Skip to main content

Viral Hepatitides, Inflammation and Tumour Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1263))

Abstract

In this chapter, we discuss the role of hepatitis B virus (HBV) and hepatitis C virus (HCV) infections in the establishment of hepatocellular carcinoma (HCC), highlighting the key role of the multiple, non-mutually exclusive, pathways involved in the modulation of immune responses and in the orchestration of a chronic low-level inflammation state favouring HCC development. In particular, we discuss (i) HCC as a classical paradigm of inflammation-linked cancer; (ii) the role of the most relevant inflammatory cytokines involved (i.e. IL-6, TNF-α, IL-18, IL-1β, TGF-β IL-10); (iii) the role of T cell exhaustion by immune checkpoints; (iv) the role of the Wnt3a/β-catenin signalling pathway and (v) the role of different subsets of suppressor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jenne CN, Kubes P (2013) Immune surveillance by the liver. Nat Immunol 14(10):996–1006. https://doi.org/10.1038/ni.2691

    Article  CAS  PubMed  Google Scholar 

  2. Pallett LJ, Davies J, Colbeck EJ, Robertson F, Hansi N, Easom NJW, Burton AR, Stegmann KA, Schurich A, Swadling L, Gill US, Male V, Luong T, Gander A, Davidson BR, Kennedy PTF, Maini MK (2017) IL-2(high) tissue-resident T cells in the human liver: sentinels for hepatotropic infection. J Exp Med 214(6):1567–1580. https://doi.org/10.1084/jem.20162115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Piconese S, Cammarata I, Barnaba V (2018) Viral hepatitis, inflammation, and cancer: a lesson for autoimmunity. J Autoimmun 95:58–68. https://doi.org/10.1016/j.jaut.2018.10.021

    Article  CAS  PubMed  Google Scholar 

  4. Kostallari E, Shah VH (2019) Pericytes in the liver. Adv Exp Med Biol 1122:153–167. https://doi.org/10.1007/978-3-030-11093-2_9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38. https://doi.org/10.1152/ajpcell.00084.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ananthakrishnan A, Gogineni V, Saeian K (2006) Epidemiology of primary and secondary liver cancers. Semin Intervent Radiol 23(1):47–63. https://doi.org/10.1055/s-2006-939841

    Article  PubMed  PubMed Central  Google Scholar 

  7. El-Serag HB (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142(6):1264–1273e1261. https://doi.org/10.1053/j.gastro.2011.12.061

    Article  PubMed  Google Scholar 

  8. Kim GA, Lee HC, Choe J, Kim MJ, Lee MJ, Chang HS, Bae IY, Kim HK, An J, Shim JH, Kim KM, Lim YS (2017) Association between non-alcoholic fatty liver disease and cancer incidence rate. J Hepatol 68:140. https://doi.org/10.1016/j.jhep.2017.09.012

    Article  Google Scholar 

  9. Kanwal F, Kramer JR, Mapakshi S, Natarajan Y, Chayanupatkul M, Richardson PA, Li L, Desiderio R, Thrift AP, Asch SM, Chu J, El-Serag HB (2018) Risk of hepatocellular Cancer in patients with non-alcoholic fatty liver disease. Gastroenterology 155(6):1828–1837e1822. https://doi.org/10.1053/j.gastro.2018.08.024

    Article  PubMed  Google Scholar 

  10. European Association for the Study of the L, European Association for the Study of D, European Association for the Study of O (2016) EASL-EASD-EASO clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 64(6):1388–1402. https://doi.org/10.1016/j.jhep.2015.11.004

    Article  Google Scholar 

  11. Guidotti LG, Inverso D, Sironi L, Di Lucia P, Fioravanti J, Ganzer L, Fiocchi A, Vacca M, Aiolfi R, Sammicheli S, Mainetti M, Cataudella T, Raimondi A, Gonzalez-Aseguinolaza G, Protzer U, Ruggeri ZM, Chisari FV, Isogawa M, Sitia G, Iannacone M (2015) Immunosurveillance of the liver by intravascular effector CD8(+) T cells. Cell 161(3):486–500. https://doi.org/10.1016/j.cell.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  12. Benechet AP, De Simone G, Di Lucia P, Cilenti F, Barbiera G, Le Bert N, Fumagalli V, Lusito E, Moalli F, Bianchessi V, Andreata F, Zordan P, Bono E, Giustini L, Bonilla WV, Bleriot C, Kunasegaran K, Gonzalez-Aseguinolaza G, Pinschewer DD, Kennedy PTF, Naldini L, Kuka M, Ginhoux F, Cantore A, Bertoletti A, Ostuni R, Guidotti LG, Iannacone M (2019) Dynamics and genomic landscape of CD8(+) T cells undergoing hepatic priming. Nature 574(7777):200–205. https://doi.org/10.1038/s41586-019-1620-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eagle RA, Jafferji I, Barrow AD (2009) Beyond stressed self: evidence for NKG2D ligand expression on healthy cells. Curr Immunol Rev 5(1):22–34. https://doi.org/10.2174/157339509787314369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Corti D, Lanzavecchia A (2013) Broadly neutralizing antiviral antibodies. Annu Rev Immunol 31:705–742. https://doi.org/10.1146/annurev-immunol-032712-095916

