang, J. H., Choi, J. S., Jung, M. H., Park, J. Y., et al. (2011). Cortical thickness reduction in individuals at ultra-high-risk for psychosis. Schizophrenia Bulletin, 37(4), 839–849. https://doi.org/10.1093/schbul/sbp151

    Article  PubMed  Google Scholar 

  84. Gilmore, J. H., Kang, C., Evans, D. D., Wolfe, H. M., Smith, J. K., Lieberman, J. A., et al. (2010a). Prenatal and neonatal brain structure and white matter maturation in children at high risk for schizophrenia. The American Journal of Psychiatry, 167(9), 1083–1091. https://doi.org/10.1176/appi.ajp.2010.09101492

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gilmore, J. H., Schmitt, J. E., Knickmeyer, R. C., Smith, J. K., Lin, W., Styner, M., et al. (2010b). Genetic and environmental contributions to neonatal brain structure: A twin study. Human Brain Mapping, 31(8), 1174–1182. https://doi.org/10.1002/hbm.20926

    Article  PubMed  PubMed Central  Google Scholar 

  86. Walterfang, M., McGuire, P. K., Yung, A. R., Phillips, L. J., Velakoulis, D., Wood, S. J., et al. (2008). White matter volume changes in people who develop psychosis. The British Journal of Psychiatry, 193(3), 210–215. https://doi.org/10.1192/bjp.bp.107.043463

    Article  PubMed  Google Scholar 

  87. Bloemen, O. J., de Koning, M. B., Schmitz, N., Nieman, D. H., Becker, H. E., de Haan, L., et al. (2010). White-matter markers for psychosis in a prospective ultra-high-risk cohort. Psychological Medicine, 40(8), 1297–1304. https://doi.org/10.1017/S0033291709991711

    Article  CAS  PubMed  Google Scholar 

  88. Brown, A. S. (2006). Prenatal infection as a risk factor for schizophrenia. Schizophrenia Bulletin, 32(2), 200–202. https://doi.org/10.1093/schbul/sbj052

    Article  PubMed  PubMed Central  Google Scholar 

  89. Brown, A. S. (2012). Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism. Developmental Neurobiology, 72(10), 1272–1276. https://doi.org/10.1002/dneu.22024

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cannon, M., Jones, P. B., & Murray, R. M. (2002). Obstetric complications and schizophrenia: historical and meta-analytic review. The American Journal of Psychiatry, 159(7), 1080–1092. https://doi.org/10.1176/appi.ajp.159.7.1080

    Article  PubMed  Google Scholar 

  91. Picker, J. D., & Coyle, J. T. (2005). Do maternal folate and homocysteine levels play a role in neurodevelopmental processes that increase risk for schizophrenia? Harvard Review of Psychiatry, 13(4), 197–205. https://doi.org/10.1080/10673220500243372

    Article  PubMed  Google Scholar 

  92. Roseboom, T. J., Painter, R. C., van Abeelen, A. F., Veenendaal, M. V., & de Rooij, S. R. (2011). Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas, 70(2), 141–145. https://doi.org/10.1016/j.maturitas.2011.06.017

    Article  PubMed  Google Scholar 

  93. Knud Larsen, J., Bendsen, B. B., Foldager, L., & Munk-Jorgensen, P. (2010). Prematurity and low birth weight as risk factors for the development of affective disorder, especially depression and schizophrenia: a register study. Acta Neuropsychiatrica, 22(6), 284–291. https://doi.org/10.1111/j.1601-5215.2010.00498.x

    Article  PubMed  Google Scholar 

  94. Rifkin, L., Lewis, S., Jones, P., Toone, B., & Murray, R. (1994). Low birth weight and schizophrenia. The British Journal of Psychiatry, 165(3), 357–362.

    CAS  PubMed  Google Scholar 

  95. Wahlbeck, K., Forsen, T., Osmond, C., Barker, D. J., & Eriksson, J. G. (2001). Association of schizophrenia with low maternal body mass index, small size at birth, and thinness during childhood. Archives of General Psychiatry, 58(1), 48–52.

    CAS  PubMed  Google Scholar 

  96. Torniainen, M., Wegelius, A., Tuulio-Henriksson, A., Lonnqvist, J., & Suvisaari, J. (2013). Both low birthweight and high birthweight are associated with cognitive impairment in persons with schizophrenia and their first-degree relatives. Psychological Medicine, 43(11), 2361–2367. https://doi.org/10.1017/S0033291713000032

    Article  CAS  PubMed  Google Scholar 

  97. Moilanen, K., Jokelainen, J., Jones, P. B., Hartikainen, A. L., Jarvelin, M. R., & Isohanni, M. (2010). Deviant intrauterine growth and risk of schizophrenia: a 34-year follow-up of the Northern Finland 1966 Birth Cohort. Schizophrenia Research, 124(1–3), 223–230. https://doi.org/10.1016/j.schres.2010.09.006

    Article  PubMed  Google Scholar 

  98. Davies, G., Welham, J., Chant, D., Torrey, E. F., & McGrath, J. (2003). A systematic review and meta-analysis of Northern Hemisphere season of birth studies in schizophrenia. Schizophrenia Bulletin, 29(3), 587–593.

    PubMed  Google Scholar 

  99. Frissen, A., Lieverse, R., Drukker, M., van Winkel, R., Delespaul, P., & Investigators, G. (2015). Childhood trauma and childhood urbanicity in relation to psychotic disorder. Social Psychiatry and Psychiatric Epidemiology, 50(10), 1481–1488. https://doi.org/10.1007/s00127-015-1049-7

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lataster, J., Myin-Germeys, I., Lieb, R., Wittchen, H. U., & van Os, J. (2012). Adversity and psychosis: a 10-year prospective study investigating synergism between early and recent adversity in psychosis. Acta Psychiatrica Scandinavica, 125(5), 388–399. https://doi.org/10.1111/j.1600-0447.2011.01805.x

    Article  CAS  PubMed  Google Scholar 

  101. Marconi, A., Di Forti, M., Lewis, C. M., Murray, R. M., & Vassos, E. (2016). Meta-analysis of the association between the level of cannabis use and risk of psychosis. Schizophrenia Bulletin, 42(5), 1262–1269. https://doi.org/10.1093/schbul/sbw003

    Article  PubMed  PubMed Central  Google Scholar 

  102. Moore, T. H., Zammit, S., Lingford-Hughes, A., Barnes, T. R., Jones, P. B., Burke, M., et al. (2007). Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. Lancet, 370(9584), 319–328. https://doi.org/10.1016/S0140-6736(07)61162-3

    Article  PubMed  Google Scholar 

  103. Heinz, A., Deserno, L., & Reininghaus, U. (2013). Urbanicity, social adversity and psychosis. World Psychiatry, 12(3), 187–197. https://doi.org/10.1002/wps.20056

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lichtenstein, P., Yip, B. H., Bjork, C., Pawitan, Y., Cannon, T. D., Sullivan, P. F., et al. (2009). Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet, 373(9659), 234–239. https://doi.org/10.1016/S0140-6736(09)60072-6

    Article  CAS  PubMed  Google Scholar 

  105. Lichtenstein, P., Bjork, C., Hultman, C. M., Scolnick, E., Sklar, P., & Sullivan, P. F. (2006). Recurrence risks for schizophrenia in a Swedish national cohort. Psychological Medicine, 36(10), 1417–1425. https://doi.org/10.1017/S0033291706008385

    Article  PubMed  Google Scholar 

  106. Cardno, A. G., & Gottesman, I. I. (2000). Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. American Journal of Medical Genetics, 97(1), 12–17.

    CAS  PubMed  Google Scholar 

  107. Hilker, R., Helenius, D., Fagerlund, B., Skytthe, A., Christensen, K., Werge, T. M., et al. (2018). Heritability of schizophrenia and schizophrenia spectrum based on the Nationwide Danish Twin Register. Biological Psychiatry, 83(6), 492–498. https://doi.org/10.1016/j.biopsych.2017.08.017

    Article  PubMed  Google Scholar 

  108. Sullivan, P. F., Agrawal, A., Bulik, C. M., Andreassen, O. A., Borglum, A. D., Breen, G., et al. (2018). Psychiatric genomics: an update and an agenda. The American Journal of Psychiatry, 175(1), 15–27. https://doi.org/10.1176/appi.ajp.2017.17030283

    Article  PubMed  Google Scholar 

  109. Power, R. A., Kyaga, S., Uher, R., MacCabe, J. H., Langstrom, N., Landen, M., et al. (2013). Fecundity of patients with schizophrenia, autism, bipolar disorder, depression, anorexia nervosa, or substance abuse vs their unaffected siblings. JAMA Psychiatry, 70(1), 22–30. https://doi.org/10.1001/jamapsychiatry.2013.268

    Article  PubMed  Google Scholar 

  110. Gershon, E. S., Alliey-Rodriguez, N., & Liu, C. (2011). After GWAS: searching for genetic risk for schizophrenia and bipolar disorder. The American Journal of Psychiatry, 168(3), 253–256. https://doi.org/10.1176/appi.ajp.2010.10091340

    Article  PubMed  PubMed Central  Google Scholar 

  111. Malaspina, D., Brown, A., Goetz, D., Alia-Klein, N., Harkavy-Friedman, J., Harlap, S., et al. (2002). Schizophrenia risk and paternal age: a potential role for de novo mutations in schizophrenia vulnerability genes. CNS Spectrums, 7(1), 26–29.

