Skip to main content

Biotechnology Contributing to Integrated Pest Management: The Example of Two Major Coconut Pests, Oryctes rhinoceros and Brontispa longissima

  • Chapter
  • First Online:
Coconut Biotechnology: Towards the Sustainability of the ‘Tree of Life’

Abstract

Pests and diseases are major limiting factors in coconut (Cocos nucifera L.) production. Pests ranging from insects to mites and diseases from fungi to phytoplasma all negatively affect the palm, from the seedling to the field production stage. By presenting examples of two major pests, the coconut rhinoceros beetle (Oryctes rhinoceros L.) and the coconut hispid beetle (Brontispa longissima Gestro), this chapter illustrates how various biotechnologies have helped in the development of an efficient integrated pest management program, in which the available control approaches are combined to provide an effective management system. Biotechnological tools to help control these major production constraints of coconut are already available, but not always efficacious in reducing damage economically. Hence, further innovations in pest and disease management are required to better suppress the build-up of pest and disease populations in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Ayedh H, Rizwan-ul-Haq M, Hussain A et al (2016) Insecticidal potency of RNAi-based catalase knockdown in Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae). Pest Manag Sci 72(11):2118–2127

    CAS  PubMed  Google Scholar 

  • Ali H, Muhammad A, Bala NS et al (2018) Genomic evaluations of Wolbachia and mtDNA in the population of coconut hispine beetle, Brontispa longissima (Coleoptera: Chrysomelidae). Mol Phylogenet Evol 127:1000–1009

    PubMed  Google Scholar 

  • Alouw JC (2007a) Feromon dan Pemanfaatannya Dalam Pengendalian Hama Kumbang Kelapa Oryctes rhinoceros (Coleoptera : Scarabaeidae) (Pheromone and its use to control coconut beetle). Buletin Palma 32:12–21

    Google Scholar 

  • Alouw JC (2007b) Kemampuan Memangsa Predator Celisoches morio Terhadap Hama Kelapa Brontispa longissima (Predatory capacity of Celisoches morio on coconut pest Brontispa longissima). Buletin Palma 33:1–8

    Google Scholar 

  • Alouw JC, Hosang ML (2008a) Observasi Musuh Alami Hama Brontispa longissima (Gestro) di Propinsi Maluku (Observation of natural enemies of Brontispa longissima (Gestro) in Maluku province). Buletin Palma 35(1):34–42

    Google Scholar 

  • Alouw JC, Hosang ML (2008b) Survei Hama Kumbang Kelapa Brontispa longissima (Gestro) dan Musuh Alaminya di Propinsi SUlawesi Utara (Survey on coconut Hispine beetle Brontispa longissima (Gestro) and its natural enemies in North Sulawesi province). Buletin Palma 34(1):9–17

    Google Scholar 

  • Alouw JC, Lumentut N, Hosang ML (2005) Cendawan entomopatogen Metarhizium anisopliae: Ekobiologi dan penilaian mutu biakannya. Entomopathogen Metarhizium anisopliae: ecobiology and quality control. In: Seminar Nasional Pengendalian Hama Terpadu pada Kelapa. (National Seminar on integrated coconut pests management). Balai Peneltiian tanaman Palma, Manado

    Google Scholar 

  • Alouw JC, Hosang MLA, Heliyanto B (2010) Hama Brontispa longissima (Coleoptera: Chrysomelidae): masalah dan pengendaliannya. In: Prosiding Konperensi Nasional Kelapa VII, buku 1. Balai Peneltiian tanaman Palma, Manado

    Google Scholar 

  • Alouw JC, Novianti D, Meldy D et al (2015) Molecular identification of bacterial pathogen infecting coconut leaf beetle Brontispa longissima (Coleoptera:Chrysomelidae) (Identifikasi Molekular Bakteri Pathogen yang Menginfeksi Hama Daun Kelapa Brontispa longissima (Coleoptera:Chrysomelidae)). Buletin Palma 16(2):147–153

    Google Scholar 

  • Andersen JC, Gruwell ME, Morse GE (2010) Cryptic diversity in the Aspidiotus nerii complex in Australia. Ann Entomol Soc Am 103(6):844–854

    CAS  Google Scholar 

  • Armstrong K, Ball S (2005) DNA barcodes for biosecurity: invasive species identification. Philos Trans R Soc B 360(1462):1813–1823

    CAS  Google Scholar 

  • Ashfaq M, Hebert PDN (2016) DNA barcodes for bio-surveillance: regulated and economically important arthropod plant pests. Genome 59(11):933–945

