Skip to main content

Fairness in Machine Learning

  • Chapter
  • First Online:
Recent Trends in Learning From Data

Part of the book series: Studies in Computational Intelligence ((SCI,volume 896))

Abstract

Machine learning based systems are reaching society at large and in many aspects of everyday life. This phenomenon has been accompanied by concerns about the ethical issues that may arise from the adoption of these technologies. ML fairness is a recently established area of machine learning that studies how to ensure that biases in the data and model inaccuracies do not lead to models that treat individuals unfavorably on the basis of characteristics such as e.g. race, gender, disabilities, and sexual or political orientation. In this manuscript, we discuss some of the limitations present in the current reasoning about fairness and in methods that deal with it, and describe some work done by the authors to address them. More specifically, we show how causal Bayesian networks can play an important role to reason about and deal with fairness, especially in complex unfairness scenarios. We describe how optimal transport theory can be leveraged to develop methods that impose constraints on the full shapes of distributions corresponding to different sensitive attributes, overcoming the limitation of most approaches that approximate fairness desiderata by imposing constraints on the lower order moments or other functions of those distributions. We present a unified framework that encompasses methods that can deal with different settings and fairness criteria, and that enjoys strong theoretical guarantees. We introduce an approach to learn fair representations that can generalize to unseen tasks. Finally, we describe a technique that accounts for legal restrictions about the use of sensitive attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout the manuscript, we denote random variables with capital letters, and their values with small letters.

  2. 2.

    This is the case as the non-causal path \(A\leftarrow C\rightarrow Y\) is open.

  3. 3.

    This condition is satisfied as we use empirical approximations of distributions.

  4. 4.

    If \(r <\min (d,T)\), Problem (49) is equivalent to trace norm regularization plus a rank constraint.

  5. 5.

    For all intents and purposes, one may also assume throughout that \(\mathbb {H}=\mathbb {R}^d\), the standard d-dimensional vector space, for some positive integer d.

References

  1. Adebayo, J., Kagal, L.: Iterative orthogonal feature projection for diagnosing bias in black-box models. In: Fairness, Accountability, and Transparency in Machine Learning (2016)

    Google Scholar 

  2. Adler, P., Falk, C., Friedler, S.A., Nix, T., Rybeck, G., Scheidegger, C., Smith, B., Venkatasubramanian, S.: Auditing black-box models for indirect influence. Knowl. Inf. Syst. 54(1), 95–122 (2018)

    Article  Google Scholar 

  3. Agarwal, A., Beygelzimer, A., Dudik, M., Langford, J., Wallach, H.: A reductions approach to fair classification. In: Proceedings of the 35th International Conference on Machine Learning, pp. 60–69 (2018)

    Google Scholar 

  4. AI Now Institute: Litigating algorithms: challenging government use of algorithmic decision systems (2016). https://ainowinstitute.org/litigatingalgorithms.pdf

  5. Alabi, D., Immorlica, N., Kalai, A.T.: Unleashing linear optimizers for group-fair learning and optimization. In: 31st Annual Conference on Learning Theory, pp. 2043–2066 (2018)

    Google Scholar 

  6. Alabi, D., Immorlica, N., Kalai, A.T.: When optimizing nonlinear objectives is no harder than linear objectives (2018). CoRR arXiv:1804.04503

  7. Ali, J., Zafar, M.B., Singla, A., Gummadi, K.P.: Loss-aversively fair classification. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 211–218 (2019)

    Google Scholar 

  8. Amrieh, E.A., Hamtini, T., Aljarah, I.: Students’ academic performance data set (2015). https://www.kaggle.com/aljarah/xAPI-Edu-Data

  9. Anguita, D., Ghio, A., Oneto, L., Ridella, S.: Selecting the hypothesis space for improving the generalization ability of support vector machines. In: IEEE International Joint Conference on Neural Networks (2011)

    Google Scholar 

  10. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine Bias: There’s software used across the country to predict future criminals. And it’s biased against blacks (2016). https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

  11. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach. Learn. 73(3), 243–272 (2008)