    PubMed  Google Scholar 

  112. Kong, A., Frigge, M. L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., et al. (2012). Rate of de novo mutations and the importance of father's age to disease risk. Nature, 488(7412), 471–475. https://doi.org/10.1038/nature11396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gulsuner, S., Walsh, T., Watts, A. C., Lee, M. K., Thornton, A. M., Casadei, S., et al. (2013). Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell, 154(3), 518–529. https://doi.org/10.1016/j.cell.2013.06.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xu, B., Ionita-Laza, I., Roos, J. L., Boone, B., Woodrick, S., Sun, Y., et al. (2012). De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nature Genetics, 44(12), 1365–1369. https://doi.org/10.1038/ng.2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fromer, M., Pocklington, A. J., Kavanagh, D. H., Williams, H. J., Dwyer, S., Gormley, P., et al. (2014). De novo mutations in schizophrenia implicate synaptic networks. Nature, 506(7487), 179–184. https://doi.org/10.1038/nature12929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Awadalla, P., Gauthier, J., Myers, R. A., Casals, F., Hamdan, F. F., Griffing, A. R., et al. (2010). Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. American Journal of Human Genetics, 87(3), 316–324. https://doi.org/10.1016/j.ajhg.2010.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Girard, S. L., Gauthier, J., Noreau, A., Xiong, L., Zhou, S., Jouan, L., et al. (2011). Increased exonic de novo mutation rate in individuals with schizophrenia. Nature Genetics, 43(9), 860–863. https://doi.org/10.1038/ng.886

    Article  CAS  PubMed  Google Scholar 

  118. Purcell, S. M., Moran, J. L., Fromer, M., Ruderfer, D., Solovieff, N., Roussos, P., et al. (2014). A polygenic burden of rare disruptive mutations in schizophrenia. Nature, 506(7487), 185–190. https://doi.org/10.1038/nature12975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Genovese, G., Fromer, M., Stahl, E. A., Ruderfer, D. M., Chambert, K., Landen, M., et al. (2016). Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nature Neuroscience, 19(11), 1433–1441. https://doi.org/10.1038/nn.4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Genovese G., Fromer M., Stahl E. A., Ruderfer D. M., Chambert K., Landén M., et al. (2016) Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nature Neuroscience 19(11):1433–1441

    Google Scholar 

  121. Szatkiewicz, J. P., O'Dushlaine, C., Chen, G., Chambert, K., Moran, J. L., Neale, B. M., et al. (2014). Copy number variation in schizophrenia in Sweden. Molecular Psychiatry, 19(7), 762–773. https://doi.org/10.1038/mp.2014.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rees, E., Kirov, G., O'Donovan, M. C., & Owen, M. J. (2012). De novo mutation in schizophrenia. Schizophrenia Bulletin, 38(3), 377–381. https://doi.org/10.1093/schbul/sbs047

    Article  PubMed  PubMed Central  Google Scholar 

  123. Marshall, C. R., Howrigan, D. P., Merico, D., Thiruvahindrapuram, B., Wu, W., Greer, D. S., et al. (2017). Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 49(1), 27–35. https://doi.org/10.1038/ng.3725

    Article  CAS  PubMed  Google Scholar 

  124. Schneider, M., Debbane, M., Bassett, A. S., Chow, E. W., Fung, W. L., van den Bree, M., et al. (2014). Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 deletion syndrome. The American Journal of Psychiatry, 171(6), 627–639. https://doi.org/10.1176/appi.ajp.2013.13070864

    Article  PubMed  PubMed Central  Google Scholar 

  125. Van, L., Boot, E., & Bassett, A. S. (2017). Update on the 22q11.2 deletion syndrome and its relevance to schizophrenia. Current Opinion in Psychiatry, 30(3), 191–196. https://doi.org/10.1097/YCO.0000000000000324

    Article  PubMed  Google Scholar 

  126. Bergen, S. E., Ploner, A., Howrigan, D., CNV Analysis Group and the Schizophrenia Working Group of the Psychiatric Genomics Consortium, O’Donovan, M. C., Smoller, J. W., et al. (2018). Joint contributions of rare copy number variants and common SNPs to risk for schizophrenia. Am J Psychiatry, 176, 29. https://doi.org/10.1176/appi.ajp.2018.17040467

    Article  PubMed  PubMed Central  Google Scholar 

  127. Tansey, K. E., Rees, E., Linden, D. E., Ripke, S., Chambert, K. D., Moran, J. L., et al. (2016). Common alleles contribute to schizophrenia in CNV carriers. Molecular Psychiatry, 21(8), 1153. https://doi.org/10.1038/mp.2015.170

    Article  CAS  PubMed  Google Scholar 

  128. Gottesman, I. I., & Shields, J. (1967). A polygenic theory of schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 58(1), 199–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Shi, J., Levinson, D. F., Duan, J., Sanders, A. R., Zheng, Y., Pe'er, I., et al. (2009). Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature, 460(7256), 753–757. https://doi.org/10.1038/nature08192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. International Schizophrenia Consortium, Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O'Donovan, M. C., et al. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460(7256), 748–752. https://doi.org/10.1038/nature08185

    Article  CAS  PubMed Central  Google Scholar 

  131. O'Donovan, M. C., Craddock, N., Norton, N., Williams, H., Peirce, T., Moskvina, V., et al. (2008). Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics, 40(9), 1053–1055. https://doi.org/10.1038/ng.201

    Article  CAS  PubMed  Google Scholar 

  132. Stefansson, H., Ophoff, R. A., Steinberg, S., Andreassen, O. A., Cichon, S., Rujescu, D., et al. (2009). Common variants conferring risk of schizophrenia. Nature, 460(7256), 744–747. https://doi.org/10.1038/nature08186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium, Ripke, S., Sanders, A. R., Kendler, K. S., Levinson, D. F., Sklar, P., et al. (2011). Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 43(10), 969–976. https://doi.org/10.1038/ng.940

    Article  CAS  Google Scholar 

  134. Ripke, S., O'Dushlaine, C., Chambert, K., Moran, J. L., Kahler, A. K., Akterin, S., et al. (2013). Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 45(10), 1150–1159. https://doi.org/10.1038/ng.2742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Schmitt, A., Malchow, B., Hasan, A., & Falkai, P. (2014). The impact of environmental factors in severe psychiatric disorders. Frontiers in Neuroscience, 8, 19. https://doi.org/10.3389/fnins.2014.00019

    Article  PubMed  PubMed Central  Google Scholar 

  136. Pardinas, A. F., Holmans, P., Pocklington, A. J., Escott-Price, V., Ripke, S., Carrera, N., et al. (2018). Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nature Genetics, 50(3), 381–389. https://doi.org/10.1038/s41588-018-0059-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511(7510), 421–427. https://doi.org/10.1038/nature13595

    Article  CAS  PubMed Central  Google Scholar 

  138. Li, Z., Chen, J., Yu, H., He, L., Xu, Y., Zhang, D., et al. (2017). Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nature Genetics, 49(11), 1576–1583. https://doi.org/10.1038/ng.3973

    Article  CAS  PubMed  Google Scholar 

  139. Shi, Y., Li, Z., Xu, Q., Wang, T., Li, T., Shen, J., et al. (2011). Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nature Genetics, 43(12), 1224–1227. https://doi.org/10.1038/ng.980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. GTEx Consortium, Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working Group, Statistical Methods groups—Analysis Working Group, Enhancing GTEx (eGTEx) groups, NIH Common Fund, NIH/NCI, et al. (2017). Genetic effects on gene expression across human tissues. Nature, 550(7675), 204–213. https://doi.org/10.1038/nature24277

    Article  PubMed Central  Google Scholar 

  141. Maurano, M. T., Humbert, R., Rynes, E., Thurman, R. E., Haugen, E., Wang, H., et al. (2012). Systematic localization of common disease-associated variation in regulatory DNA. Science, 337(6099), 1190–1195. https://doi.org/10.1126/science.1222794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Albert, F. W., & Kruglyak, L. (2015). The role of regulatory variation in complex traits and disease. Nature Reviews Genetics, 16(4), 197–212. https://doi.org/10.1038/nrg3891