    CAS  PubMed  Google Scholar 

  • Balitka (1989) Pengendalian Kumbang kelapa Secara Terpadu. Direktorat Perlintan Perkebunan

    Google Scholar 

  • Baloğlu B, Clews E, Meier R (2018) NGS barcoding reveals high resistance of a hyperdiverse chironomid (Diptera) swamp fauna against invasion from adjacent freshwater reservoirs. Front Zool 15(1):1–8

    Google Scholar 

  • Baum JA, Bogaert T, Clinton W et al (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25(11):1322–1326

    CAS  PubMed  Google Scholar 

  • Bedford GO (1986) Biological control of the rhinoceros beetle (Oryctes rhinoceros) in the South Pacific by baculovirus. Agric Ecosyst Environ 15(2–3):141–147

    Google Scholar 

  • Bedford GO (2013a) Biology and management of palm dynastid beetles: recent advances. Annu Rev Entomol 58:353–372

    CAS  PubMed  Google Scholar 

  • Bedford GO (2013b) Long-term reduction in damage by rhinoceros beetle Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae: Dynastidae) to coconut palms at Oryctes Nudivirus release sites on Viti Levu, Fiji. Afr J Agric Res 8(49):6422–6425

    Google Scholar 

  • Bedford GO (2014) Advances in the control of rhinoceros beetle, Oryctes rhinoceros in oil palm. J Oil Palm Res 26(3):183–194

    CAS  Google Scholar 

  • Bedford GO (2018) Possibility of evolution in culture of the Oryctes nudivirus of the coconut Rhinoceros beetle Oryctes rhinoceros (Coleoptera: Scarabaeidae: Dynastinae). Advances in Entomology (6):27–33

    Google Scholar 

  • COGENT (2017) A global strategy for the conservation and use of coconut genetic resources 2018–2028 Bourdeix R and Prades A, compilers). Bioversity International, Montpellier, France

    Google Scholar 

  • Fire AZ (2007) Gene silencing by double-stranded RNA (Nobel lecture). Angew Chem Int Ed 46(37):6966–6984

    Google Scholar 

  • Fire A, Xu S, Montgomery M et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    CAS  PubMed  Google Scholar 

  • Fišer Pečnikar Ž, Buzan EV (2014) 20 years since the introduction of DNA barcoding: from theory to application. J Appl Genet 55(1):43–52

    PubMed  Google Scholar 

  • Gnanasegaram M, Muhamad R, Tan SG (2015) Genetic variation studies in Oryctes rhinoceros (L.) (Coleoptera : Scarabaeidae ) using single locus DNA microsatellite markers. J Entomol Zool Stud 3(2):225–237

    Google Scholar 

  • Gupta VK, Jindal V (2014) Biotechnological approaches for insect pest management. In: Integrated pest management. Academic Press, pp 311–335

    Google Scholar 

  • Hammack L (1997) Attractiveness of synthetic corn volatiles to feral northern and western corn rootworm beetles (Coleoptera: Chrysomelidae). Environ Entomol 26(2):311–317

    CAS  Google Scholar 

  • Hannon G (2002) RNA interference. Nature 418(6894):244–251

    CAS  PubMed  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL et al (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Biol Sci 270:313–322. https://doi.org/10.1098/rspb.2002.2218

    Article  CAS  Google Scholar 

  • Hosang ML (2013) Serangan Oryctes rhinoceros pada Kelapa Kopyor di Beberapa Sentra Produksi dan Potensi Metarhizium anisopliae sebagai Musuh Alami. Buletin Palma 14(1):47–53

    Google Scholar 

  • Hosang MLA, Alouw JC (2005) Perbaikan Teknologi PHT untuk hama Oryctes. In: Prosiding Seminar Nasional PHT Kelapa. Balai Peneltiian tanaman Palma, Manado

    Google Scholar 

  • Hosang MLA, Alouw JC (2014) Parasitoid, predator dan entomopatogen pada hama kelapa Brontispa longissima (Gestro). In: Prosiding Kongres VIII dan Sminar Nasional Perhimpunan Entomologi Indonesia. Perhimpunan Entomologi Indonesia (PEI), Bogor

    Google Scholar 

  • Hosang MLA, Salim (2014) Penekanan populasi Oryctes rhinoceros dan Rhynchophorus ferrugineus dengan perangkap feromon. In: Prosiding Konferensi Nasional Kelapa (KNK) VIII, p 67–72

    Google Scholar 

  • Hosang ML, Alouw JC, Novarianto H (2004a) Biological control of Brontispa longissima (Gestro) in Indonesia. In: Report of the expert consultation on coconut beetle outbreak in APPPC member countries. FAO Regional Office for Asia and the Pacific, Bangkok, pp 26–27