    Article  Google Scholar 

  12. Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds and structural results. J. Mach. Learn. Res. 3, 463–482 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Baxter, J.: A model of inductive bias learning. J. Artif. Intell. Res. 12, 149–198 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bechavod, Y., Ligett, K.: Penalizing unfairness in binary classification (2018). CoRR arXiv:1707.00044

  15. Berk, R., Heidari, H., Jabbari, S., Joseph, M., Kearns, M., Morgenstern, J., Neel, S., Roth, A.: A convex framework for fair regression. In: Fairness, Accountability, and Transparency in Machine Learning (2017)

    Google Scholar 

  16. Beutel, A., Chen, J., Zhao, Z., Chi, E.H.: Data decisions and theoretical implications when adversarially learning fair representations (2017). CoRR arXiv:1707.00075

  17. Bogen, M., Rieke, A.: Help wanted: an examination of hiring algorithms, equity, and bias. Technical report, Upturn (2018)

    Google Scholar 

  18. Borwein, J., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer (2010)

    Google Scholar 

  19. Bureau of Labor Statistics: National longitudinal surveys of youth data set (2019). https://www.bls.gov/nls/

  20. Byanjankar, A., Heikkilä, M., Mezei, J.: Predicting credit risk in peer-to-peer lending: a neural network approach. In: IEEE Symposium Series on Computational Intelligence (2015)

    Google Scholar 

  21. Calders, T., Kamiran, F., Pechenizkiy, M.: Building classifiers with independency constraints. In: IEEE International Conference on Data Mining Workshops. ICDMW 2009, pp. 13–18 (2009)

    Google Scholar 

  22. Calders, T., Karim, A., Kamiran, F., Ali, W., Zhang, X.: Controlling attribute effect in linear regression. In: IEEE International Conference on Data Mining (2013)

    Google Scholar 

  23. Calders, T., Verwer, S.: Three naive bayes approaches for discrimination-free classification. Data Min. Knowl. Discov. 21(2), 277–292 (2010)

    Article  MathSciNet  Google Scholar 

  24. Calmon, F., Wei, D., Vinzamuri, B., Ramamurthy, K.N., Varshney, K.R.: Optimized pre-processing for discrimination prevention. In: Proceedings of the 31st Conference on Neural Information Processing Systems, pp. 3995–4004 (2017)

    Google Scholar 

  25. Chiappa, S.: Path-specific counterfactual fairness. In: Thirty-Third AAAI Conference on Artificial Intelligence, pp. 7801–7808 (2019)

    Google Scholar 

  26. Chiappa, S., Isaac, W.S.: A causal Bayesian networks viewpoint on fairness. In: Kosta, E., Pierson, J., Slamanig, D., Fischer-Hübner, S., Krenn, S. (eds.) Privacy and Identity Management. Fairness, Accountability, and Transparency in the Age of Big Data. Privacy and Identity 2018. IFIP Advances in Information and Communication Technology, vol. 547. Springer, Cham (2019)

    Google Scholar 

  27. Chiappa, S., Jiang, R., Stepleton, T., Pacchiano, A., Jiang, H., Aslanides, J.: A general approach to fairness with optimal transport. In: Thirty-Fourth AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

  28. Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. In: Proceedings of the 31st Conference on Neural Information Processing Systems, pp. 5036–5044 (2017)

    Google Scholar 

  29. Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data 5(2), 153–163 (2017)

    Article  Google Scholar 

  30. Chouldechova, A., Putnam-Hornstein, E., Benavides-Prado, D., Fialko, O., Vaithianathan, R.: A case study of algorithm-assisted decision making in child maltreatment hotline screening decisions. In: Proceedings of the 1st Conference on Fairness, Accountability and Transparency, pp. 134–148 (2018)

    Google Scholar 

  31. Chzhen, E., Hebiri, H., Denis, C., Oneto, L., Pontil, M.: Leveraging labeled and unlabeled data for consistent fair binary classification. In: Proceedings of the 33rd Conference on Neural Information Processing Systems, pp. 12739–12750 (2019)

    Google Scholar 

  32. Ciliberto, C., Stamos, D., Pontil, M.: Reexamining low rank matrix factorization for trace norm regularization (2017). CoRR arXiv:1706.08934