    Article  CAS  PubMed  Google Scholar 

  143. Ng, B., White, C. C., Klein, H. U., Sieberts, S. K., McCabe, C., Patrick, E., et al. (2017). An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome. Nature Neuroscience, 20(10), 1418–1426. https://doi.org/10.1038/nn.4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gandal, M. J., Zhang, P., Hadjimichael, E., Walker, R. L., Chen, C., Liu, S., et al. (2018). Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 362(6420). https://doi.org/10.1126/science.aat8127

  145. Rajarajan, P., Gil, S. E., Brennand, K. J., & Akbarian, S. (2016). Spatial genome organization and cognition. Nature Reviews Neuroscience, 17(11), 681–691. https://doi.org/10.1038/nrn.2016.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Richards, A. L., Jones, L., Moskvina, V., Kirov, G., Gejman, P. V., Levinson, D. F., et al. (2012). Schizophrenia susceptibility alleles are enriched for alleles that affect gene expression in adult human brain. Molecular Psychiatry, 17(2), 193–201. https://doi.org/10.1038/mp.2011.11

    Article  CAS  PubMed  Google Scholar 

  147. Fromer, M., Roussos, P., Sieberts, S. K., Johnson, J. S., Kavanagh, D. H., Perumal, T. M., et al. (2016). Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nature Neuroscience, 19(11), 1442–1453. https://doi.org/10.1038/nn.4399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. de la Torre-Ubieta, L., Stein, J. L., Won, H., Opland, C. K., Liang, D., Lu, D., et al. (2018). The dynamic landscape of open chromatin during human cortical neurogenesis. Cell2, 172(1–2), 289–304, e218. https://doi.org/10.1016/j.cell.2017.12.014

    Article  CAS  Google Scholar 

  149. Jaffe, A. E., Straub, R. E., Shin, J. H., Tao, R., Gao, Y., Collado-Torres, L., et al. (2018). Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nature Neuroscience, 21(8), 1117–1125. https://doi.org/10.1038/s41593-018-0197-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang, Y. E., Landback, P., Vibranovski, M. D., & Long, M. (2011). Accelerated recruitment of new brain development genes into the human genome. PLoS Biology, 9(10), e1001179. https://doi.org/10.1371/journal.pbio.1001179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Akbarian, S., Bunney Jr., W. E., Potkin, S. G., Wigal, S. B., Hagman, J. O., Sandman, C. A., et al. (1993). Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Archives of General Psychiatry, 50(3), 169–177.

    CAS  PubMed  Google Scholar 

  152. Jakob, H., & Beckmann, H. (1986). Prenatal developmental disturbances in the limbic allocortex in schizophrenics. Journal of Neural Transmission, 65(3–4), 303–326.

    CAS  PubMed  Google Scholar 

  153. Fung, S. J., Webster, M. J., Sivagnanasundaram, S., Duncan, C., Elashoff, M., & Weickert, C. S. (2010). Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. The American Journal of Psychiatry, 167(12), 1479–1488. https://doi.org/10.1176/appi.ajp.2010.09060784

    Article  PubMed  Google Scholar 

  154. Hyde, T. M., Lipska, B. K., Ali, T., Mathew, S. V., Law, A. J., Metitiri, O. E., et al. (2011). Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia. The Journal of Neuroscience, 31(30), 11088–11095. https://doi.org/10.1523/JNEUROSCI.1234-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Horváth S., Janka Z., Mirnics K., (2011) Analyzing Schizophrenia by DNA Microarrays. Biological Psychiatry 69(2):157–162

    Google Scholar 

  156. Torkamani, A., Dean, B., Schork, N. J., & Thomas, E. A. (2010). Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia. Genome Research, 20(4), 403–412. https://doi.org/10.1101/gr.101956.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mistry, M., Gillis, J., & Pavlidis, P. (2013a). Genome-wide expression profiling of schizophrenia using a large combined cohort. Molecular Psychiatry, 18(2), 215–225. https://doi.org/10.1038/mp.2011.172

    Article  CAS  PubMed  Google Scholar 

  158. Mistry, M., Gillis, J., & Pavlidis, P. (2013b). Meta-analysis of gene coexpression networks in the post-mortem prefrontal cortex of patients with schizophrenia and unaffected controls. BMC Neuroscience, 14, 105. https://doi.org/10.1186/1471-2202-14-105

    Article  PubMed  PubMed Central  Google Scholar 

  159. Finucane, H. K., Reshef, Y. A., Anttila, V., Slowikowski, K., Gusev, A., Byrnes, A., et al. (2018). Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nature Genetics, 50(4), 621–629. https://doi.org/10.1038/s41588-018-0081-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Gusev, A., Mancuso, N., Won, H., Kousi, M., Finucane, H. K., Reshef, Y., et al. (2018). Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nature Genetics, 50(4), 538–548. https://doi.org/10.1038/s41588-018-0092-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Skene, N. G., Bryois, J., Bakken, T. E., Breen, G., Crowley, J. J., Gaspar, H. A., et al. (2018). Genetic identification of brain cell types underlying schizophrenia. Nature Genetics, 50(6), 825–833. https://doi.org/10.1038/s41588-018-0129-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Roussos, P., Katsel, P., Davis, K. L., Siever, L. J., & Haroutunian, V. (2012). A system-level transcriptomic analysis of schizophrenia using postmortem brain tissue samples. Archives of General Psychiatry, 69(12), 1205–1213. https://doi.org/10.1001/archgenpsychiatry.2012.704

    Article  PubMed  Google Scholar 

  163. Radulescu, E., Jaffe, A. E., Straub, R. E., Chen, Q., Shin, J. H., Hyde, T. M., et al. (2018). Identification and prioritization of gene sets associated with schizophrenia risk by co-expression network analysis in human brain. Molecular Psychiatry. https://doi.org/10.1038/s41380-018-0304-1

  164. Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W., et al. (2016). Integrative approaches for large-scale transcriptome-wide association studies. Nature Genetics, 48(3), 245–252. https://doi.org/10.1038/ng.3506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Huckins L. M., Dobbyn A., Ruderfer D. M., Hoffman G., Wang W., Pardiñas A. F., et al. (2019) Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nature Genetics 51(4):659–674

    Google Scholar 

  166. The Network, O'Dushlaine, C., Rossin, L., Lee, P. H., Duncan, L., Parikshak, N. N., et al. (2015). Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nature Neuroscience, 18, 199. https://doi.org/10.1038/nn.3922. https://www.nature.com/articles/nn.3922#supplementary-information

    Article  CAS  Google Scholar 

  167. Trynka, G., Sandor, C., Han, B., Xu, H., Stranger, B. E., Liu, X. S., et al. (2013). Chromatin marks identify critical cell types for fine mapping complex trait variants. Nature Genetics, 45(2), 124–130. https://doi.org/10.1038/ng.2504

    Article  CAS  PubMed  Google Scholar 

  168. Roussos, P., Mitchell, A. C., Voloudakis, G., Fullard, J. F., Pothula, V. M., Tsang, J., et al. (2014). A role for noncoding variation in schizophrenia. Cell Reports, 9(4), 1417–1429. https://doi.org/10.1016/j.celrep.2014.10.015

    Article  CAS  PubMed  Google Scholar 

  169. Psych, E. C., Akbarian, S., Liu, C., Knowles, J. A., Vaccarino, F. M., Farnham, P. J., et al. (2015). The PsychENCODE project. Nature Neuroscience, 18(12), 1707–1712. https://doi.org/10.1038/nn.4156

    Article  CAS  Google Scholar 

  170. Girdhar, K., Hoffman, G. E., Jiang, Y., Brown, L., Kundakovic, M., Hauberg, M. E., et al. (2018). Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nature Neuroscience, 21(8), 1126–1136. https://doi.org/10.1038/s41593-018-0187-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jaffe, A. E., Gao, Y., Deep-Soboslay, A., Tao, R., Hyde, T. M., Weinberger, D. R., et al. (2016). Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nature Neuroscience, 19(1), 40–47. https://doi.org/10.1038/nn.4181

