Skip to main content

Supercritical Fluid Techniques to Fabricate Efficient Nanoencapsulated Food-Grade Materials

  • Chapter
  • First Online:
Nano-food Engineering

Part of the book series: Food Engineering Series ((FSES))

Abstract

Advances in the use of nanotechnology have made possible the encapsulation of bioactive compounds at a nanoscale into various food grade materials with a significant improvement in stability, bioactivity and control release. Supercritical fluids (SCF) techniques has been regarded as free-of-solvent and green techniques that provide attractive advantages derived from their intrinsic physical and chemical properties such as low density and viscosity, high solvating power and diffusivities, and high rate of mass transfer beyond their critical point, intermediate between those of liquids and gases with several applications including nanotechnology. The use of SCF for nanoencapsulation of bioactive compounds is an emerging technique with an exciting potential in enhancing the stability, control release and encapsulation efficiency of numerous bioactive compounds and their functionality. Several compounds are used in SCF technology including carbon dioxide (CO2), water, propane, and nitrogen, with CO2 being the most prominent. Depending on the function of SCF in nanoencapsulation process, there are various techniques for SCF nanoencapsulation such as supercritical antisolvent process (SAS) and its various modifications, rapid expansion of supercritical solutions (RESS), gas antisolvent process (GAS), supercritical fluid extraction of emulsions (SFEE), aerosol solvent extraction system (ASES), precipitation with compressed fluid antisolvent (PCA) etc. This chapter discussed the application of these techniques in the fabrication of efficient nanocapsules of various food-grade materials. Current information on the application, advantages, limitation and future trends were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • De Aguiar AC, Silva LPS, De Rezende CA, Barbero GF, Martinez J (2016) Encapsulation of pepper oleoresin by supercritical fluid extraction of emulsions. J Supercrit Fluids 112:37–43

    Google Scholar 

  • Alessa F (2014) Stability of nano encapsulated Rice bran derived bioactive pentapeptide in apple juice. J Food Proc Technol 05(08). https://doi.org/10.4172/2157-7110.1000356

  • Arango-Ruiz Á, Martin Á, Cosero MJ, Jiméneza C, Londono J (2018) Encapsulation of curcumin using supercritical antisolvent (SAS) technology to improve its stability and solubility in water. Food Chem 258:156–163

    CAS  PubMed  Google Scholar 

  • Bahrami M, Ranjbarian S (2007) Production of micro- and nano-composite particles by supercritical carbon dioxide. J Supercrit Fluids 40:263–283

    CAS  Google Scholar 

  • Bleich J, Müller BW, Waßmus W (1993) Aerosol solvent extraction system - a new microparticle production technique. Int J Pharm 97:111–117

    CAS  Google Scholar 

  • Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67:21–33

    Google Scholar 

  • Calderone M, Tallon S (2008) Particle formation by rapid expansion from solution using near-critical dimethyl-ether. J Supercrit Fluids 45:245–252

    CAS  Google Scholar 

  • Caliceti P, Salmaso S, Elvassore N, Bertucco A (2004) Effective protein release from PEG/PLA nano-particles produced by compressed gas anti-solvent precipitation techniques. J Control Release 94:195–205

    CAS  PubMed  Google Scholar 

  • Campardelli R, Baldino L, Reverchon E (2015) Supercritical fluids supercritical fluids applications in nanomedicine. J of Supercrit Fluids 101:193–214

    CAS  Google Scholar 

  • Carlès P (2010) A brief review of the thermophysical properties of supercritical fluids. J Supercrit Fluids 53:2–11

    Google Scholar 

  • Chattopadhyay P, Huff R, Shekunov BY (2006) Drug encapsulation using supercritical fluid extraction of emulsions. J Pharm Sci 95:667–679

    CAS  PubMed  Google Scholar 

  • Chen K, Zhang X, Pan J, Zhang W, Yin W (2005) Gas antisolvent precipitation of Ginkgo ginkgolides with supercritical CO2. Powder Technol 152:127–132

    CAS  Google Scholar 

  • Cheng YS, Lu P-M, Huang C-Y, Wu J-J (2017) Encapsulation of lycopene with lecithin and α-tocopherol by supercritical antisolvent process for stability enhancement. J Supercrit Fluids 130:246–254

    CAS  Google Scholar 

  • Chong GH, Yunus R, Abdullah N, Choog TSY, Spotar S (2009) Coating and encapsulation of nanoparticles using supercritical antisolvent. American J Appl Sci 6:1352–1358

    CAS  Google Scholar 

  • Dal Magro C, Aguir GPS, Veneral J, Santos AE, Chaves LMPC, Oliveira V, Lanza M (2017) Co-precipitation of trans-resveratrol in PHBV using solution enhanced dispersion by supercritical fluids technique. J Supercrit Fluids 127:182–190