  33. Coraddu, A., Oneto, L., Baldi, F., Anguita, D.: Vessels fuel consumption forecast and trim optimisation: a data analytics perspective. Ocean. Eng. 130, 351–370 (2017)

    Google Scholar 

  34. Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., Huq, A.: Algorithmic decision making and the cost of fairness. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 797–806 (2017)

    Google Scholar 

  35. Cortez, P.: Student performance data set (2014). https://archive.ics.uci.edu/ml/datasets/Student+Performance

  36. Cortez, P.: Wine quality data set (2009). https://archive.ics.uci.edu/ml/datasets/Wine+Quality

  37. Cotter, A., Gupta, M., Jiang, H., Srebro, N., Sridharan, K., Wang, S., Woodworth, B., You, S.: Training well-generalizing classifiers for fairness metrics and other data-dependent constraints (2018). CoRR arXiv:1807.00028

  38. Cotter, A., Jiang, H., Sridharan, K.: Two-player games for efficient non-convex constrained optimization. In: Algorithmic Learning Theory (2019)

    Google Scholar 

  39. Dawid, P.: Fundamentals of statistical causality. Technical report (2007)

    Google Scholar 

  40. De Fauw, J., Ledsam, J.R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., Askham, H., Glorot, X., O’Donoghue, B., Visentin, D., Van Den Driessche, G., Lakshminarayanan, B., Meyer, C., Mackinder, F., Bouton, S., Ayoub, K., Chopra, R., King, D., Karthikesalingam, A., Hughes, C.O., Raine, R., Hughes, J., Sim, D.A., Egan, C., Tufail, A., Montgomery, H., Hassabis, D., Rees, G., Back, T., Khaw, P.T., Suleyman, M., Cornebise, J., Keane, P.A., Ronneberger, O.: Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24(9), 1342–1350 (2018)

    Article  Google Scholar 

  41. Dieterich, W., Mendoza, C., Brennan, T.: COMPAS risk scales: demonstrating accuracy equity and predictive parity (2016)

    Google Scholar 

  42. Doherty, N.A., Kartasheva, A.V., Phillips, R.D.: Information effect of entry into credit ratings market: the case of insurers’ ratings. J. Financ. Econ. 106(2), 308–330 (2012)

    Article  Google Scholar 

  43. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: a deep convolutional activation feature for generic visual recognition. In: Proceedings of the 31st International Conference on Machine Learning, pp. 647–655 (2014)

    Google Scholar 

  44. Donini, M., Oneto, L., Ben-David, S., Shawe-Taylor, J.S., Pontil, M.: Empirical risk minimization under fairness constraints. In: Proceedings of the 32nd Conference on Neural Information Processing Systems, pp. 2791–2801 (2018)

    Google Scholar 

  45. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness. In: Innovations in Theoretical Computer Science Conference (2012)

    Google Scholar 

  46. Dwork, C., Immorlica, N., Kalai, A.T., Leiserson, M.D.M.: Decoupled classifiers for group-fair and efficient machine learning. In: Proceedings of the 1st Conference on Fairness, Accountability and Transparency, pp. 119–133 (2018)

    Google Scholar 

  47. Edwards, H., Storkey, A.: Censoring representations with an adversary. In: 4th International Conference on Learning Representations (2015)

    Google Scholar 

  48. Eubanks, V.: Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Martin’s Press (2018)

    Google Scholar 

  49. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 109–117 (2004)

    Google Scholar 

  50. Fehrman, E., Egan, V., Mirkes, E.M.: Drug consumption data set (2016). https://archive.ics.uci.edu/ml/datasets/Drug+consumption+%28quantified%29

  51. Feldman, M.: Computational fairness: preventing machine-learned discrimination (2015). https://scholarship.tricolib.brynmawr.edu/handle/10066/17628

  52. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.: Certifying and removing disparate impact. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 259–268 (2015)

    Google Scholar 

  53. Fish, B., Kun, J., Lelkes, A.: Fair boosting: a case study. In: Fairness, Accountability, and Transparency in Machine Learning (2015)

    Google Scholar 

  54. Fish, B., Kun, J., Lelkes, A.D.: A confidence-based approach for balancing fairness and accuracy. In: SIAM International Conference on Data Mining, pp. 144–152 (2016)

