Skip to main content

Chimeric Antigen Receptors for the Tumour Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1263))

Abstract

Chimeric antigen receptor T (CAR-T) cell therapy has dramatically revolutionised cancer treatment. The FDA approval of two CAR-T cell products for otherwise incurable refractory B-cell acute lymphoblastic leukaemia (B-ALL) and aggressive B-cell non-Hodgkin lymphoma has established this treatment as an effective immunotherapy option. The race for extending CAR-T therapy for various tumours is well and truly underway. However, response rates in solid organ cancers have been inadequate thus far, partly due to challenges posed by the tumour microenvironment (TME). The TME is a complex structure whose role is to subserve the persistence and proliferation of tumours as well as support their escape from immune surveillance. It presents several obstacles like inhibitory immune checkpoint proteins, immunosuppressive cells, cytokines, chemokines, stromal factors and adverse metabolic pathways. CAR structure and CAR-T therapies have evolved to overcome these obstacles, and we now have several novel CARs with improved anti-tumour activity demonstrated in xenograft models and in some clinical trials. This chapter provides a discussion of the evolution of CAR-T therapies to enable targeting specific aspects of the TME.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adachi K, Kano Y, Nagai T, Okuyama N, Sakoda Y, Tamada K (2018) IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat Biotechnol 36:346–351

    Article  CAS  PubMed  Google Scholar 

  2. Alvarez-Vallina L, Hawkins RE (1996) Antigen-specific targeting of CD28-mediated T cell co-stimulation using chimeric single-chain antibody variable fragment-CD28 receptors. Eur J Immunol 26:2304–2309

    Article  CAS  PubMed  Google Scholar 

  3. Avanzi MP, Yeku O, Li X, Wijewarnasuriya DP, Van Leeuwen DG, Cheung K, Park H, Purdon TJ, Daniyan AF, Spitzer MH, Brentjens RJ (2018) Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly and through activation of the endogenous immune system. Cell Rep 23:2130–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baldan V, Ghongane P, Kokalaki E, Lim WC, Onuoha S, Cordoba SP, Thomas S, Pule M (2017) A dominant negative SHP-2 which abrogates PD-1 signalling pathways and restores function of cytotoxic CAR T cells. Blood 130:3190

    Google Scholar 

  5. Balkwill FR (2012) The chemokine system and cancer. J Pathol 226:148–157

    Article  CAS  PubMed  Google Scholar 

  6. Beavis PA, Henderson MA, Giuffrida L, Mills JK, Sek K, Cross RS, Davenport AJ, John LB, Mardiana S, Slaney CY, Johnstone RW, Trapani JA, Stagg J, Loi S, Kats L, Gyorki D, Kershaw MH, Darcy PK (2017) Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. J Clin Invest 127:929–941

    Article  PubMed  PubMed Central  Google Scholar 

  7. Beldi-Ferchiou A, Lambert M, Dogniaux S, Vely F, Vivier E, Olive D, Dupuy S, Levasseur F, Zucman D, Lebbe C, Sene D, Hivroz C, Caillat-Zucman S (2016) PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget 7:72961–72977

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bielamowicz K, Fousek K, Byrd TT, Samaha H, Mukherjee M, Aware N, Wu MF, Orange JS, Sumazin P, Man TK, Joseph SK, Hegde M, Ahmed N (2018) Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro-Oncology 20:506–518

    Article  CAS  PubMed  Google Scholar 

  9. Burga RA, Thorn M, Point GR, Guha P, Nguyen CT, Licata LA, Dematteo RP, Ayala A, Joseph Espat N, Junghans RP, Katz SC (2015) Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol Immunother 64:817–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  CAS  PubMed  Google Scholar 

  11. Caruana I, Savoldo B, Hoyos V, Weber G, Liu H, Kim ES, Ittmann MM, Marchetti D, Dotti G (2015) Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med 21(5):524–529 https://doi.org/10.1038/nm.3833. Epub 2015 Apr 13

  12. Chang YH, Connolly J, Shimasaki N, Mimura K, Kono K, Campana D (2013) A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res 73:1777–1786

    Article  CAS  PubMed  Google Scholar 

  13. Chen N, Morello A, Tano Z, Adusumilli PS (2016a) CAR T-cell intrinsic PD-1 checkpoint blockade: a two-in-one approach for solid tumor immunotherapy. Onco Targets Ther 6:e1273302

    Google Scholar 

  14. Chen X, Han J, Chu J, Zhang L, Zhang J, Chen C, Chen L, Wang Y, Wang H, Yi L, Elder JB, Wang QE, He X, Kaur B, Chiocca EA, Yu J (2016b) A combinational therapy of EGFR-CAR NK cells and oncolytic herpes simplex virus 1 for breast cancer brain metastases. Oncotarget 7:27764–27777

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen T, Yuan Y, Huang L, Pu C, Ding T, Xiao X, Cao Z, Wu T, Ding L, Sun H, Wu Z, Xiao L, Zhang X (2019) Dominant-negative PD1-armored CART cells induce remission in refractory diffuse large B-cell lymphoma (DLBCL) patients. J Clin Oncol 37:e19028