    Article  CAS  PubMed  Google Scholar 

  172. Schulz, H., Ruppert, A. K., Herms, S., Wolf, C., Mirza-Schreiber, N., Stegle, O., et al. (2017). Genome-wide mapping of genetic determinants influencing DNA methylation and gene expression in human hippocampus. Nature Communications, 8(1), 1511. https://doi.org/10.1038/s41467-017-01818-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Dobbyn, A., Huckins, L. M., Boocock, J., Sloofman, L. G., Glicksberg, B. S., Giambartolomei, C., et al. (2018). Landscape of conditional eQTL in dorsolateral prefrontal cortex and co-localization with schizophrenia GWAS. American Journal of Human Genetics, 102(6), 1169–1184. https://doi.org/10.1016/j.ajhg.2018.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Rajarajan, P., Borrman, T., Liao, W., Schrode, N., Flaherty, E., Casino, C., et al. (2018a). Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science, 362(6420), eaat4311. https://doi.org/10.1126/science.aat4311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bharadwaj, R., Jiang, Y., Mao, W., Jakovcevski, M., Dincer, A., Krueger, W., et al. (2013). Conserved chromosome 2q31 conformations are associated with transcriptional regulation of GAD1 GABA synthesis enzyme and altered in prefrontal cortex of subjects with schizophrenia. The Journal of Neuroscience, 33(29), 11839–11851. https://doi.org/10.1523/JNEUROSCI.1252-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bharadwaj, R., Peter, C. J., Jiang, Y., Roussos, P., Vogel-Ciernia, A., Shen, E. Y., et al. (2014). Conserved higher-order chromatin regulates NMDA receptor gene expression and cognition. Neuron, 84(5), 997–1008. https://doi.org/10.1016/j.neuron.2014.10.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bryois, J., Garrett, M. E., Song, L., Safi, A., Giusti-Rodriguez, P., Johnson, G. D., et al. (2018). Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nature Communications, 9(1), 3121. https://doi.org/10.1038/s41467-018-05379-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Fullard, J. F., Giambartolomei, C., Hauberg, M. E., Xu, K., Voloudakis, G., Shao, Z., et al. (2017). Open chromatin profiling of human postmortem brain infers functional roles for non-coding schizophrenia loci. Human Molecular Genetics, 26(10), 1942–1951. https://doi.org/10.1093/hmg/ddx103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Fullard, J. F., Hauberg, M. E., Bendl, J., Egervari, G., Cirnaru, M. D., Reach, S. M., et al. (2018). An atlas of chromatin accessibility in the adult human brain. Genome Research, 28(8), 1243–1252. https://doi.org/10.1101/gr.232488.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Won, H., de la Torre-Ubieta, L., Stein, J. L., Parikshak, N. N., Huang, J., Opland, C. K., et al. (2016). Chromosome conformation elucidates regulatory relationships in developing human brain. Nature, 538(7626), 523–527. https://doi.org/10.1038/nature19847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  182. Narsinh, K. H., Plews, J., & Wu, J. C. (2011). Comparison of human induced pluripotent and embryonic stem cells: fraternal or identical twins? Molecular Therapy, 19(4), 635–638. https://doi.org/10.1038/mt.2011.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hoffman, G. E., Schrode, N., Flaherty, E., & Brennand, K. J. (2018). New considerations for hiPSC-based models of neuropsychiatric disorders. Molecular Psychiatry, 24, 49. https://doi.org/10.1038/s41380-018-0029-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Laurent, L. C., Ulitsky, I., Slavin, I., Tran, H., Schork, A., Morey, R., et al. (2011). Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell, 8(1), 106–118. https://doi.org/10.1016/j.stem.2010.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lister, R., Pelizzola, M., Kida, Y. S., Hawkins, R. D., Nery, J. R., Hon, G., et al. (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 471(7336), 68–73. https://doi.org/10.1038/nature09798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Julia, T. C. W., Carvalho, C. M. B., Yuan, B., Gu, S., Altheimer, A. N., McCarthy, S., et al. (2017). Divergent levels of marker chromosomes in an hiPSC-based model of psychosis. Stem Cell Reports, 8(3), 519–528. https://doi.org/10.1016/j.stemcr.2017.01.010

    Article  CAS  Google Scholar 

  187. Grochowski, C. M., Gu, S., Yuan, B., Tcw, J., Brennand, K. J., Sebat, J., et al. (2018). Marker chromosome genomic structure and temporal origin implicate a chromoanasynthesis event in a family with pleiotropic psychiatric phenotypes. Human Mutation, 39(7), 939–946. https://doi.org/10.1002/humu.23537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kyttala, A., Moraghebi, R., Valensisi, C., Kettunen, J., Andrus, C., Pasumarthy, K. K., et al. (2016). Genetic variability overrides the impact of parental cell type and determines iPSC Differentiation Potential. Stem Cell Reports, 6(2), 200–212. https://doi.org/10.1016/j.stemcr.2015.12.009

    Article  PubMed  PubMed Central  Google Scholar 

  189. Hoffman, G. E., Hartley, B. J., Flaherty, E., Ladran, I., Gochman, P., Ruderfer, D. M., et al. (2017). Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with post-mortem adult brains. Nature Communications, 8(1), 2225. https://doi.org/10.1038/s41467-017-02330-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Nehme, R., Zuccaro, E., Ghosh, S. D., Li, C., Sherwood, J. L., Pietilainen, O., et al. (2018). Combining NGN2 Programming with developmental patterning generates human excitatory neurons with NMDAR-mediated synaptic transmission. Cell Reports, 23(8), 2509–2523. https://doi.org/10.1016/j.celrep.2018.04.066

    Article  CAS  PubMed  Google Scholar 

  191. Mertens, J., Marchetto, M. C., Bardy, C., & Gage, F. H. (2016). Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nature Reviews Neuroscience, 17(7), 424–437. https://doi.org/10.1038/nrn.2016.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27(3), 275–280. https://doi.org/10.1038/nbt.1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Marchetto, M. C., Carromeu, C., Acab, A., Yu, D., Yeo, G. W., Mu, Y., et al. (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143(4), 527–539. https://doi.org/10.1016/j.cell.2010.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Maroof, A. M., Keros, S., Tyson, J. A., Ying, S. W., Ganat, Y. M., Merkle, F. T., et al. (2013). Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell, 12(5), 559–572. https://doi.org/10.1016/j.stem.2013.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kriks, S., Shim, J. W., Piao, J., Ganat, Y. M., Wakeman, D. R., Xie, Z., et al. (2011). Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature, 480(7378), 547–551. https://doi.org/10.1038/nature10648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lu J., Zhong X., Liu H., Hao L., Tzu-Ling Huang C., Sherafat M. A., et al. (2016) Generation of serotonin neurons from human pluripotent stem cells. Nature Biotechnology 34(1):89–94

    Google Scholar 

  197. Yu, D. X., Di Giorgio, F. P., Yao, J., Marchetto, M. C., Brennand, K., Wright, R., et al. (2014). Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Reports, 2(3), 295–310. https://doi.org/10.1016/j.stemcr.2014.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sarkar, A., Mei, A., Paquola, A. C. M., Stern, S., Bardy, C., Klug, J. R., et al. (2018). Efficient generation of CA3 neurons from human pluripotent stem cells enables modeling of hippocampal connectivity in vitro. Cell Stem Cell, 22(5), 684–697. e689. https://doi.org/10.1016/j.stem.2018.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Qi, Y., Zhang, X. J., Renier, N., Wu, Z., Atkin, T., Sun, Z., et al. (2017). Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nature Biotechnology, 35(2), 154–163. https://doi.org/10.1038/nbt.3777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Schwartzentruber, J., Foskolou, S., Kilpinen, H., Rodrigues, J., Alasoo, K., Knights, A. J., et al. (2018). Molecular and functional variation in iPSC-derived sensory neurons. Nature Genetics, 50(1), 54–61. https://doi.org/10.1038/s41588-017-0005-8

    Article  CAS  PubMed  Google Scholar 

  201. Kuijlaars, J., Oyelami, T., Diels, A., Rohrbacher, J., Versweyveld, S., Meneghello, G., et al. (2016). Sustained synchronized neuronal network activity in a human astrocyte co-culture system. Scientific Reports, 6, 36529. https://doi.org/10.1038/srep36529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Gunhanlar, N., Shpak, G., van der Kroeg, M., Gouty-Colomer, L. A., Munshi, S. T., Lendemeijer, B., et al. (2018). A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells. Molecular Psychiatry, 23(5), 1336–1344. https://doi.org/10.1038/mp.2017.56

    Article  CAS  PubMed  Google Scholar 

  203. Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284), 1035–1041. https://doi.org/10.1038/nature08797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Pang, Z. P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D. R., Yang, T. Q., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476(7359), 220–223. https://doi.org/10.1038/nature10202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zhang, Y., Pak, C., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., et al. (2013). Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron, 78(5), 785–798. https://doi.org/10.1016/j.neuron.2013.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ho, S. M., Hartley, B. J., Tcw, J., Beaumont, M., Stafford, K., Slesinger, P. A., et al. (2016). Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods, 101, 113–124. https://doi.org/10.1016/j.ymeth.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  207. Colasante, G., Lignani, G., Rubio, A., Medrihan, L., Yekhlef, L., Sessa, A., et al. (2015). Rapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogramming. Cell Stem Cell, 17(6), 719–734. https://doi.org/10.1016/j.stem.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  208. Sun, A. X., Yuan, Q., Tan, S., Xiao, Y., Wang, D., Khoo, A. T., et al. (2016). Direct induction and functional maturation of forebrain GABAergic neurons from human pluripotent stem cells. Cell Reports, 16(7), 1942–1953. https://doi.org/10.1016/j.celrep.2016.07.035