    Article  CAS  PubMed  Google Scholar 

  15. Barnaba V (2010) Hepatitis C virus infection: a "liaison a trois" amongst the virus, the host, and chronic low-level inflammation for human survival. J Hepatol 53(4):752–761. https://doi.org/10.1016/j.jhep.2010.06.003

    Article  PubMed  Google Scholar 

  16. Tan A, Koh S, Bertoletti A (2015) Immune response in hepatitis B virus infection. Cold Spring Harb Perspect Med 5(8):a021428. https://doi.org/10.1101/cshperspect.a021428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mutz P, Metz P, Lempp FA, Bender S, Qu B, Schoneweis K, Seitz S, Tu T, Restuccia A, Frankish J, Dachert C, Schusser B, Koschny R, Polychronidis G, Schemmer P, Hoffmann K, Baumert TF, Binder M, Urban S, Bartenschlager R (2018) HBV bypasses the innate immune response and does not protect HCV from antiviral activity of interferon. Gastroenterology 154(6):1791–1804e1722. https://doi.org/10.1053/j.gastro.2018.01.044

    Article  PubMed  Google Scholar 

  18. Chen SL, Morgan TR (2006) The natural history of hepatitis C virus (HCV) infection. Int J Med Sci 3(2):47–52. https://doi.org/10.7150/ijms.3.47

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lazarevic I (2014) Clinical implications of hepatitis B virus mutations: recent advances. World J Gastroenterol 20(24):7653–7664. https://doi.org/10.3748/wjg.v20.i24.7653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899. https://doi.org/10.1016/j.cell.2010.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132(7):2557–2576. https://doi.org/10.1053/j.gastro.2007.04.061

    Article  CAS  PubMed  Google Scholar 

  22. Yu LX, Ling Y, Wang HY (2018) Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis Oncol 2(1):6. https://doi.org/10.1038/s41698-018-0048-z

    Article  PubMed  PubMed Central  Google Scholar 

  23. Piconese S, Timperi E, Pacella I, Schinzari V, Tripodo C, Rossi M, Guglielmo N, Mennini G, Grazi GL, Di Filippo S, Brozzetti S, Fazzi K, Antonelli G, Lozzi MA, Sanchez M, Barnaba V (2014) Human OX40 tunes the function of regulatory T cells in tumor and nontumor areas of hepatitis C virus-infected liver tissue. Hepatology 60(5):1494–1507. https://doi.org/10.1002/hep.27188

    Article  CAS  PubMed  Google Scholar 

  24. Kakimi K, Lane TE, Wieland S, Asensio VC, Campbell IL, Chisari FV, Guidotti LG (2001) Blocking chemokine responsive to gamma-2/interferon (IFN)-gamma inducible protein and monokine induced by IFN-gamma activity in vivo reduces the pathogenetic but not the antiviral potential of hepatitis B virus-specific cytotoxic T lymphocytes. J Exp Med 194(12):1755–1766. https://doi.org/10.1084/jem.194.12.1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carretero M, Gomez-Gonzalo M, Lara-Pezzi E, Benedicto I, Aramburu J, Martinez-Martinez S, Redondo JM, Lopez-Cabrera M (2002) The hepatitis B virus X protein binds to and activates the NH(2)-terminal trans-activation domain of nuclear factor of activated T cells-1. Virology 299(2):288–300. https://doi.org/10.1006/viro.2002.1526

    Article  CAS  PubMed  Google Scholar 

  26. Wong VW, Yu J, Cheng AS, Wong GL, Chan HY, Chu ES, Ng EK, Chan FK, Sung JJ, Chan HL (2009) High serum interleukin-6 level predicts future hepatocellular carcinoma development in patients with chronic hepatitis B. Int J Cancer 124(12):2766–2770. https://doi.org/10.1002/ijc.24281

    Article  CAS  PubMed  Google Scholar 

  27. Nakagawa H, Maeda S, Yoshida H, Tateishi R, Masuzaki R, Ohki T, Hayakawa Y, Kinoshita H, Yamakado M, Kato N, Shiina S, Omata M (2009) Serum IL-6 levels and the risk for hepatocarcinogenesis in chronic hepatitis C patients: an analysis based on gender differences. Int J Cancer 125(10):2264–2269. https://doi.org/10.1002/ijc.24720