    CAS  Google Scholar 

  • Deshpande PB, Kumar AR, Shavi GV, Karthik A, Reddy MS, Udupa N (2011) Supercritical fluid technology: concepts and pharmaceutical applications. PDA J Pharm Sci Technol 65:333–344

    CAS  PubMed  Google Scholar 

  • Elvassore N, Bertucco A, Caliceti P (2001) Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques. J Pharm Sci 90:1628–1636

    CAS  PubMed  Google Scholar 

  • Esfandiari N, Ghoreishi SM (2015) Ampicillin nanoparticles production via supercritical CO2 gas antisolvent process. AAPS Pharm Sci Tech 16:1263–1269

    CAS  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioproc Technol 6:628–647

    CAS  Google Scholar 

  • Fathi M, Mozafari MR, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23:13–27

    CAS  Google Scholar 

  • Fusaro F, Hänchen M, Mazzotti M (2005) Dense gas antisolvent precipitation: a comparative investigation of the GAS and PCA techniques. Ind Eng Chem Res 44:1502–1509

    CAS  Google Scholar 

  • Garay I, Pocheville A, Madariaga L (2010) Polymeric microparticles prepared by supercritical antisolvent precipitation. Powder Technol 197:211–217

    CAS  Google Scholar 

  • Girotra P, Singh SK, Nagpal K (2013) Supercritical fluid technology: a promising approach in pharmaceutical research. Pharm Dev Technol 18:22–38

    CAS  PubMed  Google Scholar 

  • Gómez-Estaca J, Gavara R, Hernández-Muñoz P (2015) Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innov Food Sci Emerg Technol 29:302–307

    Google Scholar 

  • Granata G, Consoli GML, Lo NR, Geraci C (2018) Hydroxycinnamic acids loaded in lipid-core nanocapsules. Food Chem 245:551–556

    CAS  PubMed  Google Scholar 

  • Guamán-Balcázar MC, Montes A, Pereyra C, Martınez de la Ossa E (2017) Precipitation of mango leaves antioxidants by supercritical antisolvent process. J Supercrit Fluids 128:218–226

    Google Scholar 

  • Gutiérrez FJ, Albillos SM, Casas-Sanz E, Cruz Z, García-Estrad C, García-Guerra A, García-Reverter J et al (2013) Methods for the nanoencapsulation of β-carotene in the food sector. Trends Food Sci Technol 32:73–83

    Google Scholar 

  • Jafari SM (2017) An introduction to nanoencapsulation techniques for the food bioactive ingredients. Nanoencapsulation of Food Bioactive Ingredients Elsevier Inc. https://doi.org/10.1016/B978-0-12-809740-3.00001-5

  • Jafari SM, Fathi M, Mandala I (2015) Chapter 13 – emerging product formation. Food Waste Recovery Elsevier Inc. https://doi.org/10.1016/B978-0-12-800351-0.00013-4

  • Jin H, Fei X, Cuilan J, Yaping Z, Lin H (2009) Nanoencapsulation of lutein with hydroxypropylmethyl cellulose phthalate by supercritical antisolvent. Chin J Chem Eng 17:672–677

    CAS  Google Scholar 

  • Kalani M, Yunus R (2012) Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method. Int J Nanomedicine 7:2165–2172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kankala RK, Zhang YS, Wang S-B, Lee C-H, Chen A-Z (2017) Supercritical fluid technology: an emphasis on drug delivery and related biomedical applications. Adv Healthc Mater 1700433:1–31

    Google Scholar 

  • Katouzian I, Jafari SM (2017) Nanoencapsulation of vitamins. Nanoencapsulation of food biactive ingredients Elsevier Inc. https://doi.org/10.1016/B978-0-12-809740-3.00004-0

  • Katouzian I, Mahdi S (2016) Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci Technol 53:34–48

    CAS  Google Scholar 

  • Keven ES, Angela M, Meireles A, (2014) Encapsulation of Food Compounds Using Supercritical Technologies: Applications of Supercritical Carbon Dioxide as an Antisolvent. Food and Public Health 4(5):247–258

    Google Scholar 

  • King JW (2014) Modern supercritical fluid technology for food applications. Annu Rev Food Sci Technol 5:215–238

    CAS  PubMed  Google Scholar 

  • Lévai G, Martín A, Paz E, Rodríguez-Rojo S, Cocero MJ (2015) Production of stabilized quercetin aqueous suspensions by supercritical fluid extraction of emulsions. J Supercrit Fluids 100:34–45

    Google Scholar 

  • Lévai G, Albarelli JQ, Santos DT, Meireles MAA, Martin A, Rodríguez-Rojo S, Cocero MJ (2017) Quercetin loaded particles production by means of supercritical fluid extraction of emulsions: process scale-upstudy and thermo-economic evaluation. Food Bioprod Proc 103:27–38