    Article  Google Scholar 

  16. Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, Sadelain M, Adusumilli PS (2016) Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 126:3130–3144

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chinnasamy D, Yu Z, Kerkar SP, Zhang L, Morgan RA, Restifo NP, Rosenberg SA (2012) Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin Cancer Res 18:1672–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chmielewski M, Abken H (2017) CAR T cells releasing IL-18 convert to T-Bet(high) FoxO1(low) effectors that exhibit augmented activity against advanced solid tumors. Cell Rep 21:3205–3219

    Article  CAS  PubMed  Google Scholar 

  19. Chmielewski M, Hombach AA, Abken H (2014) Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev 257:83–90

    Article  CAS  PubMed  Google Scholar 

  20. Choi BK, Lee DY, Lee DG, Kim YH, Kim S-H, Oh HS, Han C, Kwon BS (2017) 4-1BB signaling activates glucose and fatty acid metabolism to enhance CD8(+) T cell proliferation. Cell Mol Immunol 14:748–757

    Article  CAS  PubMed  Google Scholar 

  21. Chu J, Deng Y, Benson DM, He S, Hughes T, Zhang J, Peng Y, Mao H, Yi L, Ghoshal K, He X, Devine SM, Zhang X, Caligiuri MA, Hofmeister CC, Yu J (2014) CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia 28:917–927

    Article  CAS  PubMed  Google Scholar 

  22. Condomines M, Arnason J, Benjamin R, Gunset G, Plotkin J, Sadelain M (2015) Tumor-targeted human T cells expressing CD28-based chimeric antigen receptors circumvent CTLA-4 inhibition. PLoS One 10:e0130518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Craddock JA, Lu A, Bear A, Pule M, Brenner MK, Rooney CM, Foster AE (2010) Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother 33:780–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Davila ML, Kloss CC, Gunset G, Sadelain M (2013) CD19 CAR-targeted T cells induce long-term remission and B Cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia. PLoS One 8:e61338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Velasco G, Trilla-Fuertes L, Gamez-Pozo A, Urbanowicz M, Ruiz-Ares G, Sepúlveda JM, Prado-Vazquez G, Arevalillo JM, Zapater-Moros A, Navarro H, Lopez-Vacas R, Manneh R, Otero I, Villacampa F, Paramio JM, Vara JAF, Castellano D (2017) Urothelial cancer proteomics provides both prognostic and functional information. Sci Rep 7:15819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Deeks SG, Wagner B, Anton PA, Mitsuyasu RT, Scadden DT, Huang C, Macken C, Richman DD, Christopherson C, June CH, Lazar R, Broad DF, Jalali S, Hege KM (2002) A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol Ther 5:788–797

    Article  CAS  PubMed  Google Scholar 

  27. Dhar P, Wu JD (2018) NKG2D and its ligands in cancer. Curr Opin Immunol 51:55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Di Stasi A, De Angelis B, Rooney CM, Zhang L, Mahendravada A, Foster AE, Heslop HE, Brenner MK, Dotti G, Savoldo B (2009) T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113:6392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Eshhar Z, Gross G (1990) Chimeric T cell receptor which incorporates the anti-tumour specificity of a monoclonal antibody with the cytolytic activity of T cells: a model system for immunotherapeutical approach. Br J Cancer Suppl 10:27–29

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Esser R, Muller T, Stefes D, Kloess S, Seidel D, Gillies SD, Aperlo-Iffland C, Huston JS, Uherek C, Schonfeld K, Tonn T, Huebener N, Lode HN, Koehl U, Wels WS (2012) NK cells engineered to express a GD2 -specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. J Cell Mol Med 16:569–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fiori ME, DI Franco S, Villanova L, Bianca P, Stassi G, DE Maria R (2019) Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer 18:70

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Galon J, Rossi J, Turcan S, Danan C, Locke FL, Neelapu SS, Miklos DB, Bartlett NL, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, Timmerman J, Reagan PM, Lekakis LJ, Unabia S, Go WY, Wiezorek JS, Bot A (2017) Characterization of anti-CD19 chimeric antigen receptor (CAR) T cell-mediated tumor microenvironment immune gene profile in a multicenter trial (ZUMA-1) with axicabtagene ciloleucel (axi-cel, KTE-C19). J Clin Oncol 35:3025–3025

    Article  Google Scholar 

  34. Gowrishankar K, Birtwistle L, Micklethwaite K (2018) Manipulating the tumor microenvironment by adoptive cell transfer of CAR T-cells. Mamm Genome 29:739–756

    Article  CAS  PubMed  Google Scholar 

  35. Grada Z, Hegde M, Byrd T, Shaffer DR, Ghazi A, Brawley VS, Corder A, Schonfeld K, Koch J, Dotti G, Heslop HE, Gottschalk S, Wels WS, Baker ML, Ahmed N (2013) TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids 2:e105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A 86:10024–10028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322

    Article  CAS  PubMed  Google Scholar 

  38. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  39. Hawila E, Razon H, Wildbaum G, Blattner C, Sapir Y, Shaked Y, Umansky V, Karin N (2017) CCR5 directs the mobilization of CD11b(+)Gr1(+)Ly6C(low) polymorphonuclear myeloid cells from the bone marrow to the blood to support Tumor development. Cell Rep 21:2212–2222