    Google Scholar 

  • Hosang ML, Alouw JC, Novarianto H (2004b) Biological control of Brontispa longissima (Gestro) in Indonesia. In: Report of the expert consultation on coconut beetle outbreak in APPPC member countries, Bangkok, pp 39–52

    Google Scholar 

  • Hosang MLA, Tumewan F, Alouw JC (2007) Efektivitas cendawan entomopatogen Metarhizium anisopliae vr. anisopliae dan Beauveria bassiana terhadap hama Brontispa longissima. In: Simposium IV Hasil Penelitian Tanaman Perkebunan. Buku 3. Pusat Penelitian dan Pengembangan Perkebunan, Bogor

    Google Scholar 

  • Huger A (2005) The Oryctes virus: its detection, identification, and implementation in biological control of the coconut palm rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae). J Invertebr Pathol 89:78–84

    PubMed  Google Scholar 

  • Hung PKJ (2019) They are different: molecular approach on Tirathaba pest infesting oil palm and coconut tree. Adv Plants Agric Res 8(1):71–73. https://doi.org/10.15406/apar.2018.08.00294

    Article  Google Scholar 

  • Jaba J (2018) Advance towards host mediated RNA interference insect pest management. Adv Biotechnol Microbiol 5(4):1–6

    Google Scholar 

  • Jackson TA, Marshall SDG (2017) The role of Oryctes nudivirus in management of the coconut rhinoceros beetle. Japanese Society for Insect Pathology, Tokyo

    Google Scholar 

  • Kalshoven LG (1981) The pests of crops in Indonesia. PT. Ichtiar Baru, Van Houve

    Google Scholar 

  • Kogan M (1998) Integrated pest management: historical perspectives and contemporary developments. Annu Rev Entomol 43(1):243–270

    CAS  PubMed  Google Scholar 

  • Lu CF, Zhang SB, Li Y et al (2009) Stereoselective synthesis of (R)-10-methyltridecan-2-one, the sex pheromone of the southern corn rootworm, using (4S)-benzylthiazolidinethione as a chiral auxiliary. Tetrahedron Asymmetry 20(19):2267–2269

    CAS  Google Scholar 

  • Malacrinò A, Strano CP, Gatehouse AMR et al (2017) RNAi-mediated gene silencing in Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae). Open Life Sci 12(1):214–222

    Google Scholar 

  • Manley M, Melzer M, Spafford H (2018) Oviposition preferences and behavior of wild-caught and laboratory-reared coconut rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae), in relation to substrate particle size. Insects 9(4):141

    PubMed Central  Google Scholar 

  • Marshall SDG, Moore A, Vaqalo M et al (2017) A new haplotype of the coconut rhinoceros beetle, Oryctes rhinoceros, has escaped biological control by Oryctes rhinoceros nudivirus and is invading Pacific Islands. J Invertebr Pathol 149:127–134

    PubMed  Google Scholar 

  • Mehle N, Trdan S (2012) Traditional and modern methods for the identification of thrips (Thysanoptera) species. J Pest Sci 85(2):179–190

    Google Scholar 

  • Miller SE, Hausmann A, Hallwachs W et al (2016) Advancing taxonomy and bioinventories with DNA barcodes. Philos Trans R Soc B 371(1702):20150339

    Google Scholar 

  • Mito T, Nakamura T, Bando T et al (2011) The advent of RNA interference in entomology. Entomol Sci 14(1):1–8

    Google Scholar 

  • Mitra S, Wuensche H, Giri A (2008) Silencing 7 herbivory-regulated proteins in Nicotiana attenuata to understand their function in plant–herbivore interactions. Funct Ecol 22:606–615

    Google Scholar 

  • Navia D, De Moraes GJ, Roderick G et al (2005) The invasive coconut mite Aceria guerreronis (Acari: Eriophyidae): origin and invasion sources inferred from mitochondrial (16S) and nuclear (ITS) sequences. Bull Entomol Res 95(6):505–516

    CAS  PubMed  Google Scholar 

  • Norris, Robert F, Chen C et al (2003) Concepts in integrated pest management. No. 632.9 N6

    Google Scholar 

  • Pitino M, Coleman AD, Maffei ME et al (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS One 6(10):e25709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rana TM (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8(1):23–36

    CAS  PubMed  Google Scholar 

  • Rethinam P, Singh S (2005) Asian and Pacific Coconut Community current status of coconut beetle outbreak in Asia Pacific region. Asian Pac Commun 1:1–10. Retrieved from http://www.apccsec.org