    Google Scholar 

  • Loss RA, Pereira GN, Boschetto DL, Aguiar GS, Machado JR, Chaves LM, Silva MJ, Oliveira D, Oliveira JV (2016) Encapsulation of eugenyl acetate in PHBV using SEDS technique and in vitro release evaluation. J Food Sci Technol 53:3859–3864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Machado FRS, Reis DF, Boschetto DL, Burkert JFM, Ferreira SRS, Oliveira JV, CAV B (2014) Encapsulation of astaxanthin from Haematococcus pluvialis in PHBV by means of SEDS technique using supercritical CO2. Ind Crop Prod 54:17–21

    CAS  Google Scholar 

  • De Marco I, Reverchon E (2008) Supercritical antisolvent micronization of cyclodextrins. Powder Technol 183:239–246

    Google Scholar 

  • Martín A, Varona S, Navarrete A, Cocero MJ (2014) Encapsulation and co-precipitation processes with supercritical fluids: applications with essential oils. The Open Chem Eng J 4:31–41

    Google Scholar 

  • Matson DW, Fulton JL, Petersen RC, Smith RD (1987) Rapid expansion of supercritical fluid solutions: solute formation of powders, thin films, and fibers. Ind Eng Chem Res 26:2298–2306

    CAS  Google Scholar 

  • Matos RL, Lu T, McConville C, Leeke G, Ingram A, (2018) Analysis of curcumin precipitation and coating on lactose by the integrated supercritical antisolvent-fluidized bed process. The Journal of Supercritical Fluids 141:143–156

    Google Scholar 

  • Mattea F, Martin A, Matias-Gago A, Cocero MJ (2009) Supercritical antisolvent precipitation from an emulsion: β-Carotene nanoparticle formation. J Supercrit Fluids 51:238–247

    CAS  Google Scholar 

  • Mayo AS, Ambati BK, Kompella UB (2010) Gene delivery nanoparticles fabricated by supercritical fluid extraction of emulsions. Int J Pharm 387:278–285

    CAS  PubMed  Google Scholar 

  • Meziani MJ, Sun YP (2003) Protein-conjugated nanoparticles from rapid expansion of supercritical fluid solution into aqueous solution. J Am Chem Soc 125:8015–8018

    CAS  PubMed  Google Scholar 

  • Mezzomo N, Paz E, Maraschin M, Martin A, Cocero MJ, Ferreira SRS (2012) Supercritical anti-solvent precipitation of carotenoid fraction from pink shrimp residue: effect of operational conditions on encapsulation efficiency. J Supercrit Fluids 66:342–349

    CAS  Google Scholar 

  • Mittal V (2013) Encapsulation Nanotechnologies, Encapsulation nanotechnologies. Wiley

    Google Scholar 

  • Miwa VMHY, Balcao VMCF, Villa MMDC, Junior JMO, Gramiao MPD, Chaud MV (2016) Supercritical fluid and pharmaceutical applications. Part I: process classification. Afr J Pharm Pharmacol 10:132–144

    Google Scholar 

  • Montes A, Gordillo MD, Clara P, Ossa EJM (2014) New insights into acrylic polymer precipitation by supercritical fluids. Chem Eng Technol 37:141–148

    CAS  Google Scholar 

  • Montes A, Wehner L, Pereyra C, Ossa EJM (2016) Mangiferin nanoparticles precipitation by supercritical antisolvent process. J Supercrit Fluids 112:44–50

    CAS  Google Scholar 

  • Nerome H, Machmudah S, Wahyudiano FR, Higashiura T, Youn Y-S, Lee Y-W, Gato M (2013) Nanoparticle formation of lycopene/β-cyclodextrin inclusion complex using supercritical antisolvent precipitation. J Supercrit Fluids 83:97–103

    CAS  Google Scholar 

  • Oliveira DA, Mezzomo N, Gomes C, Ferreira SRS (2017) Encapsulation of passion fruit seed oil by means of supercritical antisolvent process. J Supercrit Fluids 129:96–105

    CAS  Google Scholar 

  • Osorio-Tobón JF, Silva EK, Meireles MAA (2016) Nanoencapsulation of flavors and aromas by emerging technologies. Nanotech Agri-Food Ind 2:89–126

    Google Scholar 

  • Parhi R, Suresh P (2013) Supercritical fluid technology: a review. Adv Pharm Sci Technol 1:13–36

    Google Scholar 

  • Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. methods for preparation of drug-loaded polymeric nanoparticles. Nanomed: Nanotechnol, Bio, Med 2:8–21

    Google Scholar 

  • Reverchon E, Porta GD, Rosa ID, Subra P, Letourneur D (2000) Supercritical antisolvent micronization of some biopolymers. J Supercrit Fluids 18:239–245