    Article  CAS  PubMed  Google Scholar 

  28. Hsia CY, Huo TI, Chiang SY, Lu MF, Sun CL, Wu JC, Lee PC, Chi CW, Lui WY, Lee SD (2007) Evaluation of interleukin-6, interleukin-10 and human hepatocyte growth factor as tumor markers for hepatocellular carcinoma. Eur J Surg Oncol 33(2):208–212. https://doi.org/10.1016/j.ejso.2006.10.036

    Article  PubMed  Google Scholar 

  29. Maeda S, Kamata H, Luo JL, Leffert H, Karin M (2005) IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121(7):977–990. https://doi.org/10.1016/j.cell.2005.04.014

    Article  CAS  PubMed  Google Scholar 

  30. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  CAS  PubMed  Google Scholar 

  31. Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7(1):41–51. https://doi.org/10.1038/nri1995

    Article  CAS  PubMed  Google Scholar 

  32. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431(7007):461–466. https://doi.org/10.1038/nature02924

    Article  CAS  PubMed  Google Scholar 

  33. Gallucci RM, Simeonova PP, Toriumi W, Luster MI (2000) TNF-alpha regulates transforming growth factor-alpha expression in regenerating murine liver and isolated hepatocytes. J Immunol 164(2):872–878. https://doi.org/10.4049/jimmunol.164.2.872

    Article  CAS  PubMed  Google Scholar 

  34. Cosgrove BD, Cheng C, Pritchard JR, Stolz DB, Lauffenburger DA, Griffith LG (2008) An inducible autocrine cascade regulates rat hepatocyte proliferation and apoptosis responses to tumor necrosis factor-alpha. Hepatology 48(1):276–288. https://doi.org/10.1002/hep.22335

    Article  CAS  PubMed  Google Scholar 

  35. Sato T, Asanuma Y, Masaki Y, Sato Y, Hatakeyama Y, Kusano T, Koyama K (1996) Changes in tumor necrosis factor-a and interleukin-1 beta production following liver surgery on cirrhotic patients. Hepato-Gastroenterology 43(11):1148–1153

    CAS  PubMed  Google Scholar 

  36. Huang YS, Hwang SJ, Chan CY, Wu JC, Chao Y, Chang FY, Lee SD (1999) Serum levels of cytokines in hepatitis C-related liver disease: a longitudinal study. Zhonghua Yi Xue Za Zhi (Taipei) 62(6):327–333

    CAS  Google Scholar 

  37. Shiraki K, Yamanaka T, Inoue H, Kawakita T, Enokimura N, Okano H, Sugimoto K, Murata K, Nakano T (2005) Expression of TNF-related apoptosis-inducing ligand in human hepatocellular carcinoma. Int J Oncol 26(5):1273–1281

    CAS  PubMed  Google Scholar 

  38. Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, Zheng L (2009) Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 206(6):1327–1337. https://doi.org/10.1084/jem.20082173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hamano R, Huang J, Yoshimura T, Oppenheim JJ, Chen X (2011) TNF optimally activatives regulatory T cells by inducing TNF receptor superfamily members TNFR2, 4-1BB and OX40. Eur J Immunol 41(7):2010–2020. https://doi.org/10.1002/eji.201041205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Timperi E, Folgori L, Amodio D, De Luca M, Chiurchiu S, Piconese S, Di Cesare S, Pacella I, Martire C, Bonatti G, Perrone S, Boni T, Marcovecchio GE, Reale A, Parisi F, Dotta A, Barnaba V, Rossi P (2016) Expansion of activated regulatory T cells inversely correlates with clinical severity in septic neonates. J Allergy Clin Immunol 137(5):1617–1620e1616. https://doi.org/10.1016/j.jaci.2015.10.048

    Article  PubMed  Google Scholar 

  41. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426

    Article  CAS  PubMed  Google Scholar 

  42. Dinarello CA, Novick D, Kim S, Kaplanski G (2013) Interleukin-18 and IL-18 binding protein. Front Immunol 4:289. https://doi.org/10.3389/fimmu.2013.00289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Budhu A, Wang XW (2006) The role of cytokines in hepatocellular carcinoma. J Leukoc Biol 80(6):1197–1213. https://doi.org/10.1189/jlb.0506297

    Article  CAS  PubMed  Google Scholar 

  44. Tilg H, Moschen AR, Szabo G (2016) Interleukin-1 and inflammasomes in alcoholic liver disease/acute alcoholic hepatitis and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 64(3):955–965. https://doi.org/10.1002/hep.28456

    Article  CAS  PubMed  Google Scholar 

  45. Bishayee A (2014) The role of inflammation and liver cancer. Adv Exp Med Biol 816:401–435. https://doi.org/10.1007/978-3-0348-0837-8_16