    Article  CAS  PubMed  Google Scholar 

  40. He Y, Cao J, Zhao C, Li X, Zhou C, Hirsch FR (2018) TIM-3, a promising target for cancer immunotherapy. Onco Targets Ther 11:7005–7009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heemskerk B, Kvistborg P, Schumacher TN (2013) The cancer antigenome. EMBO J 32:194–203

    Article  CAS  PubMed  Google Scholar 

  42. Hegde M, Corder A, Chow KK, Mukherjee M, Ashoori A, Kew Y, Zhang YJ, Baskin DS, Merchant FA, Brawley VS, Byrd TT, Krebs S, Wu MF, Liu H, Heslop HE, Gottschalk S, Yvon E, Ahmed N (2013) Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol Ther 21:2087–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hegde M, Mukherjee M, Grada Z, Pignata A, Landi D, Navai SA, Wakefield A, Fousek K, Bielamowicz K, Chow KK, Brawley VS, Byrd TT, Krebs S, Gottschalk S, Wels WS, Baker ML, Dotti G, Mamonkin M, Brenner MK, Orange JS, Ahmed N (2016) Tandem CAR T cells targeting HER2 and IL13Ralpha2 mitigate tumor antigen escape. J Clin Invest 126:3036–3052

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hombach AA, Rappl G, Abken H (2013) Arming cytokine-induced killer cells with chimeric antigen receptors: CD28 outperforms combined CD28-OX40 “super-stimulation”. Mol Ther 21:2268–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu JK, Kagari T, Clingan JM, Matloubian M (2011) Expression of chemokine receptor CXCR3 on T cells affects the balance between effector and memory CD8 T-cell generation. Proc Natl Acad Sci 108:E118

    PubMed  PubMed Central  Google Scholar 

  46. Hu W, Wang G, Huang D, Sui M, Xu Y (2019a) Cancer immunotherapy based on natural killer cells: current progress and new opportunities. Front Immunol 10:1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu W, Zi Z, Jin Y, Li G, Shao K, Cai Q, Ma X, Wei F (2019b) CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol Immunother 68:365–377

    Article  CAS  PubMed  Google Scholar 

  48. Hui L, Chen Y (2015) Tumor microenvironment: sanctuary of the devil. Cancer Lett 368:7–13

    Article  CAS  PubMed  Google Scholar 

  49. Imai C, Iwamoto S, Campana D (2005) Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106:376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Irving BA, Weiss A (1991) The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64:891–901

    Article  CAS  PubMed  Google Scholar 

  51. Ishida T, Joh T, Uike N, Yamamoto K, Utsunomiya A, Yoshida S, Saburi Y, Miyamoto T, Takemoto S, Suzushima H, Tsukasaki K, Nosaka K, Fujiwara H, Ishitsuka K, Inagaki H, Ogura M, Akinaga S, Tomonaga M, Tobinai K, Ueda R (2012) Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol 30:837–842

    Article  CAS  PubMed  Google Scholar 

  52. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jamal-Hanjani M, Quezada SA, Larkin J, Swanton C (2015) Translational implications of tumor heterogeneity. Clin Cancer Res 21:1258–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Johansson HJ, Socciarelli F, Vacanti NM, Haugen MH, Zhu Y, Siavelis I, Fernandez-Woodbridge A, Aure MR, Sennblad B, Vesterlund M, Branca RM, Orre LM, Huss M, Fredlund E, Beraki E, Garred O, Boekel J, Sauer T, Zhao W, Nord S, Hoglander EK, Jans DC, Brismar H, Haukaas TH, Bathen TF, Schlichting E, Naume B, Consortia Oslo Breast Cancer Research Consortium, Luders T, Borgen E, Kristensen VN, Russnes HG, Lingjaerde OC, Mills GB, Sahlberg KK, Borresen-Dale AL, Lehtio J (2019) Breast cancer quantitative proteome and proteogenomic landscape. Nat Commun 10:1600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM, Chow MT, Smyth MJ, Kershaw MH, Darcy PK (2013) Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 19:5636–5646

    Article  CAS  PubMed  Google Scholar 

  56. Joyce JA, Fearon DT (2015) T cell exclusion, immune privilege, and the tumor microenvironment. Science 348:74–80

    Article  CAS  PubMed  Google Scholar 

  57. Juillerat A, Marechal A, Filhol JM, Valogne Y, Valton J, Duclert A, Duchateau P, Poirot L (2017) An oxygen sensitive self-decision making engineered CAR T-cell. Sci Rep 7:39833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kalaitsidou M, Kueberuwa G, Schutt A, Gilham DE (2015) CAR T-cell therapy: toxicity and the relevance of preclinical models. Immunotherapy 7:487–497

    Article  CAS  PubMed  Google Scholar 

  59. Kendall RT, Feghali-Bostwick CA (2014a) Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol 5:123–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kendall RT, Feghali-Bostwick CA (2014b) Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol 5:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kenderian SS, Ruella M, Shestova O, Klichinsky M, Kim M, Porter DL, June CH, Gill S (2016) Identification of PD1 and TIM3 as checkpoints that limit chimeric antigen receptor T cell efficacy in leukemia. Biol Blood Marrow Transplant 22:S19–S21