    Google Scholar 

  55. Fitzsimons, J., Ali, A.A., Osborne, M., Roberts, S.: Equality constrained decision trees: for the algorithmic enforcement of group fairness (2018). CoRR arXiv:1810.05041

  56. Fukuchi, K., Kamishima, T., Sakuma, J.: Prediction with model-based neutrality. IEICE Trans. Inf. Syst. 98(8), 1503–1516 (2015)

    Article  Google Scholar 

  57. Gajane, P., Pechenizkiy, M.: On formalizing fairness in prediction with machine learning (2017). CoRR arXiv:1710.03184

  58. Gillen, S., Jung, C., Kearns, M., Roth, A.: Online learning with an unknown fairness metric. In: Proceedings of the 32nd Neural Information Processing Systems, pp. 2600–2609 (2018)

    Google Scholar 

  59. Goh, G., Cotter, A., Gupta, M., Friedlander, M.P.: Satisfying real-world goals with dataset constraints. In: Proceedings of the 30th Conference on Neural Information Processing Systems, pp. 2415–2423 (2016)

    Google Scholar 

  60. Goldstein, H.: School effectiveness data set (1987). http://www.bristol.ac.uk/cmm/learning/support/datasets/

  61. Gordaliza, P., Del Barrio, E., Fabrice, G., Jean-Michel, L.: Obtaining fairness using optimal transport theory. In: Proceedings of the 36th International Conference on International Conference on Machine Learning, pp. 2357–2365 (2019)

    Google Scholar 

  62. Grgić-Hlača, N., Zafar, M.B., Gummadi, K.P., Weller, A.: On fairness, diversity and randomness in algorithmic decision making (2017). CoRR arXiv:1706.10208

  63. Guvenir, H.A., Acar, B., Muderrisoglu, H.: Arrhythmia data set (1998). https://archive.ics.uci.edu/ml/datasets/Arrhythmia

  64. Hajian, S., Domingo-Ferrer, J.: A methodology for direct and indirect discrimination prevention in data mining. IEEE Trans. Knowl. Data Eng. 25(7), 1445–1459 (2012)

    Article  Google Scholar 

  65. Hajian, S., Domingo-Ferrer, J., Farràs, O.: Generalization-based privacy preservation and discrimination prevention in data publishing and mining. Data Min. Knowl. Discov. 28(5–6), 1158–1188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  66. Hajian, S., Domingo-Ferrer, J., Martinez-Balleste, A.: Rule protection for indirect discrimination prevention in data mining. In: International Conference on Modeling Decisions for Artificial Intelligence (2011)

    Google Scholar 

  67. Hajian, S., Domingo-Ferrer, J., Monreale, A., Pedreschi, D., Giannotti, F.: Discrimination-and privacy-aware patterns. Data Min. Knowl. Discov. 29(6), 1733–1782 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  68. Hajian, S., Monreale, A., Pedreschi, D., Domingo-Ferrer, J., Giannotti, F.: Injecting discrimination and privacy awareness into pattern discovery. In: IEEE International Conference on Data Mining Workshops (2012)

    Google Scholar 

  69. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. In: Proceedings of the 30th Conference on Neural Information Processing Systems, pp. 3315–3323 (2016)

    Google Scholar 

  70. Harper, F.M., Konstan, J.A.: Movielens data set (2016). https://grouplens.org/datasets/movielens/

  71. Hashimoto, T.B., Srivastava, M., Namkoong, H., Liang, P.: Fairness without demographics in repeated loss minimization. In: Proceedings of the 35th International Conference on on Machine Learning, pp. 1929–1938 (2018)

    Google Scholar 

  72. He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich, R., Bowers, S., Candela, J.Q.: Practical lessons from predicting clicks on ads at facebook. In: International Workshop on Data Mining for Online Advertising (2014)

    Google Scholar 

  73. Hébert-Johnson, U., Kim, M.P., Reingold, O., Rothblum, G.N.: Calibration for the (computationally-identifiable) masses (2017). CoRR arXiv:1711.08513

  74. Heidari, H., Ferrari, C., Gummadi, K., Krause, A.: Fairness behind a veil of ignorance: a welfare analysis for automated decision making. In: Proceedings of the 32nd Conference on Neural Information Processing Systems, pp. 1273–1283 (2018)