    Article  CAS  PubMed  Google Scholar 

  209. Yang, N., Chanda, S., Marro, S., Ng, Y. H., Janas, J. A., Haag, D., et al. (2017). Generation of pure GABAergic neurons by transcription factor programming. Nature Methods, 14(6), 621–628. https://doi.org/10.1038/nmeth.4291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Caiazzo, M., Dell'Anno, M. T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., et al. (2011). Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 476(7359), 224–227. https://doi.org/10.1038/nature10284

    Article  CAS  PubMed  Google Scholar 

  211. Theka, I., Caiazzo, M., Dvoretskova, E., Leo, D., Ungaro, F., Curreli, S., et al. (2013). Rapid generation of functional dopaminergic neurons from human induced pluripotent stem cells through a single-step procedure using cell lineage transcription factors. Stem Cells Translational Medicine, 2(6), 473–479. https://doi.org/10.5966/sctm.2012-0133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Lu, J., Zhong, X., Liu, H., Hao, L., Huang, C. T., Sherafat, M. A., et al. (2016). Generation of serotonin neurons from human pluripotent stem cells. Nature Biotechnology, 34(1), 89–94. https://doi.org/10.1038/nbt.3435

    Article  CAS  PubMed  Google Scholar 

  213. Vadodaria, K. C., Mertens, J., Paquola, A., Bardy, C., Li, X., Jappelli, R., et al. (2016). Generation of functional human serotonergic neurons from fibroblasts. Molecular Psychiatry, 21(1), 49–61. https://doi.org/10.1038/mp.2015.161

    Article  CAS  PubMed  Google Scholar 

  214. Brennand, K. J., Simone, A., Jou, J., Gelboin-Burkhart, C., Tran, N., Sangar, S., et al. (2011). Modelling schizophrenia using human induced pluripotent stem cells. Nature, 473(7346), 221–225. https://doi.org/10.1038/nature09915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Hook, V., Brennand, K. J., Kim, Y., Toneff, T., Funkelstein, L., Lee, K. C., et al. (2014). Human iPSC neurons display activity-dependent neurotransmitter secretion: aberrant catecholamine levels in schizophrenia neurons. Stem Cell Reports, 3(4), 531–538. https://doi.org/10.1016/j.stemcr.2014.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Robicsek, O., Karry, R., Petit, I., Salman-Kesner, N., Muller, F. J., Klein, E., et al. (2013). Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Molecular Psychiatry, 18(10), 1067–1076. https://doi.org/10.1038/mp.2013.67

    Article  CAS  PubMed  Google Scholar 

  217. Xu, J., Hartley, B. J., Kurup, P., Phillips, A., Topol, A., Xu, M., et al. (2018). Inhibition of STEP61 ameliorates deficits in mouse and hiPSC-based schizophrenia models. Molecular Psychiatry, 23(2), 271–281. https://doi.org/10.1038/mp.2016.163

    Article  CAS  PubMed  Google Scholar 

  218. Carty, N. C., Xu, J., Kurup, P., Brouillette, J., Goebel-Goody, S. M., Austin, D. R., et al. (2012). The tyrosine phosphatase STEP: implications in schizophrenia and the molecular mechanism underlying antipsychotic medications. Translational Psychiatry, 2, e137. https://doi.org/10.1038/tp.2012.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Brennand, K., Savas, J. N., Kim, Y., Tran, N., Simone, A., Hashimoto-Torii, K., et al. (2015). Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Molecular Psychiatry, 20(3), 361–368. https://doi.org/10.1038/mp.2014.22

    Article  CAS  PubMed  Google Scholar 

  220. Topol, A., English, J. A., Flaherty, E., Rajarajan, P., Hartley, B. J., Gupta, S., et al. (2015a). Increased abundance of translation machinery in stem cell-derived neural progenitor cells from four schizophrenia patients. Translational Psychiatry, 5, e662. https://doi.org/10.1038/tp.2015.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Topol, A., Zhu, S., Tran, N., Simone, A., Fang, G., & Brennand, K. J. (2015b). Altered WNT signaling in human induced pluripotent stem cell neural progenitor cells derived from four schizophrenia patients. Biological Psychiatry, 78(6), e29–e34. https://doi.org/10.1016/j.biopsych.2014.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Casas, B. S., Vitoria, G., do Costa, M. N., Madeiro da Costa, R., Trindade, P., Maciel, R., et al. (2018). hiPSC-derived neural stem cells from patients with schizophrenia induce an impaired angiogenesis. Translational Psychiatry, 8(1), 48. https://doi.org/10.1038/s41398-018-0095-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Hino, M., Kunii, Y., Matsumoto, J., Wada, A., Nagaoka, A., Niwa, S., et al. (2016). Decreased VEGFR2 expression and increased phosphorylated Akt1 in the prefrontal cortex of individuals with schizophrenia. Journal of Psychiatric Research, 82, 100–108. https://doi.org/10.1016/j.jpsychires.2016.07.018

    Article  PubMed  Google Scholar 

  224. Lee, B. H., Hong, J. P., Hwang, J. A., Ham, B. J., Na, K. S., Kim, W. J., et al. (2015). Alterations in plasma vascular endothelial growth factor levels in patients with schizophrenia before and after treatment. Psychiatry Research, 228(1), 95–99. https://doi.org/10.1016/j.psychres.2015.04.020

    Article  CAS  PubMed  Google Scholar 

  225. Lopes, R., Soares, R., Coelho, R., & Figueiredo-Braga, M. (2015). Angiogenesis in the pathophysiology of schizophrenia - a comprehensive review and a conceptual hypothesis. Life Sciences, 128, 79–93. https://doi.org/10.1016/j.lfs.2015.02.010

    Article  CAS  PubMed  Google Scholar 

  226. Gonzalez, D. M., Gregory, J., & Brennand, K. J. (2017). The importance of non-neuronal cell types in hiPSC-based disease modeling and drug screening. Frontiers in Cell and Development Biology, 5, 117. https://doi.org/10.3389/fcell.2017.00117

    Article  Google Scholar 

  227. Ben-Shachar, D. (2002). Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. Journal of Neurochemistry, 83(6), 1241–1251.

    CAS  PubMed  Google Scholar 

  228. Prabakaran, S., Swatton, J. E., Ryan, M. M., Huffaker, S. J., Huang, J. T., Griffin, J. L., et al. (2004). Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Molecular Psychiatry, 9(7), 684–697, 643. https://doi.org/10.1038/sj.mp.4001511

    Article  CAS  PubMed  Google Scholar 

  229. Uguz, A. C., Demirci, K., & Espino, J. (2016). The importance of melatonin and mitochondria interaction in mood disorders and schizophrenia: a current assessment. Current Medicinal Chemistry, 23(20), 2146–2158.

    CAS  PubMed  Google Scholar 

  230. Paulsen Bda, S., de Moraes Maciel, R., Galina, A., Souza da Silveira, M., dos Santos Souza, C., Drummond, H., et al. (2012). Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient. Cell Transplantation, 21(7), 1547–1559. https://doi.org/10.3727/096368911X600957

    Article  PubMed  Google Scholar 

  231. Robicsek, O., Ene, H. M., Karry, R., Ytzhaki, O., Asor, E., McPhie, D., et al. (2018). Isolated mitochondria transfer improves neuronal differentiation of schizophrenia-derived induced pluripotent stem cells and rescues deficits in a rat model of the disorder. Schizophrenia Bulletin, 44(2), 432–442. https://doi.org/10.1093/schbul/sbx077

    Article  PubMed  Google Scholar 

  232. Caputo, V., Ciolfi, A., Macri, S., & Pizzuti, A. (2015). The emerging role of MicroRNA in schizophrenia. CNS & Neurological Disorders Drug Targets, 14(2), 208–221.