    Article  Google Scholar 

  62. Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3:999–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kitamura T, Pollard JW (2015) Therapeutic potential of chemokine signal inhibition for metastatic breast cancer. Pharmacol Res 100:266–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 31:71–75

    Article  CAS  PubMed  Google Scholar 

  65. Kloss CC, Lee J, Zhang A, Chen F, Melenhorst JJ, Lacey SF, Maus MV, Fraietta JA, Zhao Y, June CH (2018) Dominant-negative TGF-beta receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol Ther 26:1855–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Koneru M, O'cearbhaill R, Pendharkar S, Spriggs DR, Brentjens RJ (2015a) A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16(ecto) directed chimeric antigen receptors for recurrent ovarian cancer. J Transl Med 13:102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Koneru M, Purdon TJ, Spriggs D, Koneru S, Brentjens RJ (2015b) IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Onco Targets Ther 4:e994446

    Google Scholar 

  68. Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ, Asahina H, Jones RE, Kulkarni MM, Kuraguchi M, Palakurthi S, Fecci PE, Johnson BE, Janne PA, Engelman JA, Gangadharan SP, Costa DB, Freeman GJ, Bueno R, Hodi FS, Dranoff G, Wong KK, Hammerman PS (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7:10501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168:670–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Latonen L, Afyounian E, Jylhä A, Nättinen J, Aapola U, Annala M, Kivinummi KK, Tammela TTL, Beuerman RW, Uusitalo H, Nykter M, Visakorpi T (2018) Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease progression. Nat Commun 9:1176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Le Bourgeois T, Strauss L, Aksoylar HI, Daneshmandi S, Seth P, Patsoukis N, Boussiotis VA (2018) Targeting T cell metabolism for improvement of cancer immunotherapy. Front Oncol 8:237

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM, Stroncek D, Tschernia N, Yuan C, Zhang H, Zhang L, Rosenberg SA, Wayne AS, Mackall CL (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385:517–528

    Article  CAS  PubMed  Google Scholar 

  73. Levy EM, Roberti MP, Mordoh J (2011) Natural killer cells in human cancer: from biological functions to clinical applications. J Biomed Biotechnol 2011:676198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, Wang J, Zou Y, Anderson GJ, Han J-Y, Chang Y, Liu Y, Zhang C, Chen L, Zhou G, Nie G, Yan H, Ding B, Zhao Y (2018) A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 36:258

    Article  CAS  PubMed  Google Scholar 

  75. Ligtenberg MA, Mougiakakos D, Mukhopadhyay M, Witt K, Lladser A, Chmielewski M, Riet T, Abken H, Kiessling R (2016) Coexpressed catalase protects chimeric antigen receptor-redirected T cells as well as bystander cells from oxidative stress-induced loss of antitumor activity. J Immunol 196:759–766

    Article  CAS  PubMed  Google Scholar 

  76. Liu X, Ranganathan R, Jiang S, Fang C, Sun J, Kim S, Newick K, Lo A, June CH, Zhao Y, Moon EK (2016) A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res 76:1578–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lopez M, Ghidouche A, Rochas C, Godelaine D, Carrasco J, Colau D, Hames G, Montero-Julian FA, Coulie PG, Olive D (2016) Identification of a naturally processed HLA-A∗02:01-restricted CTL epitope from the human tumor-associated antigen Nectin-4. Cancer Immunol Immunother 65:1177–1188

    Article  CAS  PubMed  Google Scholar 

  78. Lorenz U (2009) SHP-1 and SHP-2 in T cells: two phosphatases functioning at many levels. Immunol Rev 228:342–359

    Article  PubMed  PubMed Central  Google Scholar 

  79. Luetke-Eversloh M, Hammer Q, Durek P, Nordstrom K, Gasparoni G, Pink M, Hamann A, Walter J, Chang HD, Dong J, Romagnani C (2014) Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog 10:e1004441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Majzner RG, Mackall CL (2018) Tumor antigen escape from CAR T-cell therapy. Cancer Discov 8:1219–1226

    Article  CAS  PubMed  Google Scholar 

  81. Majzner RG, Theruvath JL, Nellan A, Heitzeneder S, Cui Y, Mount CW, Rietberg SP, Linde MH, Xu P, Rota C, Sotillo E, Labanieh L, Lee DW, Orentas RJ, Dimitrov DS, Zhu Z, Croix BS, Delaidelli A, Sekunova A, Bonvini E, Mitra SS, Quezado MM, Majeti R, Monje M, Sorensen PHB, Maris JM, Mackall CL (2019) CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin Cancer Res 25:2560–2574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Mardiana S, Solomon BJ, Darcy PK, Beavis PA (2019) Supercharging adoptive T cell therapy to overcome solid tumor-induced immunosuppression. Sci Transl Med 11