    Google Scholar 

  75. Heidari, H., Loi, M., Gummadi, K.P., Krause, A.: A moral framework for understanding of fair ml through economic models of equality of opportunity (2018). CoRR arXiv:1809.03400

  76. Heritage Provider Network: Heritage health data set (2011). https://www.kaggle.com/c/hhp/data

  77. Hoffman, M., Kahn, L.B., Li, D.: Discretion in hiring. Q. J. Econ. 133(2), 765–800 (2018)

    Article  Google Scholar 

  78. Hofmann, H.: Statlog (German Credit) data set (1994). https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

  79. Hu, L., Chen, Y.: Fair classification and social welfare (2019). CoRR arXiv:1905.00147

  80. Hussain, S., Dahan, N.A., Ba-Alwib, F.M., Ribata, N.: Student academics performance data set (2018). https://archive.ics.uci.edu/ml/datasets/Student+Academics+Performance

  81. Isaac, W.S.: Hope, hype, and fear: the promise and potential pitfalls of artificial intelligence in criminal justice. Ohio State J. Crim. Law 15(2), 543–558 (2017)

    MathSciNet  Google Scholar 

  82. Jabbari, S., Joseph, M., Kearns, M., Morgenstern, J., Roth, A.: Fairness in reinforcement learning. In: Proceedings of the 34th International Conference on Machine Learning, pp. 1617–1626 (2017)

    Google Scholar 

  83. Janosi, A., Steinbrunn, W., Pfisterer, M., Detrano, R.: Heart disease data set (1988). https://archive.ics.uci.edu/ml/datasets/Heart+Disease

  84. Jiang, R., Pacchiano, A., Stepleton, T., Jiang, H., Chiappa, S.: Wasserstein fair classification. In: Thirty-Fifth Uncertainty in Artificial Intelligence Conference (2019)

    Google Scholar 

  85. Johansson, F., Shalit, U., Sontag, D.: Learning representations for counterfactual inference. In: Proceedings of The 33rd International Conference on Machine Learning, pp. 3020–3029 (2016)

    Google Scholar 

  86. Johndrow, J.E., Lum, K.: An algorithm for removing sensitive information: application to race-independent recidivism prediction. Ann. Appl. Stat. 13(1), 189–220 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  87. Johnson, K.D., Foster, D.P., Stine, R.A.: Impartial predictive modeling: ensuring fairness in arbitrary models (2016). CoRR arXiv:1608.00528

  88. Joseph, M., Kearns, M., Morgenstern, J., Neel, S., Roth, A.: Rawlsian fairness for machine learning. In: Fairness, Accountability, and Transparency in Machine Learning (2016)

    Google Scholar 

  89. Joseph, M., Kearns, M., Morgenstern, J.H., Roth, A.: Fairness in learning: classic and contextual bandits. In: Proceedings of the 30th Conference on Neural Information Processing Systems, pp. 325–333 (2016)

    Google Scholar 

  90. Kamiran, F., Calders, T.: Classifying without discriminating. In: International Conference on Computer, Control and Communication (2009)

    Google Scholar 

  91. Kamiran, F., Calders, T.: Classification with no discrimination by preferential sampling. In: The Annual Machine Learning Conference of Belgium and The Netherlands (2010)

    Google Scholar 

  92. Kamiran, F., Calders, T.: Data preprocessing techniques for classification without discrimination. Knowl. Inf. Syst. 33(1), 1–33 (2012)

    Article  Google Scholar 

  93. Kamiran, F., Karim, A., Zhang, X.: Decision theory for discrimination-aware classification. In: IEEE International Conference on Data Mining (2012)

    Google Scholar 

  94. Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Fairness-aware classifier with prejudice remover regularizer. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases (2012)

    Google Scholar 

  95. Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: The independence of fairness-aware classifiers. In: IEEE International Conference on Data Mining Workshops (2013)

    Google Scholar 

  96. Kamishima, T., Akaho, S., Sakuma, J.: Fairness-aware learning through regularization approach. In: International Conference on Data Mining Workshops (2011)