    Article  CAS  PubMed  Google Scholar 

  46. Wu X, Dong L, Lin X, Li J (2017) Relevance of the NLRP3 Inflammasome in the pathogenesis of chronic liver disease. Front Immunol 8:1728. https://doi.org/10.3389/fimmu.2017.01728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Trasino SE, Tang XH, Jessurun J, Gudas LJ (2016) A retinoic acid receptor beta2 agonist reduces hepatic stellate cell activation in nonalcoholic fatty liver disease. J Mol Med (Berl) 94(10):1143–1151. https://doi.org/10.1007/s00109-016-1434-z

    Article  CAS  Google Scholar 

  48. Cui K, Yan G, Xu C, Chen Y, Wang J, Zhou R, Bai L, Lian Z, Wei H, Sun R, Tian Z (2015) Invariant NKT cells promote alcohol-induced steatohepatitis through interleukin-1beta in mice. J Hepatol 62(6):1311–1318. https://doi.org/10.1016/j.jhep.2014.12.027

    Article  CAS  PubMed  Google Scholar 

  49. Novick D, Kim S, Kaplanski G, Dinarello CA (2013) Interleukin-18, more than a Th1 cytokine. Semin Immunol 25(6):439–448. https://doi.org/10.1016/j.smim.2013.10.014

    Article  CAS  PubMed  Google Scholar 

  50. Timperi E, Focaccetti C, Gallerano D, Panetta M, Spada S, Gallo E, Visca P, Venuta F, Diso D, Prelaj A, Longo F, Facciolo F, Nistico P, Barnaba V (2017) IL-18 receptor marks functional CD8(+) T cells in non-small cell lung cancer. Onco Targets Ther 6(7):e1328337. https://doi.org/10.1080/2162402X.2017.1328337

    Article  Google Scholar 

  51. Molgora M, Bonavita E, Ponzetta A, Riva F, Barbagallo M, Jaillon S, Popovic B, Bernardini G, Magrini E, Gianni F, Zelenay S, Jonjic S, Santoni A, Garlanda C, Mantovani A (2017) IL-1R8 is a checkpoint in NK cells regulating anti-tumour and anti-viral activity. Nature 551(7678):110–114. https://doi.org/10.1038/nature24293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Markowitz GJ, Yang P, Fu J, Michelotti GA, Chen R, Sui J, Yang B, Qin WH, Zhang Z, Wang FS, Diehl AM, Li QJ, Wang H, Wang XF (2016) Inflammation-dependent IL18 signaling restricts hepatocellular carcinoma growth by enhancing the accumulation and activity of tumor-infiltrating lymphocytes. Cancer Res 76(8):2394–2405. https://doi.org/10.1158/0008-5472.CAN-15-1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tangkijvanich P, Thong-Ngam D, Mahachai V, Theamboonlers A, Poovorawan Y (2007) Role of serum interleukin-18 as a prognostic factor in patients with hepatocellular carcinoma. World J Gastroenterol 13(32):4345–4349. https://doi.org/10.3748/wjg.v13.i32.4345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chia CS, Ban K, Ithnin H, Singh H, Krishnan R, Mokhtar S, Malihan N, Seow HF (2002) Expression of interleukin-18, interferon-gamma and interleukin-10 in hepatocellular carcinoma. Immunol Lett 84(3):163–172. https://doi.org/10.1016/s0165-2478(02)00176-1

    Article  CAS  PubMed  Google Scholar 

  55. Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86(5):1065–1073. https://doi.org/10.1189/jlb.0609385

    Article  CAS  PubMed  Google Scholar 

  56. Arii S, Mise M, Harada T, Furutani M, Ishigami S, Niwano M, Mizumoto M, Fukumoto M, Imamura M (1996) Overexpression of matrix metalloproteinase 9 gene in hepatocellular carcinoma with invasive potential. Hepatology 24(2):316–322. https://doi.org/10.1053/jhep.1996.v24.pm0008690399

    Article  CAS  PubMed  Google Scholar 

  57. Maatta M, Soini Y, Liakka A, Autio-Harmainen H (2000) Differential expression of matrix metalloproteinase (MMP)-2, MMP-9, and membrane type 1-MMP in hepatocellular and pancreatic adenocarcinoma: implications for tumor progression and clinical prognosis. Clin Cancer Res 6(7):2726–2734

    CAS  PubMed  Google Scholar 

  58. Roderfeld M, Rath T, Lammert F, Dierkes C, Graf J, Roeb E (2010) Innovative immunohistochemistry identifies MMP-9 expressing macrophages at the invasive front of murine HCC. World J Hepatol 2(5):175–179. https://doi.org/10.4254/wjh.v2.i5.175

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yang JC, Teng CF, Wu HC, Tsai HW, Chuang HC, Tsai TF, Hsu YH, Huang W, Wu LW, Su IJ (2009) Enhanced expression of vascular endothelial growth factor-A in ground glass hepatocytes and its implication in hepatitis B virus hepatocarcinogenesis. Hepatology 49(6):1962–1971. https://doi.org/10.1002/hep.22889