    Google Scholar 

  83. Martinez M, Moon EK (2019) CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol 10:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, Mahnke YD, Melenhorst JJ, Rheingold SR, Shen A, Teachey DT, Levine BL, June CH, Porter DL, Grupp SA (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371:1507–1517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD, Qayed M, DE Moerloose B, Hiramatsu H, Schlis K, Davis KL, Martin PL, Nemecek ER, Yanik GA, Peters C, Baruchel A, Boissel N, Mechinaud F, Balduzzi A, Krueger J, June CH, Levine BL, Wood P, Taran T, Leung M, Mueller KT, Zhang Y, Sen K, Lebwohl D, Pulsipher MA, Grupp SA (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378:439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Minutolo NG, Hollander EE, Powell DJ (2019) The emergence of universal immune receptor T cell therapy for cancer. Front Oncol 9:176

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mohammed S, Sukumaran S, Bajgain P, Watanabe N, Heslop HE, Rooney CM, Brenner MK, Fisher WE, Leen AM, Vera JF (2017) Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Mol Ther 25:249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mollica Poeta V, Massara M, Capucetti A, Bonecchi R (2019) Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front Immunol 10:379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Moon EK, Wang LC, Dolfi DV, Wilson CB, Ranganathan R, Sun J, Kapoor V, Scholler J, Pure E, Milone MC, June CH, Riley JL, Wherry EJ, Albelda SM (2014) Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin Cancer Res 20:4262–4273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Morgan MA, Schambach A (2018) Engineering CAR-T cells for improved function against solid tumors. Front Immunol:9

    Google Scholar 

  91. Morsut L, Roybal KT, Xiong X, Gordley RM, Coyle SM, Thomson M, Lim WA (2016) Engineering customized cell sensing and response behaviors using synthetic notch receptors. Cell 164:780–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Motzer RJ, Tannir NM, Mcdermott DF, Aren Frontera O, Melichar B, Choueiri TK, Plimack ER, Barthelemy P, Porta C, George S, Powles T, Donskov F, Neiman V, Kollmannsberger CK, Salman P, Gurney H, Hawkins R, Ravaud A, Grimm MO, Bracarda S, Barrios CH, Tomita Y, Castellano D, Rini BI, Chen AC, Mekan S, Mchenry MB, Wind-Rotolo M, Doan J, Sharma P, Hammers HJ, Escudier B (2018) Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 378:1277–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Muller T, Uherek C, Maki G, Chow KU, Schimpf A, Klingemann HG, Tonn T, Wels WS (2008) Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol Immunother 57:411–423

    Article  PubMed  CAS  Google Scholar 

  94. Munn DH, Bronte V (2016) Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol 39:1–6

    Article  CAS  PubMed  Google Scholar 

  95. Nair R, Neelapu SS (2018) The promise of CAR T-cell therapy in aggressive B-cell lymphoma. Best Pract Res Clin Haematol 31:293–298

    Article  PubMed  PubMed Central  Google Scholar 

  96. Narayan V, Gladney W, Plesa G, Vapiwala N, Carpenter E, Maude SL, Lal P, Lacey SF, Melenhorst JJ, Sebro R, Farwell M, Hwang W-T, Moniak M, Gilmore J, Lledo L, Dengel K, Marshall A, Coughlin CM, June CH, Haas NB (2019) A phase I clinical trial of PSMA-directed/TGFβ-insensitive CAR-T cells in metastatic castration-resistant prostate cancer. J Clin Oncol 37:TPS347–TPS347

    Article  Google Scholar 

  97. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, Timmerman JM, Stiff PJ, Friedberg JW, Flinn IW, Goy A, Hill BT, Smith MR, Deol A, Farooq U, Mcsweeney P, Munoz J, Avivi I, Castro JE, Westin JR, Chavez JC, Ghobadi A, Komanduri KV, Levy R, Jacobsen ED, Witzig TE, Reagan P, Bot A, Rossi J, Navale L, Jiang Y, Aycock J, Elias M, Chang D, Wiezorek J, Go WY (2017) Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 377:2531–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Negus RP, Stamp GW, Hadley J, Balkwill FR (1997) Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am J Pathol 150:1723–1734

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ni J, Miller M, Stojanovic A, Garbi N, Cerwenka A (2012) Sustained effector function of IL-12/15/18-preactivated NK cells against established tumors. J Exp Med 209:2351–2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ninomiya S, Narala N, Huye L, Yagyu S, Savoldo B, Dotti G, Heslop HE, Brenner MK, Rooney CM, Ramos CA (2015) Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood 125:3905–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nouri-Shirazi M, Banchereau J, Fay J, Palucka K (2000) Dendritic cell based tumor vaccines. Immunol Lett 74:5–10

    Article  CAS  PubMed  Google Scholar 

  102. O’sullivan TE, Sun JC, Lanier LL (2015) Natural killer cell memory. Immunity 43:634–645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, Chio II, Hwang CI, Tiriac H, Baker LA, Engle DD, Feig C, Kultti A, Egeblad M, Fearon DT, Crawford JM, Clevers H, Park Y, Tuveson DA (2017) Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 214:579–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Olson BM, Mcneel DG (2012) Antigen loss and tumor-mediated immunosuppression facilitate tumor recurrence. Expert Rev Vaccines 11:1315–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ostermann E, Garin-Chesa P, Heider KH, Kalat M, Lamche H, Puri C, Kerjaschki D, Rettig WJ, Adolf GR (2008) Effective immunoconjugate therapy in cancer models targeting a serine protease of tumor fibroblasts. Clin Cancer Res 14:4584–4592