    Google Scholar 

  97. Kearns, M., Neel, S., Roth, A., Wu, Z.S.: Preventing fairness gerrymandering: auditing and learning for subgroup fairness. In: Proceedings of the 35th International Conference on Machine Learning, pp. 2564–2572 (2018)

    Google Scholar 

  98. Kilbertus, N., Carulla, M.R., Parascandolo, G., Hardt, M., Janzing, D., Schölkopf, B.: Avoiding discrimination through causal reasoning. In: Proceedings of the 31th Conference on Neural Information Processing Systems, pp. 656–666 (2017)

    Google Scholar 

  99. Kim, M., Reingold, O., Rothblum, G.: Fairness through computationally-bounded awareness. In: Proceedings of the 32nd Conference on Neural Information Processing Systems, pp. 4842–4852 (2018)

    Google Scholar 

  100. Kim, M.P., Ghorbani, A., Zou, J.: Multiaccuracy: Black-box post-processing for fairness in classification. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 247–254 (2019)

    Google Scholar 

  101. Koepke, J.L., Robinson, D.G.: Danger ahead: risk assessment and the future of bail reform. Wash. Law Rev. 93, 1725–1807 (2017)

    Google Scholar 

  102. Kohavi, R., Becker, B.: Census income data set (1996). https://archive.ics.uci.edu/ml/datasets/census+income

  103. Komiyama, J., Shimao, H.: Two-stage algorithm for fairness-aware machine learning (2017). CoRR arXiv:1710.04924

  104. Komiyama, J., Takeda, A., Honda, J., Shimao, H.: Nonconvex optimization for regression with fairness constraints. In: Proceedings of the 35th International Conference on Machine Learning, pp. 2737–2746 (2018)

    Google Scholar 

  105. Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17 (2015)

    Article  Google Scholar 

  106. Kusner, M.J., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. In: Proceedings of the 31st Conference on Neural Information Processing Systems, pp. 4069–4079 (2017)

    Google Scholar 

  107. Lan, C., Huan, J.: Discriminatory transfer (2017). CoRR arXiv:1707.00780

  108. Larson, J., Mattu, S., Kirchner, L., Angwin, J.: Propublica COMPAS risk assessment data set (2016). https://github.com/propublica/compas-analysis

  109. Lim, T.S.: Contraceptive method choice data set (1997). https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice

  110. Lisini, S.: Characterization of absolutely continuous curves in Wasserstein spaces. Calc. Var. Part. Differ. Equ. 28(1), 85–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  111. Liu, Z., Luo, P., Wang, X., Tang, X.: CelebA data set (2015). http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

  112. Louizos, C., Swersky, K., Li, Y., Welling, M., Zemel, R.: The variational fair autoencoder. In: 4th International Conference on Learning Representations (2016)

    Google Scholar 

  113. Lum, K., Isaac, W.S.: To predict and serve? Significance 13(5), 14–19 (2016)

    Article  Google Scholar 

  114. Lum, K., Johndrow, J.: A statistical framework for fair predictive algorithms (2016). CoRR arXiv:1610.08077

  115. Luo, L., Liu, W., Koprinska, I., Chen, F.: Discrimination-aware association rule mining for unbiased data analytics. In: International Conference on Big Data Analytics and Knowledge Discovery, pp. 108–120. Springer (2015)

    Google Scholar 

  116. Luong, B.T., Ruggieri, S., Turini, F.: k-nn as an implementation of situation testing for discrimination discovery and prevention. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2011)

    Google Scholar 

  117. Ma, D.S., Correll, J., Wittenbrink, B.: Chicago face data set (2015). https://chicagofaces.org/default/

  118. Madras, D., Creager, E., Pitassi, T., Zemel, R.: Learning adversarially fair and transferable representations (2018). CoRR arXiv:1802.06309

  119. Madras, D., Pitassi, T., Zemel, R.: Predict responsibly: improving fairness and accuracy by learning to defer. In: Proceedings of the 32nd Conference on Neural Information Processing Systems, pp. 6147–6157 (2018)

    Google Scholar 

  120. Malekipirbazari, M., Aksakalli, V.: Risk assessment in social lending via random forests. Expert. Syst. Appl. 42(10), 4621–4631 (2015)