    Article  CAS  PubMed  Google Scholar 

  60. Campbell JS, Hughes SD, Gilbertson DG, Palmer TE, Holdren MS, Haran AC, Odell MM, Bauer RL, Ren HP, Haugen HS, Yeh MM, Fausto N (2005) Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci U S A 102(9):3389–3394. https://doi.org/10.1073/pnas.0409722102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bedossa P, Peltier E, Terris B, Franco D, Poynard T (1995) Transforming growth factor-beta 1 (TGF-beta 1) and TGF-beta 1 receptors in normal, cirrhotic, and neoplastic human livers. Hepatology 21(3):760–766

    CAS  PubMed  Google Scholar 

  62. Shirai Y, Kawata S, Tamura S, Ito N, Tsushima H, Takaishi K, Kiso S, Matsuzawa Y (1994) Plasma transforming growth factor-beta 1 in patients with hepatocellular carcinoma. Comparison with chronic liver diseases. Cancer 73(9):2275–2279. https://doi.org/10.1002/1097-0142(19940501)73:9<2275::aid-cncr2820730907>3.0.co;2-t

    Article  CAS  PubMed  Google Scholar 

  63. Okumoto K, Hattori E, Tamura K, Kiso S, Watanabe H, Saito K, Saito T, Togashi H, Kawata S (2004) Possible contribution of circulating transforming growth factor-beta1 to immunity and prognosis in unresectable hepatocellular carcinoma. Liver Int 24(1):21–28. https://doi.org/10.1111/j.1478-3231.2004.00882.x

    Article  CAS  PubMed  Google Scholar 

  64. Akhurst RJ, Hata A (2012) Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov 11(10):790–811. https://doi.org/10.1038/nrd3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. van Zijl F, Mair M, Csiszar A, Schneller D, Zulehner G, Huber H, Eferl R, Beug H, Dolznig H, Mikulits W (2009) Hepatic tumor-stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge. Oncogene 28(45):4022–4033. https://doi.org/10.1038/onc.2009.253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu J, Ru NY, Zhang Y, Li Y, Wei D, Ren Z, Huang XF, Chen ZN, Bian H (2011) HAb18G/CD147 promotes epithelial-mesenchymal transition through TGF-beta signaling and is transcriptionally regulated by Slug. Oncogene 30(43):4410–4427. https://doi.org/10.1038/onc.2011.149

    Article  CAS  PubMed  Google Scholar 

  67. Mazzocca A, Fransvea E, Lavezzari G, Antonaci S, Giannelli G (2009) Inhibition of transforming growth factor beta receptor I kinase blocks hepatocellular carcinoma growth through neo-angiogenesis regulation. Hepatology 50(4):1140–1151. https://doi.org/10.1002/hep.23118

    Article  CAS  PubMed  Google Scholar 

  68. Capece D, Fischietti M, Verzella D, Gaggiano A, Cicciarelli G, Tessitore A, Zazzeroni F, Alesse E (2013) The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int 2013:187204. https://doi.org/10.1155/2013/187204

    Article  CAS  PubMed  Google Scholar 

  69. Chan SL, Mo FK, Wong CS, Chan CM, Leung LK, Hui EP, Ma BB, Chan AT, Mok TS, Yeo W (2012) A study of circulating interleukin 10 in prognostication of unresectable hepatocellular carcinoma. Cancer 118(16):3984–3992. https://doi.org/10.1002/cncr.26726

    Article  CAS  PubMed  Google Scholar 

  70. Chen J, Li G, Meng H, Fan Y, Song Y, Wang S, Zhu F, Guo C, Zhang L, Shi Y (2012) Upregulation of B7-H1 expression is associated with macrophage infiltration in hepatocellular carcinomas. Cancer Immunol Immunother 61(1):101–108. https://doi.org/10.1007/s00262-011-1094-3

    Article  CAS  PubMed  Google Scholar 

  71. Shen X, Li N, Li H, Zhang T, Wang F, Li Q (2010) Increased prevalence of regulatory T cells in the tumor microenvironment and its correlation with TNM stage of hepatocellular carcinoma. J Cancer Res Clin Oncol 136(11):1745–1754. https://doi.org/10.1007/s00432-010-0833-8

    Article  CAS  PubMed  Google Scholar 

  72. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. https://doi.org/10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  73. Chen J, Rajasekaran M, Xia H, Zhang X, Kong SN, Sekar K, Seshachalam VP, Deivasigamani A, Goh BK, Ooi LL, Hong W, Hui KM (2016) The microtubule-associated protein PRC1 promotes early recurrence of hepatocellular carcinoma in association with the Wnt/beta-catenin signalling pathway. Gut 65(9):1522–1534. https://doi.org/10.1136/gutjnl-2015-310625

    Article  CAS  PubMed  Google Scholar 

  74. Levrero M, Zucman-Rossi J (2016) Mechanisms of HBV-induced hepatocellular carcinoma. J Hepatol 64(1 Suppl):S84–S101. https://doi.org/10.1016/j.jhep.2016.02.021