    CAS  Google Scholar 

  233. Shi, S., Leites, C., He, D., Schwartz, D., Moy, W., Shi, J., et al. (2014). MicroRNA-9 and microRNA-326 regulate human dopamine D2 receptor expression, and the microRNA-mediated expression regulation is altered by a genetic variant. The Journal of Biological Chemistry, 289(19), 13434–13444. https://doi.org/10.1074/jbc.M113.535203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Han, J., Kim, H. J., Schafer, S. T., Paquola, A., Clemenson, G. D., Toda, T., et al. (2016). Functional implications of miR-19 in the migration of newborn neurons in the adult brain. Neuron, 91(1), 79–89. https://doi.org/10.1016/j.neuron.2016.05.034

    Article  CAS  PubMed  Google Scholar 

  235. Topol, A., Zhu, S., Hartley, B. J., English, J., Hauberg, M. E., Tran, N., et al. (2016). Dysregulation of miRNA-9 in a subset of schizophrenia patient-derived neural progenitor cells. Cell Reports, 15(5), 1024–1036. https://doi.org/10.1016/j.celrep.2016.03.090

    Article  CAS  PubMed  Google Scholar 

  236. Hauberg, M. E., Roussos, P., Grove, J., Borglum, A. D., Mattheisen, M., & Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2016). Analyzing the role of MicroRNAs in schizophrenia in the context of common genetic risk variants. JAMA Psychiatry, 73(4), 369–377. https://doi.org/10.1001/jamapsychiatry.2015.3018

    Article  PubMed  PubMed Central  Google Scholar 

  237. Hoffman, G. E., & Brennand, K. J. (2018). Mapping regulatory variants in hiPSC models. Nature Genetics, 50(1), 1–2. https://doi.org/10.1038/s41588-017-0017-4

    Article  CAS  PubMed  Google Scholar 

  238. Roussos, P., Guennewig, B., Kaczorowski, D. C., Barry, G., & Brennand, K. J. (2016). Activity-dependent changes in gene expression in schizophrenia human-induced pluripotent stem cell neurons. JAMA Psychiatry, 73(11), 1180–1188. https://doi.org/10.1001/jamapsychiatry.2016.2575

    Article  PubMed  PubMed Central  Google Scholar 

  239. Yoshimizu, T., Pan, J. Q., Mungenast, A. E., Madison, J. M., Su, S., Ketterman, J., et al. (2015). Functional implications of a psychiatric risk variant within CACNA1C in induced human neurons. Molecular Psychiatry, 20(2), 162–169. https://doi.org/10.1038/mp.2014.143

    Article  CAS  PubMed  Google Scholar 

  240. Forrest, M. P., Zhang, H., Moy, W., McGowan, H., Leites, C., Dionisio, L. E., et al. (2017). Open chromatin profiling in hiPSC-derived neurons prioritizes functional noncoding psychiatric risk variants and highlights neurodevelopmental loci. Cell Stem Cell, 21(3), 305–318. e308. https://doi.org/10.1016/j.stem.2017.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Powell, S. K., Gregory, J., Akbarian, S., & Brennand, K. J. (2017). Application of CRISPR/Cas9 to the study of brain development and neuropsychiatric disease. Molecular and Cellular Neurosciences, 82, 157–166. https://doi.org/10.1016/j.mcn.2017.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Ho, S. M., Hartley, B. J., Flaherty, E., Rajarajan, P., Abdelaal, R., Obiorah, I., et al. (2017). Evaluating synthetic activation and repression of neuropsychiatric-related genes in hiPSC-derived NPCs, neurons, and astrocytes. Stem Cell Reports, 9(2), 615–628. https://doi.org/10.1016/j.stemcr.2017.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Jiang, Y., Loh, Y. E., Rajarajan, P., Hirayama, T., Liao, W., Kassim, B. S., et al. (2017). The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain. Nature Genetics, 49(8), 1239–1250. https://doi.org/10.1038/ng.3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Rajarajan, P., Jiang, Y., Kassim, B. S., & Akbarian, S. (2018b). Chromosomal conformations and epigenomic regulation in schizophrenia. Progress in Molecular Biology and Translational Science, 157, 21–40. https://doi.org/10.1016/bs.pmbts.2017.11.022

    Article  PubMed  PubMed Central  Google Scholar 

  245. Zarrei, M., MacDonald, J. R., Merico, D., & Scherer, S. W. (2015). A copy number variation map of the human genome. Nature Reviews Genetics, 16(3), 172–183. https://doi.org/10.1038/nrg3871

    Article  CAS  PubMed  Google Scholar 

  246. Ahn, K., Gotay, N., Andersen, T. M., Anvari, A. A., Gochman, P., Lee, Y., et al. (2014). High rate of disease-related copy number variations in childhood onset schizophrenia. Molecular Psychiatry, 19(5), 568–572. https://doi.org/10.1038/mp.2013.59

    Article  CAS  PubMed  Google Scholar 

  247. Flaherty E. K., Brennand K. J., (2017) Using hiPSCs to model neuropsychiatric copy number variations (CNVs) has potential to reveal underlying disease mechanisms. Brain Research 1655:283–293

    Google Scholar 

  248. Gothelf, D., Eliez, S., Thompson, T., Hinard, C., Penniman, L., Feinstein, C., et al. (2005). COMT genotype predicts longitudinal cognitive decline and psychosis in 22q11.2 deletion syndrome. Nature Neuroscience, 8(11), 1500–1502. https://doi.org/10.1038/nn1572

    Article  CAS  PubMed  Google Scholar 

  249. Gothelf, D., Feinstein, C., Thompson, T., Gu, E., Penniman, L., Van Stone, E., et al. (2007). Risk factors for the emergence of psychotic disorders in adolescents with 22q11.2 deletion syndrome. The American Journal of Psychiatry, 164(4), 663–669. https://doi.org/10.1176/ajp.2007.164.4.663

    Article  PubMed  Google Scholar 

  250. Murphy, K. C., Jones, L. A., & Owen, M. J. (1999). High rates of schizophrenia in adults with velo-cardio-facial syndrome. Archives of General Psychiatry, 56(10), 940–945.

    CAS  PubMed  Google Scholar 

  251. Pedrosa, E., Sandler, V., Shah, A., Carroll, R., Chang, C., Rockowitz, S., et al. (2011). Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. Journal of Neurogenetics, 25(3), 88–103. https://doi.org/10.3109/01677063.2011.597908

    Article  CAS  PubMed  Google Scholar 

  252. Lin, M., Pedrosa, E., Hrabovsky, A., Chen, J., Puliafito, B. R., Gilbert, S. R., et al. (2016). Integrative transcriptome network analysis of iPSC-derived neurons from schizophrenia and schizoaffective disorder patients with 22q11.2 deletion. BMC Systems Biology, 10(1), 105. https://doi.org/10.1186/s12918-016-0366-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Zhao, D., Lin, M., Chen, J., Pedrosa, E., Hrabovsky, A., Fourcade, H. M., et al. (2015). MicroRNA profiling of neurons generated using induced pluripotent stem cells derived from patients with schizophrenia and schizoaffective disorder, and 22q11.2 Del. PLoS One, 10(7), e0132387. https://doi.org/10.1371/journal.pone.0132387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Toyoshima, M., Akamatsu, W., Okada, Y., Ohnishi, T., Balan, S., Hisano, Y., et al. (2016). Analysis of induced pluripotent stem cells carrying 22q11.2 deletion. Translational Psychiatry, 6(11), e934. https://doi.org/10.1038/tp.2016.206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Warnica, W., Merico, D., Costain, G., Alfred, S. E., Wei, J., Marshall, C. R., et al. (2015). Copy number variable microRNAs in schizophrenia and their neurodevelopmental gene targets. Biological Psychiatry, 77(2), 158–166. https://doi.org/10.1016/j.biopsych.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  256. Yoon, K. J., Nguyen, H. N., Ursini, G., Zhang, F., Kim, N. S., Wen, Z., et al. (2014). Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with adherens junctions and polarity. Cell Stem Cell, 15(1), 79–91. https://doi.org/10.1016/j.stem.2014.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. McCarthy S. E., Makarov V., Kirov G., Addington A. M., McClellan J., Yoon S., et al. (2009) Microduplications of 16p11.2 are associated with schizophrenia. Nature Genetics 41 (11):1223–1227

    Google Scholar 

  258. Deshpande, A., Yadav, S., Dao, D. Q., Wu, Z. Y., Hokanson, K. C., Cahill, M. K., et al. (2017). Cellular phenotypes in human iPSC-derived neurons from a genetic model of autism spectrum disorder. Cell Reports, 21(10), 2678–2687. https://doi.org/10.1016/j.celrep.2017.11.037

    Article  CAS  PubMed  Google Scholar 

  259. Rujescu, D., Ingason, A., Cichon, S., Pietilainen, O. P., Barnes, M. R., Toulopoulou, T., et al. (2009). Disruption of the neurexin 1 gene is associated with schizophrenia. Human Molecular Genetics, 18(5), 988–996. https://doi.org/10.1093/hmg/ddn351

    Article  CAS  PubMed  Google Scholar 

  260. Zeng, L., Zhang, P., Shi, L., Yamamoto, V., Lu, W., & Wang, K. (2013). Functional impacts of NRXN1 knockdown on neurodevelopment in stem cell models. PLoS One, 8(3), e59685. https://doi.org/10.1371/journal.pone.0059685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Pak, C., Danko, T., Zhang, Y., Aoto, J., Anderson, G., Maxeiner, S., et al. (2015). Human neuropsychiatric disease modeling using conditional deletion reveals synaptic transmission defects caused by heterozygous mutations in NRXN1. Cell Stem Cell, 17(3), 316–328. https://doi.org/10.1016/j.stem.2015.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Flaherty E., Zhu S., Barretto N., Cheng E., Michael Deans P. J., Fernando M. B., et al. (2019) Neuronal impact of patient-specific aberrant NRXN1α splicing. Nature Genetics 51 (12):1679–1690

    Google Scholar 

  263. Jacobs, P., Brunton, M., Frackiewicz, A., Newton, M., Cook, P., & Robson, E. (1970). Studies on a family with three cytogenetic markers. Annals of Human Genetics, 33, 325–336.