    Google Scholar 

  • Reverchon E, Adami R, Caputo G, Marco I (2008) Spherical microparticles production by supercritical antisolvent precipitation: interpretation of results. J Supercrit Fluids 47:70–84

    CAS  Google Scholar 

  • Reverchon E, Torino E, Dowy S, Braeuer A, Leipertz A (2010) Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization. Chem Eng J 156:446–458

    CAS  Google Scholar 

  • Reverchon E, Adami R (2006) Nanomaterials and supercritical fluids. J Supercrit Fluids 37:1–22

    CAS  Google Scholar 

  • Reverchon E, Della Porta G (1999) Production of antibiotic micro- and nano-particles by supercritical antisolvent precipitation. Powder Technol 106:23–29

    CAS  Google Scholar 

  • Sadjadi S (2016) Supercritical fluids in nanoreactor technology. In: Organic nanoreactors: from molecular to supramolecular organic compounds. Elsevier Inc., pp 373–419

    Google Scholar 

  • Santos DT, Martin A, Meireles MAA, Cocero MJ (2012) Production of stabilized sub-micrometric particles of carotenoids using supercritical fluid extraction of emulsions. J Supercrit Fluids 61:167–174

    CAS  Google Scholar 

  • Shah MA, Mir SA, Bashir M (2016) Nanoencapsulation of food ingredients. Adv Med Technol Clin Prac (AMTCP). United State: IGI Global Medical Information Science Reference, pp. 132–152

    Google Scholar 

  • Silva EK, Meireles MAA (2014) Encapsulation of food compounds using supercritical technologies: applications of supercritical carbon dioxide as an antisolvent. Food Pub Health 4:247–258

    Google Scholar 

  • Singh H, Kumar C, Singh N, Paul S, Jain SK (2018) Nanoencapsulation of docosahexaenoic acid (DHA) using a combination of food grade polymeric wall materials and its application for improvement in bioavailability and oxidative stability. Food Funct 9:2213–2227

    CAS  PubMed  Google Scholar 

  • Sohail M, Rakha A, Butt MS, Iqbal MJ, Rishid S (2017) Rice bran nutraceutics: a comprehensive review. Crit Rev Food Sci Nutri 57:3771–3780

    CAS  Google Scholar 

  • Subramaniam B (2017) Sustainable processes with supercritical fluids. Elsevier, Encyclopedia of Sustainable Technologies

    Google Scholar 

  • Suganya V, Anuradha V (2017) Microencapsulation and nanoencapsulation: a review. Int J Pharm Clin Res 9:233–239

    Google Scholar 

  • Tabernero A, Martín del Valle EM, Galán MA (2012) Supercritical fluids for pharmaceutical particle engineering: methods, basic fundamentals and modelling. Chem Eng Proc: Proc Intens 60:9–25

    CAS  Google Scholar 

  • Tamzeedul F, Ghafoor K, Ferdosh S, Al-Juhaimi F, Ali E, Yunus K, Hamed H, Islam A, Asif M, Sakar MZ (2017) Microencapsulation of fish oil using supercritical antisolvent process. J Food Drug Anal 25:654–666

    Google Scholar 

  • Trucillo P, Campardelli R, Reverchon E (2018) Production of liposomes loaded with antioxidants using a supercritical CO2 assisted process. Powder Technol 323:155–162

    CAS  Google Scholar 

  • Türk M, Lietzow R (2004) Stabilized nanoparticles of phytosterol by rapid expansion from supercritical solution into aqueous solution. AAPS Pharm Sci Tech 5:56

    Google Scholar 

  • Visentin A, Rodríguez-Rojo S, Navarrete A, Maestri D, Cocero MJ, (2012) Precipitation and encapsulation of rosemary antioxidants by supercritical antisolvent process. Journal of Food Engineering 109 (1):9–15

    Google Scholar 

  • Wang Y, Pfeffer R, Dave R, Enick R (2005) Polymer encapsulation of fine particles by a supercritical antisolvent process. Am Inst Chem Eng J 51:440–455

    Google Scholar 

  • Wang Y, Dave RN, Pfeffer R (2004) Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process. J Supercrit Fluids 28:85–99

    CAS  Google Scholar 

  • Xia F, Jin H, Zhao Y, Guo X (2011) Supercritical antisolvent-based technology for preparation of vitamin D3 proliposome and its characteristics. Chin J Chem Eng 19:1039–1046

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Garba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garba, U., Ismail, B.B. (2020). Supercritical Fluid Techniques to Fabricate Efficient Nanoencapsulated Food-Grade Materials. In: Hebbar, U., Ranjan, S., Dasgupta, N., Kumar Mishra, R. (eds) Nano-food Engineering. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-44552-2_2

Download citation

Publish with us

Policies and ethics