    Article  CAS  PubMed  Google Scholar 

  75. Liang Y, Feng Y, Zong M, Wei XF, Lee J, Feng Y, Li H, Yang GS, Wu ZJ, Fu XD, Feng GS (2018) Beta-catenin deficiency in hepatocytes aggravates hepatocarcinogenesis driven by oncogenic beta-catenin and MET. Hepatology 67(5):1807–1822. https://doi.org/10.1002/hep.29661

    Article  CAS  PubMed  Google Scholar 

  76. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205. https://doi.org/10.1016/j.cell.2012.05.012

    Article  CAS  PubMed  Google Scholar 

  77. Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z, Wrzesinski C, Boni A, Cassard L, Garvin LM, Paulos CM, Muranski P, Restifo NP (2009) Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 15(7):808–813. https://doi.org/10.1038/nm.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T (2013) A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 14(12):1212–1218. https://doi.org/10.1038/ni.2762

    Article  CAS  PubMed  Google Scholar 

  79. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348(6230):56–61. https://doi.org/10.1126/science.aaa8172

    Article  CAS  PubMed  Google Scholar 

  80. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465. https://doi.org/10.1056/NEJMoa1200694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369(2):122–133. https://doi.org/10.1056/NEJMoa1302369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhaufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crino L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639. https://doi.org/10.1056/NEJMoa1507643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Youngblood B, Oestreich KJ, Ha SJ, Duraiswamy J, Akondy RS, West EE, Wei Z, Lu P, Austin JW, Riley JL, Boss JM, Ahmed R (2011) Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity 35(3):400–412. https://doi.org/10.1016/j.immuni.2011.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, Drake AM, Chen Z, Sen DR, Kurachi M, Barnitz RA, Bartman C, Bengsch B, Huang AC, Schenkel JM, Vahedi G, Haining WN, Berger SL, Wherry EJ (2016) Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354(6316):1160–1165. https://doi.org/10.1126/science.aaf2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alfei F, Kanev K, Hofmann M, Wu M, Ghoneim HE, Roelli P, Utzschneider DT, von Hoesslin M, Cullen JG, Fan Y, Eisenberg V, Wohlleber D, Steiger K, Merkler D, Delorenzi M, Knolle PA, Cohen CJ, Thimme R, Youngblood B, Zehn D (2019) TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571(7764):265–269. https://doi.org/10.1038/s41586-019-1326-9

    Article  CAS  PubMed  Google Scholar 

  86. Liu X, Wang Y, Lu H, Li J, Yan X, Xiao M, Hao J, Alekseev A, Khong H, Chen T, Huang R, Wu J, Zhao Q, Wu Q, Xu S, Wang X, Jin W, Yu S, Wang Y, Wei L, Wang A, Zhong B, Ni L, Liu X, Nurieva R, Ye L, Tian Q, Bian XW, Dong C (2019) Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature 567(7749):525–529. https://doi.org/10.1038/s41586-019-0979-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15(8):486–499. https://doi.org/10.1038/nri3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Postow MA, Hellmann MD (2018) Adverse events associated with immune checkpoint blockade. N Engl J Med 378(12):1165. https://doi.org/10.1056/NEJMc1801663

    Article  PubMed  Google Scholar 

  89. CheckMate -459 Study Evaluating Opdivo (nivolumab) as a First-Line Treatment for Patients with Unresectable Hepatocellular Carcinoma. (2019) Bristol-Myers Squibb. https://news.bms.com/press-release/bmy/bristol-myers-squibb-announces-results-checkmate-459-study-evaluating-opdivo-nivol

  90. Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM (2015) Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149(5):1226–1239e1224. https://doi.org/10.1053/j.gastro.2015.05.061

    Article  CAS  PubMed  Google Scholar 

  91. Gattinoni L, Ji Y, Restifo NP (2010) Wnt/beta-catenin signaling in T-cell immunity and cancer immunotherapy. Clin Cancer Res 16(19):4695–4701. https://doi.org/10.1158/1078-0432.CCR-10-0356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Spranger S, Gajewski TF (2015) A new paradigm for tumor immune escape: beta-catenin-driven immune exclusion. J Immunother Cancer 3:43. https://doi.org/10.1186/s40425-015-0089-6

    Article  PubMed  PubMed Central  Google Scholar 

  93. Schinzari V, Timperi E, Pecora G, Palmucci F, Gallerano D, Grimaldi A, Covino DA, Guglielmo N, Melandro F, Manzi E, Sagnotta A, Lancellotti F, Sacco L, Chirletti P, Grazi GL, Rossi M, Barnaba V (2018) Wnt3a/beta-catenin signalling conditions differentiation of partially exhausted T-effector cells in human cancers. Cancer Immunol Res 6(8):941–952. https://doi.org/10.1158/2326-6066.CIR-17-0712