    Article  CAS  PubMed  Google Scholar 

  106. Pageon SV, Tabarin T, Yamamoto Y, Ma Y, Nicovich PR, Bridgeman JS, Cohnen A, Benzing C, Gao Y, Crowther MD, Tungatt K, Dolton G, Sewell AK, Price DA, Acuto O, Parton RG, Gooding JJ, Rossy J, Rossjohn J, Gaus K (2016) Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination. Proc Natl Acad Sci 113:E5454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ (2007) CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8:1353–1362

    Article  CAS  PubMed  Google Scholar 

  108. Papetti M, Herman IM (2002) Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282:C947–C970

    Article  CAS  PubMed  Google Scholar 

  109. Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, Sauter C, Wang Y, Santomasso B, Mead E, Roshal M, Maslak P, Davila M, Brentjens RJ, Sadelain M (2018) Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 378:449–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH (2011) Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 89:216–224

    Article  PubMed  Google Scholar 

  111. Peng W, Liu C, Xu C, Lou Y, Chen J, Yang Y, Yagita H, Overwijk WW, Lizee G, Radvanyi L, Hwu P (2012) PD-1 blockade enhances T-cell migration to tumors by elevating IFN-gamma inducible chemokines. Cancer Res 72:5209–5218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Perera LP, Zhang M, Nakagawa M, Petrus MN, Maeda M, Kadin ME, Waldmann TA, Perera P-Y (2017) Chimeric antigen receptor modified T cells that target chemokine receptor CCR4 as a therapeutic modality for T-cell malignancies. Am J Hematol 92:892–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Perna SK, Pagliara D, Mahendravada A, Liu H, Brenner MK, Savoldo B, Dotti G (2014) Interleukin-7 mediates selective expansion of tumor-redirected cytotoxic T lymphocytes (CTLs) without enhancement of regulatory T-cell inhibition. Clin Cancer Res 20:131–139

    Article  CAS  PubMed  Google Scholar 

  114. Prehn RT (1972) Science 176(4031):170–171

    Google Scholar 

  115. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, Keely PJ (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Qasim, W., Zhan, H., Samarasinghe, S., Adams, S., Amrolia, P., Stafford, S., Butler, K., Rivat, C., Wright, G., Somana, K., Ghorashian, S., Pinner, D., Ahsan, G., Gilmour, K., Lucchini, G., Inglott, S., Mifsud, W., Chiesa, R., Peggs, K. S., Chan, L., Farzeneh, F., Thrasher, A. J., Vora, A., Pule, M. & Veys, P. 2017. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells Sci Transl Med, eaaj2013 9

    Google Scholar 

  117. Raj D, Yang MH, Rodgers D, Hampton EN, Begum J, Mustafa A, Lorizio D, Garces I, Propper D, Kench JG, Kocher HM, Young TS, Aicher A, Heeschen C (2019) Switchable CAR-T cells mediate remission in metastatic pancreatic ductal adenocarcinoma. Gut 68:1052–1064

    Article  CAS  PubMed  Google Scholar 

  118. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y (2017a) Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 23:2255–2266

    Article  CAS  PubMed  Google Scholar 

  119. Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, Zhao Y (2017b) A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget 8:17002–17011

    Article  PubMed  PubMed Central  Google Scholar 

  120. Rodgers DT, Mazagova M, Hampton EN, Cao Y, Ramadoss NS, Hardy IR, Schulman A, Du J, Wang F, Singer O, Ma J, Nunez V, Shen J, Woods AK, Wright TM, Schultz PG, Kim CH, Young TS (2016) Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc Natl Acad Sci U S A 113:E459–E468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ronnov-Jessen L, Petersen OW, Bissell MJ (1996) Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 76:69–125

    Article  CAS  PubMed  Google Scholar 

  122. Rosewell Shaw A, Suzuki M (2018) Oncolytic viruses partner with T-cell therapy for solid tumor treatment. Front Immunol 9:2103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Roybal KT, Rupp LJ, Morsut L, Walker WJ, Mcnally KA, Park JS, Lim WA (2016) Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164:770–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, Marson A (2017) CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep 7:737

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Sadelain M (2015) CAR therapy: the CD19 paradigm. J Clin Invest 125:3392–3400

    Article  PubMed  PubMed Central  Google Scholar 

  126. Sadelain M, Brentjens R, Riviere I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3:388–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207:2187–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Salas-Mckee J, Kong W, Gladney WL, Jadlowsky JK, Plesa G, Davis MM, Fraietta JA (2019) CRISPR/Cas9-based genome editing in the era of CAR T cell immunotherapy. Hum Vaccin Immunother 15:1126–1132

    Article  PubMed  PubMed Central  Google Scholar 

  129. Santoro SP, Kim S, Motz GT, Alatzoglou D, Li C, Irving M, Powell DJ Jr, Coukos G (2015) T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression. Cancer Immunol Res 3:68–84