    Google Scholar 

  264. St Clair, D., Blackwood, D., Muir, W., Carothers, A., Walker, M., Spowart, G., et al. (1990). Association within a family of a balanced autosomal translocation with major mental illness. Lancet, 336(8706), 13–16.

    CAS  PubMed  Google Scholar 

  265. Millar, J. K., Wilson-Annan, J. C., Anderson, S., Christie, S., Taylor, M. S., Semple, C. A., et al. (2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Human Molecular Genetics, 9(9), 1415–1423.

    CAS  PubMed  Google Scholar 

  266. Sachs, N. A., Sawa, A., Holmes, S. E., Ross, C. A., DeLisi, L. E., & Margolis, R. L. (2005). A frameshift mutation in Disrupted in Schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Molecular Psychiatry, 10(8), 758–764. https://doi.org/10.1038/sj.mp.4001667

    Article  CAS  PubMed  Google Scholar 

  267. Green, E. K., Norton, N., Peirce, T., Grozeva, D., Kirov, G., Owen, M. J., et al. (2006). Evidence that a DISC1 frame-shift deletion associated with psychosis in a single family may not be a pathogenic mutation. Molecular Psychiatry, 11(9), 798–799. https://doi.org/10.1038/sj.mp.4001853

    Article  CAS  PubMed  Google Scholar 

  268. Chiang, C. H., Su, Y., Wen, Z., Yoritomo, N., Ross, C. A., Margolis, R. L., et al. (2011). Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Molecular Psychiatry, 16(4), 358–360. https://doi.org/10.1038/mp.2011.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Wen, Z., Nguyen, H. N., Guo, Z., Lalli, M. A., Wang, X., Su, Y., et al. (2014). Synaptic dysregulation in a human iPS cell model of mental disorders. Nature, 515(7527), 414–418. https://doi.org/10.1038/nature13716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Murai, K., Sun, G., Ye, P., Tian, E., Yang, S., Cui, Q., et al. (2016). The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nature Communications, 7, 10965. https://doi.org/10.1038/ncomms10965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Yalla, K., Elliott, C., Day, J. P., Findlay, J., Barratt, S., Hughes, Z. A., et al. (2018). FBXW7 regulates DISC1 stability via the ubiquitin-proteosome system. Molecular Psychiatry, 23(5), 1278–1286. https://doi.org/10.1038/mp.2017.138

    Article  CAS  PubMed  Google Scholar 

  272. Chiu, F. L., Lin, J. T., Chuang, C. Y., Chien, T., Chen, C. M., Chen, K. H., et al. (2015). Elucidating the role of the A2A adenosine receptor in neurodegeneration using neurons derived from Huntington’s disease iPSCs. Human Molecular Genetics, 24(21), 6066–6079. https://doi.org/10.1093/hmg/ddv318

    Article  CAS  PubMed  Google Scholar 

  273. Chien, T., Weng, Y. T., Chang, S. Y., Lai, H. L., Chiu, F. L., Kuo, H. C., et al. (2018). GSK3beta negatively regulates TRAX, a scaffold protein implicated in mental disorders, for NHEJ-mediated DNA repair in neurons. Molecular Psychiatry. https://doi.org/10.1038/s41380-017-0007-z

  274. Srikanth, P., Han, K., Callahan, D. G., Makovkina, E., Muratore, C. R., Lalli, M. A., et al. (2015). Genomic DISC1 disruption in hiPSCs alters Wnt signaling and neural cell fate. Cell Reports, 12(9), 1414–1429. https://doi.org/10.1016/j.celrep.2015.07.061

    Article  CAS  PubMed  Google Scholar 

  275. Bradshaw, N. J., & Porteous, D. J. (2012). DISC1-binding proteins in neural development, signalling and schizophrenia. Neuropharmacology, 62(3), 1230–1241. https://doi.org/10.1016/j.neuropharm.2010.12.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Camargo, L. M., Collura, V., Rain, J. C., Mizuguchi, K., Hermjakob, H., Kerrien, S., et al. (2007). Disrupted in schizophrenia 1 interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Molecular Psychiatry, 12(1), 74–86. https://doi.org/10.1038/sj.mp.4001880

    Article  CAS  PubMed  Google Scholar 

  277. Camargo, L. M., Wang, Q., & Brandon, N. J. (2008). What can we learn from the disrupted in schizophrenia 1 interactome: lessons for target identification and disease biology? Novartis Foundation Symposium, 289, 208–216; discussion 216-221, 238-240.

    CAS  PubMed  Google Scholar 

  278. Teng, S., Thomson, P. A., McCarthy, S., Kramer, M., Muller, S., & Lihm, J. (2018). Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia. Molecular Psychiatry, 23(5), 1270–1277. https://doi.org/10.1038/mp.2017.115

    Article  CAS  PubMed  Google Scholar 

  279. Nakata, K., Lipska, B. K., Hyde, T. M., Ye, T., Newburn, E. N., Morita, Y., et al. (2009). DISC1 splice variants are upregulated in schizophrenia and associated with risk polymorphisms. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15873–15878. https://doi.org/10.1073/pnas.0903413106

    Article  PubMed  PubMed Central  Google Scholar 

  280. Wilkinson, B., Evgrafov, O. V., Zheng, D., Hartel, N., Knowles, J. A., Graham, N. A., et al. (2018). Endogenous cell type-specific disrupted in schizophrenia 1 interactomes reveal protein networks associated with neurodevelopmental disorders. Biological Psychiatry, 85, 305. https://doi.org/10.1016/j.biopsych.2018.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Turner, T. N., Yi, Q., Krumm, N., Huddleston, J., Hoekzema, K., Stessman, H. A., et al. (2017). denovo-db: a compendium of human de novo variants. Nucleic Acids Research, 45(D1), D804–D811. https://doi.org/10.1093/nar/gkw865

    Article  CAS  PubMed  Google Scholar 

  282. Bakircioglu, M., Carvalho, O. P., Khurshid, M., Cox, J. J., Tuysuz, B., Barak, T., et al. (2011). The essential role of centrosomal NDE1 in human cerebral cortex neurogenesis. American Journal of Human Genetics, 88(5), 523–535. https://doi.org/10.1016/j.ajhg.2011.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Ye, F., Kang, E., Yu, C., Qian, X., Jacob, F., Yu, C., et al. (2017). DISC1 regulates neurogenesis via modulating kinetochore attachment of Ndel1/Nde1 during mitosis. Neuron, 96(5), 1041–1054. e1045. https://doi.org/10.1016/j.neuron.2017.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Mathieson, I., Munafo, M. R., & Flint, J. (2012). Meta-analysis indicates that common variants at the DISC1 locus are not associated with schizophrenia. Molecular Psychiatry, 17(6), 634–641. https://doi.org/10.1038/mp.2011.41

    Article  CAS  PubMed  Google Scholar 

  285. Richards, A. L., Leonenko, G., Walters, J. T., Kavanagh, D. H., Rees, E. G., Evans, A., et al. (2016). Exome arrays capture polygenic rare variant contributions to schizophrenia. Human Molecular Genetics, 25(5), 1001–1007. https://doi.org/10.1093/hmg/ddv620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Farrell, M. S., Werge, T., Sklar, P., Owen, M. J., Ophoff, R. A., O'Donovan, M. C., et al. (2015). Evaluating historical candidate genes for schizophrenia. Molecular Psychiatry, 20(5), 555–562. https://doi.org/10.1038/mp.2015.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Sullivan, P. F. (2013). Questions about DISC1 as a genetic risk factor for schizophrenia. Molecular Psychiatry, 18(10), 1050–1052. https://doi.org/10.1038/mp.2012.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Lee I. S., Carvalho C. M. B., Douvaras P., Ho S-M, Hartley B. J., Zuccherato L. W., et al. (2015) Characterization of molecular and cellular phenotypes associated with a heterozygous CNTNAP2 deletion using patient-derived hiPSC neural cells. npj Schizophrenia 1 (1)