    Article  CAS  PubMed  Google Scholar 

  94. Utzschneider DT, Charmoy M, Chennupati V, Pousse L, Ferreira DP, Calderon-Copete S, Danilo M, Alfei F, Hofmann M, Wieland D, Pradervand S, Thimme R, Zehn D, Held W (2016) T cell factor 1-expressing memory-like CD8(+) T cells sustain the immune response to chronic viral infections. Immunity 45(2):415–427. https://doi.org/10.1016/j.immuni.2016.07.021

    Article  CAS  PubMed  Google Scholar 

  95. Pacella I, Cammarata I, Focaccetti C, Miacci S, Gulino A, Tripodo C, Rava M, Barnaba V, Piconese S (2018) Wnt3a neutralization enhances T-cell responses through indirect mechanisms and restrains tumor growth. Cancer Immunol Res 6(8):953–964. https://doi.org/10.1158/2326-6066.CIR-17-0713

    Article  CAS  PubMed  Google Scholar 

  96. Kerdidani D, Chouvardas P, Arjo AR, Giopanou I, Ntaliarda G, Guo YA, Tsikitis M, Kazamias G, Potaris K, Stathopoulos GT, Zakynthinos S, Kalomenidis I, Soumelis V, Kollias G, Tsoumakidou M (2019) Wnt1 silences chemokine genes in dendritic cells and induces adaptive immune resistance in lung adenocarcinoma. Nat Commun 10(1):1405. https://doi.org/10.1038/s41467-019-09370-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061. https://doi.org/10.1126/science.1079490

    Article  CAS  PubMed  Google Scholar 

  98. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336. https://doi.org/10.1038/ni904

    Article  CAS  PubMed  Google Scholar 

  99. Hamann A (2012) Regulatory T cells stay on course. Immunity 36(2):161–163. https://doi.org/10.1016/j.immuni.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  100. Rudensky AY, Campbell DJ (2006) In vivo sites and cellular mechanisms of T reg cell-mediated suppression. J Exp Med 203(3):489–492. https://doi.org/10.1084/jem.20060214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu Z, Gerner MY, Van Panhuys N, Levine AG, Rudensky AY, Germain RN (2015) Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature 528(7581):225–230. https://doi.org/10.1038/nature16169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Panduro M, Benoist C, Mathis D (2016) Tissue Tregs. Annu Rev Immunol 34:609–633. https://doi.org/10.1146/annurev-immunol-032712-095948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Barnaba V, Schinzari V (2013) Induction, control, and plasticity of Treg cells: the immune regulatory network revised? Eur J Immunol 43(2):318–322. https://doi.org/10.1002/eji.201243265

    Article  CAS  PubMed  Google Scholar 

  104. Franceschini D, Paroli M, Francavilla V, Videtta M, Morrone S, Labbadia G, Cerino A, Mondelli MU, Barnaba V (2009) PD-L1 negatively regulates CD4+CD25+Foxp3+ Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV. J Clin Invest 119(3):551–564. https://doi.org/10.1172/JCI36604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li MO, Flavell RA (2008) TGF-beta: a master of all T cell trades. Cell 134(3):392–404. https://doi.org/10.1016/j.cell.2008.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gressner AM, Weiskirchen R, Breitkopf K, Dooley S (2002) Roles of TGF-beta in hepatic fibrosis. Front Biosci 7:d793–d807

    Article  CAS  PubMed  Google Scholar 

  107. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, Vieweg J (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115(12):3623–3633. https://doi.org/10.1172/JCI25947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Arce Vargas F, Furness AJS, Litchfield K, Joshi K, Rosenthal R, Ghorani E, Solomon I, Lesko MH, Ruef N, Roddie C, Henry JY, Spain L, Ben Aissa A, Georgiou A, Wong YNS, Smith M, Strauss D, Hayes A, Nicol D, O'Brien T, Martensson L, Ljungars A, Teige I, Frendeus B, Melanoma TR, Renal TR, TRL C, Pule M, Marafioti T, Gore M, Larkin J, Turajlic S, Swanton C, Peggs KS, Quezada SA (2018) Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell 33(4):649–663e644. https://doi.org/10.1016/j.ccell.2018.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kurose K, Ohue Y, Wada H, Iida S, Ishida T, Kojima T, Doi T, Suzuki S, Isobe M, Funakoshi T, Kakimi K, Nishikawa H, Udono H, Oka M, Ueda R, Nakayama E (2015) Phase Ia study of FoxP3+ CD4 Treg depletion by infusion of a humanized anti-CCR4 antibody, KW-0761, in cancer patients. Clin Cancer Res 21(19):4327–4336. https://doi.org/10.1158/1078-0432.CCR-15-0357