    Article  CAS  PubMed  Google Scholar 

  130. Schuberth PC, Hagedorn C, Jensen SM, Gulati P, Van Den Broek M, Mischo A, Soltermann A, Jungel A, Marroquin Belaunzaran O, Stahel R, Renner C, Petrausch U (2013) Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells. J Transl Med 11:187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shah NN, Fry TJ (2019) Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol 16:372–385

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA (2010) Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 70:6171–6180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shum T, Omer B, Tashiro H, Kruse RL, Wagner DL, Parikh K, Yi Z, Sauer T, Liu D, Parihar R, Castillo P, Liu H, Brenner MK, Metelitsa LS, Gottschalk S, Rooney CM (2017) Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T cells. Cancer Discov 7:1238–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sivori S, Vacca P, DEL Zotto G, Munari E, Mingari MC, Moretta L (2019) Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol 16:430–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Smith TT, Stephan SB, Moffett HF, Mcknight LE, Ji W, Reiman D, Bonagofski E, Wohlfahrt ME, Pillai SPS, Stephan MT (2017) In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol 12:813–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, Sussman R, Lanauze C, Ruella M, Gazzara MR, Martinez NM, Harrington CT, Chung EY, Perazzelli J, Hofmann TJ, Maude SL, Raman P, Barrera A, Gill S, Lacey SF, Melenhorst JJ, Allman D, Jacoby E, Fry T, Mackall C, Barash Y, Lynch KW, Maris JM, Grupp SA, Thomas-Tikhonenko A (2015) Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 5:1282–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Suarez ER, de Chang K, Sun J, Sui J, Freeman GJ, Signoretti S, Zhu Q, Marasco WA (2016) Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget 7:34341–34355

    Article  PubMed  PubMed Central  Google Scholar 

  138. Sukumar M, Liu J, Ji Y, Subramanian M, Crompton JG, Yu Z, Roychoudhuri R, Palmer DC, Muranski P, Karoly ED, Mohney RP, Klebanoff CA, Lal A, Finkel T, Restifo NP, Gattinoni L (2013) Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Invest 123:4479–4488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sukumar M, Liu J, Mehta GU, Patel SJ, Roychoudhuri R, Crompton JG, Klebanoff CA, Ji Y, Li P, Yu Z, Whitehill GD, Clever D, Eil RL, Palmer DC, Mitra S, Rao M, Keyvanfar K, Schrump DS, Wang E, Marincola FM, Gattinoni L, Leonard WJ, Muranski P, Finkel T, Restifo NP (2016) Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab 23:63–76

    Article  CAS  PubMed  Google Scholar 

  140. Tang J, Pearce L, O'donnell-Tormey J, Hubbard-Lucey VM (2018) Trends in the global immuno-oncology landscape. Nat Rev Drug Discov 17:922

    Article  CAS  PubMed  Google Scholar 

  141. Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG, Lindgren CG, Lin Y, Pagel JM, Budde LE, Raubitschek A, Forman SJ, Greenberg PD, Riddell SR, Press OW (2012) CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 119:3940–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Torikai H, Reik A, Soldner F, Warren EH, Yuen C, Zhou Y, Crossland DL, Huls H, Littman N, Zhang Z, Tykodi SS, Kebriaei P, Lee DA, Miller JC, Rebar EJ, Holmes MC, Jaenisch R, Champlin RE, Gregory PD, Cooper LJ (2013) Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood 122:1341–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tran AC, Zhang D, Byrn R, Roberts MR (1995) Chimeric zeta-receptors direct human natural killer (NK) effector function to permit killing of NK-resistant tumor cells and HIV-infected T lymphocytes. J Immunol 155:1000–1009

    CAS  PubMed  Google Scholar 

  144. Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee CC, Restifo NP, Rosenberg SA (2013) Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med 210:1125–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Turnis ME, Andrews LP, Vignali DAA (2015) Inhibitory receptors as targets for cancer immunotherapy. Eur J Immunol 45:1892–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Valkovic T, Dobrila F, Melato M, Sasso F, Rizzardi C, Jonjic N (2002) Correlation between vascular endothelial growth factor, angiogenesis, and tumor-associated macrophages in invasive ductal breast carcinoma. Virchows Arch 440:583–588

    Article  CAS  PubMed  Google Scholar 

  147. Vari F, Arpon D, Keane C, Hertzberg MS, Talaulikar D, Jain S, Cui Q, Han E, Tobin J, Bird R, Cross D, Hernandez A, Gould C, Birch S, Gandhi MK (2018) Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood 131:1809–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR, Wen B, Dou Y, Zhang Y, Shi Z, Arshad OA, Gritsenko MA, Zimmerman LJ, Mcdermott JE, Clauss TR, Moore RJ, Zhao R, Monroe ME, Wang YT, Chambers MC, Slebos RJC, Lau KS, Mo Q, Ding L, Ellis M, Thiagarajan M, Kinsinger CR, Rodriguez H, Smith RD, Rodland KD, Liebler DC, Liu T, Zhang B, Clinical Proteomic Tumor Analysis Consortium (2019) Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 177(1035–1049):e19