    Google Scholar 

  289. Flaherty, E., Deranieh, R. M., Artimovich, E., Lee, I. S., Siegel, A. J., Levy, D. L., et al. (2017). Patient-derived hiPSC neurons with heterozygous CNTNAP2 deletions display altered neuronal gene expression and network activity. NPJ Schizophrenia, 3, 35. https://doi.org/10.1038/s41537-017-0033-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. de Vrij, F. M., Bouwkamp, C. G., Gunhanlar, N., Shpak, G., Lendemeijer, B., Baghdadi, M., et al. (2018). Candidate CSPG4 mutations and induced pluripotent stem cell modeling implicate oligodendrocyte progenitor cell dysfunction in familial schizophrenia. Molecular Psychiatry, 24, 757. https://doi.org/10.1038/s41380-017-0004-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Guennewig, B., Bitar, M., Obiorah, I., Hanks, J., O'Brien, E. A., Kaczorowski, D. C., et al. (2018). THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Translational Psychiatry, 8(1), 89. https://doi.org/10.1038/s41398-018-0137-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Obiorah, I. V., Muhammad, H., Stafford, K., Flaherty, E. K., & Brennand, K. J. (2017). THC treatment alters glutamate receptor gene expression in human stem cell-derived neurons. Molecular Neuropsychiatry, 3(2), 73–84. https://doi.org/10.1159/000477762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Khandaker, G. M., Zimbron, J., Lewis, G., & Jones, P. B. (2013). Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychological Medicine, 43(2), 239–257. https://doi.org/10.1017/S0033291712000736

    Article  CAS  PubMed  Google Scholar 

  294. Kahn, R. S., Sommer, I. E., Murray, R. M., Meyer-Lindenberg, A., Weinberger, D. R., Cannon, T. D., et al. (2015). Schizophrenia. Nature Reviews Disease Primers, 1, 15067. https://doi.org/10.1038/nrdp.2015.67

    Article  PubMed  Google Scholar 

  295. Walsh, N. C., Kenney, L. L., Jangalwe, S., Aryee, K. E., Greiner, D. L., Brehm, M. A., et al. (2017). Humanized mouse models of clinical disease. Annual Review of Pathology, 12, 187–215. https://doi.org/10.1146/annurev-pathol-052016-100332

    Article  CAS  PubMed  Google Scholar 

  296. Allswede, D. M., Buka, S. L., Yolken, R. H., Torrey, E. F., & Cannon, T. D. (2016). Elevated maternal cytokine levels at birth and risk for psychosis in adult offspring. Schizophrenia Research, 172(1–3), 41–45. https://doi.org/10.1016/j.schres.2016.02.022

    Article  PubMed  Google Scholar 

  297. Lin, M., Zhao, D., Hrabovsky, A., Pedrosa, E., Zheng, D., & Lachman, H. M. (2014). Heat shock alters the expression of schizophrenia and autism candidate genes in an induced pluripotent stem cell model of the human telencephalon. PLoS One, 9(4), e94968. https://doi.org/10.1371/journal.pone.0094968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Hashimoto-Torii, K., Torii, M., Fujimoto, M., Nakai, A., El Fatimy, R., Mezger, V., et al. (2014). Roles of heat shock factor 1 in neuronal response to fetal environmental risks and its relevance to brain disorders. Neuron, 82(3), 560–572. https://doi.org/10.1016/j.neuron.2014.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Ishii, S., Torii, M., Son, A. I., Rajendraprasad, M., Morozov, Y. M., Kawasawa, Y. I., et al. (2017). Variations in brain defects result from cellular mosaicism in the activation of heat shock signalling. Nature Communications, 8, 15157. https://doi.org/10.1038/ncomms15157

    Article  PubMed  PubMed Central  Google Scholar 

  300. Vallersnes, O. M., Dines, A. M., Wood, D. M., Yates, C., Heyerdahl, F., Hovda, K. E., et al. (2016). Psychosis associated with acute recreational drug toxicity: a European case series. BMC Psychiatry, 16, 293. https://doi.org/10.1186/s12888-016-1002-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Callaghan, R. C., Cunningham, J. K., Allebeck, P., Arenovich, T., Sajeev, G., Remington, G., et al. (2012). Methamphetamine use and schizophrenia: a population-based cohort study in California. The American Journal of Psychiatry, 169(4), 389–396. https://doi.org/10.1176/appi.ajp.2011.10070937

    Article  PubMed  Google Scholar 

  302. Nielsen, S. M., Toftdahl, N. G., Nordentoft, M., & Hjorthoj, C. (2017). Association between alcohol, cannabis, and other illicit substance abuse and risk of developing schizophrenia: a nationwide population based register study. Psychological Medicine, 47(9), 1668–1677. https://doi.org/10.1017/S0033291717000162

    Article  CAS  PubMed  Google Scholar 

  303. de Leon, J., & Diaz, F. J. (2005). A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophrenia Research, 76(2–3), 135–157. https://doi.org/10.1016/j.schres.2005.02.010

    Article  PubMed  Google Scholar 

  304. Pasman, J. A., Verweij, K. J. H., Gerring, Z., Stringer, S., Sanchez-Roige, S., Treur, J. L., et al. (2018). GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophrenia. Nature Neuroscience, 21(9), 1161–1170. https://doi.org/10.1038/s41593-018-0206-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Chatterton, Z., Hartley, B. J., Seok, M. H., Mendelev, N., Chen, S., Milekic, M., et al. (2017). In utero exposure to maternal smoking is associated with DNA methylation alterations and reduced neuronal content in the developing fetal brain. Epigenetics & Chromatin, 10, 4. https://doi.org/10.1186/s13072-017-0111-y

    Article  CAS  Google Scholar 

  306. Oedegaard, K. J., Alda, M., Anand, A., Andreassen, O. A., Balaraman, Y., Berrettini, W. H., et al. (2016). The pharmacogenomics of bipolar disorder study (PGBD): identification of genes for lithium response in a prospective sample. BMC Psychiatry, 16, 129. https://doi.org/10.1186/s12888-016-0732-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Ruderfer, D. M., Charney, A. W., Readhead, B., Kidd, B. A., Kahler, A. K., Kenny, P. J., et al. (2016). Polygenic overlap between schizophrenia risk and antipsychotic response: a genomic medicine approach. Lancet Psychiatry, 3(4), 350–357. https://doi.org/10.1016/S2215-0366(15)00553-2

    Article  PubMed  PubMed Central  Google Scholar 

  308. Li, J., Yoshikawa, A., Brennan, M. D., Ramsey, T. L., & Meltzer, H. Y. (2018). Genetic predictors of antipsychotic response to lurasidone identified in a genome wide association study and by schizophrenia risk genes. Schizophrenia Research, 192, 194–204. https://doi.org/10.1016/j.schres.2017.04.009

    Article  PubMed  Google Scholar 

  309. Kim, Y., Giusti-Rodriguez, P., Crowley, J. J., Bryois, J., Nonneman, R. J., Ryan, A. K., et al. (2018). Comparative genomic evidence for the involvement of schizophrenia risk genes in antipsychotic effects. Molecular Psychiatry, 23(3), 708–712. https://doi.org/10.1038/mp.2017.111

    Article  CAS  PubMed  Google Scholar 

  310. Readhead, B., Hartley, B. J., Eastwood, B. J., Collier, D. A., Evans, D., & Farias, R. (2018). Expression-based drug screening of neural progenitor cells from individuals with schizophrenia. Nature Communications, 9(1), 4412. https://doi.org/10.1038/s41467-018-06515-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Xu, M., Lee, E. M., Wen, Z., Cheng, Y., Huang, W. K., Qian, X., et al. (2016). Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nature Medicine, 22(10), 1101–1107. https://doi.org/10.1038/nm.4184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Zhou, T., Tan, L., Cederquist, G. Y., Fan, Y., Hartley, B. J., Mukherjee, S., et al. (2017). High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit Zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell, 21(2), 274–283. e275. https://doi.org/10.1016/j.stem.2017.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Watanabe, M., Buth, J. E., Vishlaghi, N., de la Torre-Ubieta, L., Taxidis, J., Khakh, B. S., et al. (2017). Self-organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection. Cell Reports, 21(2), 517–532. https://doi.org/10.1016/j.celrep.2017.09.047

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen J. Brennand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Powell, S.K., O’Shea, C.P., Shannon, S.R., Akbarian, S., Brennand, K.J. (2020). Investigation of Schizophrenia with Human Induced Pluripotent Stem Cells. In: DiCicco-Bloom, E., Millonig, J. (eds) Neurodevelopmental Disorders . Advances in Neurobiology, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-45493-7_6

Download citation

Publish with us

Policies and ethics