    Article  CAS  PubMed  Google Scholar 

  110. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita JL, Cubas R, Jhunjhunwala S, Banchereau R, Yang Y, Guan Y, Chalouni C, Ziai J, Senbabaoglu Y, Santoro S, Sheinson D, Hung J, Giltnane JM, Pierce AA, Mesh K, Lianoglou S, Riegler J, Carano RAD, Eriksson P, Hoglund M, Somarriba L, Halligan DL, van der Heijden MS, Loriot Y, Rosenberg JE, Fong L, Mellman I, Chen DS, Green M, Derleth C, Fine GD, Hegde PS, Bourgon R, Powles T (2018) TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554(7693):544–548. https://doi.org/10.1038/nature25501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, Sevillano M, Ibiza S, Canellas A, Hernando-Momblona X, Byrom D, Matarin JA, Calon A, Rivas EI, Nebreda AR, Riera A, Attolini CS, Batlle E (2018) TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554(7693):538–543. https://doi.org/10.1038/nature25492

    Article  CAS  PubMed  Google Scholar 

  112. Chakravarthy A, Khan L, Bensler NP, Bose P, De Carvalho DD (2018) TGF-beta-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat Commun 9(1):4692. https://doi.org/10.1038/s41467-018-06654-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Haque S, Morris JC (2017) Transforming growth factor-beta: a therapeutic target for cancer. Hum Vaccin Immunother 13(8):1741–1750. https://doi.org/10.1080/21645515.2017.1327107

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pacella I, Procaccini C, Focaccetti C, Miacci S, Timperi E, Faicchia D, Severa M, Rizzo F, Coccia EM, Bonacina F, Mitro N, Norata GD, Rossetti G, Ranzani V, Pagani M, Giorda E, Wei Y, Matarese G, Barnaba V, Piconese S (2018) Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proc Natl Acad Sci U S A 115(28):E6546–E6555. https://doi.org/10.1073/pnas.1720113115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gershon RK, Cohen P, Hencin R, Liebhaber SA (1972) Suppressor T cells. J Immunol 108(3):586–590

    CAS  PubMed  Google Scholar 

  116. Accapezzato D, Francavilla V, Paroli M, Casciaro M, Chircu LV, Cividini A, Abrignani S, Mondelli MU, Barnaba V (2004) Hepatic expansion of a virus-specific regulatory CD8(+) T cell population in chronic hepatitis C virus infection. J Clin Invest 113(7):963–972. https://doi.org/10.1172/JCI20515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rehermann B (2013) Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nat Med 19(7):859–868. https://doi.org/10.1038/nm.3251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Huynh JP, Lin CC, Kimmey JM, Jarjour NN, Schwarzkopf EA, Bradstreet TR, Shchukina I, Shpynov O, Weaver CT, Taneja R, Artyomov MN, Edelson BT, Stallings CL (2018) Bhlhe40 is an essential repressor of IL-10 during Mycobacterium tuberculosis infection. J Exp Med 215(7):1823–1838. https://doi.org/10.1084/jem.20171704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yu F, Sharma S, Jankovic D, Gurram RK, Su P, Hu G, Li R, Rieder S, Zhao K, Sun B, Zhu J (2018) The transcription factor Bhlhe40 is a switch of inflammatory versus antiinflammatory Th1 cell fate determination. J Exp Med 215(7):1813–1821. https://doi.org/10.1084/jem.20170155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pallett LJ, Gill US, Quaglia A, Sinclair LV, Jover-Cobos M, Schurich A, Singh KP, Thomas N, Das A, Chen A, Fusai G, Bertoletti A, Cantrell DA, Kennedy PT, Davies NA, Haniffa M, Maini MK (2015) Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nat Med 21(6):591–600. https://doi.org/10.1038/nm.3856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Piconese S, Barnaba V (2015) Regulation of immunopathology in hepatitis B virus infection. Nat Med 21(6):548–549. https://doi.org/10.1038/nm.3873

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the following grants: Associazione Italiana per la Ricerca sul Cancro (AIRC) (progetti “Investigator Grant” [IG]-2014-17 id. 15199 and IG-2017-22 id. 19939 to VB); The Accelerated Award 2018 (Project Id.22794); Ministero della Salute (Ricerca finalizzata [RF-2010-2310438 and RF 2010-2318269]); Fondazione Italiana Sclerosi Multipla (FISM) onlus (cod. 2015/R/04); Fondo per gli investimenti di ricerca di base (FIRB)-2011/13 (no. RBAP10TPXK); Istituto Pasteur Italia – Fondazione Cenci Bolognetti (grant 2014-2016); International Network Institut Pasteur, Paris – “Programmes Transversaux De Recherche” (PTR n. 20-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Barnaba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Timperi, E., Barnaba, V. (2020). Viral Hepatitides, Inflammation and Tumour Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1263. Springer, Cham. https://doi.org/10.1007/978-3-030-44518-8_3

Download citation

Publish with us

Policies and ethics