    Google Scholar 

  149. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503

    Article  CAS  PubMed  Google Scholar 

  150. Walker LSK (2013) Treg and CTLA-4: two intertwining pathways to immune tolerance. J Autoimmun 45:49–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wallstabe L, Mades A, Frenz S, Einsele H, Rader C, Hudecek M (2018) CAR T cells targeting alphavbeta3 integrin are effective against advanced cancer in preclinical models. Adv Cell Gene Ther 1

    Google Scholar 

  152. Waniczek D, Lorenc Z, Snietura M, Wesecki M, Kopec A, Muc-Wierzgon M (2017) Tumor-associated macrophages and regulatory T cells infiltration and the clinical outcome in colorectal cancer. Arch Immunol Ther Exp 65:445–454

    Article  CAS  Google Scholar 

  153. Whilding ML, Halim L, Draper B, Parente-Pereira CA, Zabinski T, Davies MD, Maher J (2019) CAR T-cells targeting the integrin αvβ6 and co-expressing the chemokine receptor CXCR2 demonstrate enhanced homing and efficacy against several solid malignancies. Cancers:11

    Google Scholar 

  154. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  CAS  PubMed  Google Scholar 

  155. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob J-J, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF, Smylie M, Dummer R, Hill A, Hogg D, Haanen J, Carlino MS, Bechter O, Maio M, Marquez-Rodas I, Guidoboni M, Mcarthur G, Lebbé C, Ascierto PA, Long GV, Cebon J, Sosman J, Postow MA, Callahan MK, Walker D, Rollin L, Bhore R, Hodi FS, Larkin J (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377:1345–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yeku OO, Brentjens RJ (2016) Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem Soc Trans 44:412–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yeku OO, Purdon TJ, Koneru M, Spriggs D, Brentjens RJ (2017) Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Sci Rep 7:10541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Yoon DH, Osborn MJ, Tolar J, Kim CJ (2018) Incorporation of immune checkpoint blockade into chimeric antigen receptor T cells (CAR-Ts): combination or built-in CAR-T. Int J Mol Sci 19

    Google Scholar 

  159. Zhang J, Patel L, Pienta KJ (2010) CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev 21:41–48

    Article  CAS  PubMed  Google Scholar 

  160. Zhang L, Yu Z, Muranski P, Palmer DC, Restifo NP, Rosenberg SA, Morgan RA (2013) Inhibition of TGF-β signaling in genetically engineered tumor antigen-reactive T cells significantly enhances tumor treatment efficacy. Gene Ther 20:575–580

    Article  CAS  PubMed  Google Scholar 

  161. Zhang C, Burger MC, Jennewein L, Genßler S, Schönfeld K, Zeiner P, Hattingen E, Harter PN, Mittelbronn M, Tonn T, Steinbach JP, Wels WS (2015a) ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. JNCI: J Natl Cancer Inst 108

    Google Scholar 

  162. Zhang T, Cao L, Xie J, Shi N, Zhang Z, Luo Z, Yue D, Zhang Z, Wang L, Han W, Xu Z, Chen H, Zhang Y (2015b) Efficiency of CD19 chimeric antigen receptor-modified T cells for treatment of B cell malignancies in phase I clinical trials: a meta-analysis. Oncotarget 6:33961–33971

    Article  PubMed  PubMed Central  Google Scholar 

  163. Zhang H, Liu T, Zhang Z, Payne SH, Zhang B, Mcdermott JE, Zhou JY, Petyuk VA, Chen L, Ray D, Sun S, Yang F, Chen L, Wang J, Shah P, Cha SW, Aiyetan P, Woo S, Tian Y, Gritsenko MA, Clauss TR, Choi C, Monroe ME, Thomas S, Nie S, Wu C, Moore RJ, Yu KH, Tabb DL, Fenyo D, Bafna V, Wang Y, Rodriguez H, Boja ES, Hiltke T, Rivers RC, Sokoll L, Zhu H, Shih IM, Cope L, Pandey A, Zhang B, Snyder MP, Levine DA, Smith RD, Chan DW, Rodland KD (2016) Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell 166:755–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhang Y, Zhang X, Cheng C, Mu W, Liu X, Li N, Wei X, Liu X, Xia C, Wang H (2017) CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells. Front Med 11:554–562

    Article  PubMed  Google Scholar 

  165. Zhang E, Gu J, Xu H (2018) Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors. Mol Cancer 17:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Zhao Z, Condomines M, Van Der Stegen SJC, Perna F, Kloss CC, Gunset G, Plotkin J, Sadelain M (2015) Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28:415–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhong XS, Matsushita M, Plotkin J, Riviere I, Sadelain M (2010) Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol Ther 18:413–420

    Article  CAS  PubMed  Google Scholar 

  168. Zhu Q, Wu X, Wu Y, Wang X (2016) Interaction between Treg cells and tumor-associated macrophages in the tumor microenvironment of epithelial ovarian cancer. Oncol Rep 36:3472–3478

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavitha Gowrishankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Habib, R., Nagrial, A., Micklethwaite, K., Gowrishankar, K. (2020). Chimeric Antigen Receptors for the Tumour Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1263. Springer, Cham. https://doi.org/10.1007/978-3-030-44518-8_8

Download citation

Publish with us

Policies and ethics