    Google Scholar 

  • Scott JG, Michel K, Bartholomay LC et al (2013) Towards the elements of successful insect RNAi. J Insect Physiol 59(12):1212–1221

    CAS  PubMed  Google Scholar 

  • Shyam Prasad G, Jayakumar V, Sharma TVRS (2008) Management of coconut rhinoceros beetle (Oryctes rhinoceros) by augmentation of Oryctes baculovirus (Kerala isolate) in little Andaman Islands. Indian J Agric Sci 78(11):962–965

    Google Scholar 

  • Soffan A, Antony B, Abdelazim M et al (2016) Silencing the olfactory co-receptor RferOrco reduces the response to pheromones in the red palm weevil, Rhynchophorus ferrugineus. PLoS One 11(9):e0162203. https://doi.org/10.1371/journal.pone.0162203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern VM, Smith RF, Van den Bosch R et al (1959) The integrated control concept. Hilgardia 29(2):81–101

    CAS  Google Scholar 

  • Takano SI, Mochizuki A, Konishi K et al (2011) Two cryptic species in Brontispa longissima (Coleoptera: Chrysomelidae): evidence from mitochondrial DNA analysis and crosses between the two nominal species. Ann Entomol Soc Am 104(2):121–131

    Google Scholar 

  • Takano SI, Mochizuki A, Takasu K et al (2013) Rapid discrimination of two cryptic species within Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae) by PCR-RFLP. J Pest Sci 86(2):151–155

    Google Scholar 

  • Talukdar D (2013) Modern biotechnological approaches in insect research. Int Res J Sci Eng 1(3):71–78

    Google Scholar 

  • Trona F, Anfora G, Balkenius A et al (2013) Neural coding merges sex and habitat chemosensory signals in an insect herbivore. Proc R Soc B Biol Sci 280(1760):20130267

    Google Scholar 

  • Varma Y (2012) Oryctes rhinoceros management. J Biopest 5(1):1–6

    Google Scholar 

  • Wang Y, Zhang H, Li H et al (2011) Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS One 6(4):e18644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse DF, Norris KR (1987) Biological control: Pacific prospects. ACIAR, Canberra

    Google Scholar 

  • Waterhouse DF, Norris KR (1989) Biological control: Pacific prospects. ACIAR, Canberra

    Google Scholar 

  • Yang G, You M, Vasseur L (2011) Development of RNAi in insects and RNAi-based pest control. In: Pesticides in the modern world-pests control and pesticides exposure and toxicity assessment. IntechOpen, Shanghai

    Google Scholar 

  • Yang HP, Ma CS, Wen H et al (2015) A tool for developing an automatic insect identification system based on wing outlines. Sci Rep 5(1):12786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young EC, Longworth JF (1981) The epizootiology of the baculovirus of the coconut palm rhinoceros beetle (Oryctes rhinoceros) in Tonga. J Invertebr Pathol 38(3):362–369

    Google Scholar 

  • Zelazny B, Alfiler A (1987) Ecological methods for adult population of Oryctes rhinoceros (Coleoptera: Scarabaeidae). Ecol Entomol 12(2):227–238

    Google Scholar 

  • Zelazny B, Hosang ML (1991) Estimating defoliation of coconut palms by insect pests. Trop Pest Manag 37(1):63–65

    Google Scholar 

  • Zhang J, Khan SA, Heckel DG et al (2017) Next-generation insect-resistant plants: RNAi-mediated crop protection. Trends Biotechnol 35(9):871–872

    CAS  PubMed  Google Scholar 

  • Zhao YY, Liu F, Yang G et al (2011) PsOr1, a potential target for RNA interference-based pest management. Insect Mol Biol 20(1):97–104

    CAS  PubMed  Google Scholar 

  • Zheng SJ, Zhang PJ, van Loon JJA et al (2011) Silencing defense pathways in Arabidopsis by heterologous gene sequences from Brassica oleracea enhances the performance of a specialist and a generalist herbivorous insect. J Chem Ecol 37:818–829

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alouw, J.C., Hosang, M.L.A., Nguyen, Q. (2020). Biotechnology Contributing to Integrated Pest Management: The Example of Two Major Coconut Pests, Oryctes rhinoceros and Brontispa longissima. In: Adkins, S., Foale, M., Bourdeix, R., Nguyen, Q., Biddle, J. (eds) Coconut Biotechnology: Towards the Sustainability of the ‘Tree of Life’. Springer, Cham. https://doi.org/10.1007/978-3-030-44988-9_8

Download citation

Publish with us

Policies and ethics