    Article  Google Scholar 

  121. Mancuhan, K., Clifton, C.: Discriminatory decision policy aware classification. In: IEEE International Conference on Data Mining Workshops (2012)

    Google Scholar 

  122. Mancuhan, K., Clifton, C.: Combating discrimination using Bayesian networks. Artif. Intell. Law 22(2), 211–238 (2014)

    Article  Google Scholar 

  123. Mary, J., Calauzenes, C., El Karoui, N.: Fairness-aware learning for continuous attributes and treatments. In: Proceedings of the 36th International Conference on Machine Learning, pp. 4382–4391 (2019)

    Google Scholar 

  124. Maurer, A.: A note on the PAC Bayesian theorem (2004). CoRR arXiv:0411099 [cs.LG]

  125. Maurer, A.: Transfer bounds for linear feature learning. Mach. Learn. 75(3), 327–350 (2009)

    Article  Google Scholar 

  126. McNamara, D., Ong, C.S., Williamson, B.: Costs and benefits of fair representation learning. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics and Society, pp. 263–270 (2019)

    Google Scholar 

  127. McNamara, D., Ong, C.S., Williamson, R.C.: Provably fair representations (2017). CoRR arXiv:1710.04394

  128. Menon, A.K., Williamson, R.C.: The cost of fairness in binary classification. In: Proceedings of the 1st Conference on Fairness, Accountability and Transparency, pp. 107–118 (2018)

    Google Scholar 

  129. Merler, M., Ratha, N., Feris, R.S., Smith, J.R.: Diversity in faces data set (2019). https://research.ibm.com/artificial-intelligence/trusted-ai/diversity-in-faces/#highlights

  130. Mitchell, S., Potash, E., Barocas, S.: Prediction-based decisions and fairness: a catalogue of choices, assumptions, and definitions (2018). CoRR arXiv:1811.07867

  131. Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale des Sciences de Paris (1781)

    Google Scholar 

  132. Moro, S., Cortez, P., Rita, P.: Bank marketing data set (2014). https://archive.ics.uci.edu/ml/datasets/bank+marketing

  133. Nabi, R., Malinsky, D., Shpitser, I.: Learning optimal fair policies. In: Proceedings of the 36th International Conference on Machine Learning, pp. 4674–4682 (2019)

    Google Scholar 

  134. Nabi, R., Shpitser, I.: Fair inference on outcomes. In: Thirty-Second AAAI Conference on Artificial Intelligence, pp. 1931–1940 (2018)

    Google Scholar 

  135. Narasimhan, H.: Learning with complex loss functions and constraints. In: Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, pp. 1646–1654 (2018)

    Google Scholar 

  136. New York Police Department: Stop, Question and frisk data set (2012). https://www1.nyc.gov/site/nypd/stats/reports-analysis/stopfrisk.page

  137. Noriega-Campero, A., Bakker, M.A., Garcia-Bulle, B., Pentland, A.: Active fairness in algorithmic decision making. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 77–83 (2019)

    Google Scholar 

  138. Olfat, M., Aswani, A.: Spectral algorithms for computing fair support vector machines (2017). CoRR arXiv:1710.05895

  139. Oneto, L., Donini, M., Elders, A., Pontil, M.: Taking advantage of multitask learning for fair classification. In: AAAI/ACM Conference on AI, Ethics, and Society (2019)

    Google Scholar 

  140. Oneto, L., Donini, M., Maurer, A., Pontil, M.: Learning fair and transferable representations (2019). CoRR arXiv:1906.10673

  141. Oneto, L., Donini, M., Pontil, M.: General fair empirical risk minimization (2019). CoRR arXiv:1901.10080

  142. Oneto, L., Ridella, S., Anguita, D.: Tikhonov, Ivanov and Morozov regularization for support vector machine learning. Mach. Learn. 103(1), 103–136 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  143. Oneto, L., Siri, A., Luria, G., Anguita, D.: Dropout prediction at university of Genoa: a privacy preserving data driven approach. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2017)

    Google Scholar 

  144. Papamitsiou, Z., Economides, A.A.: Learning analytics and educational data mining in practice: a systematic literature review of empirical evidence. J. Educ. Technol. Soc. 17(4), 49–64 (2014)

    Google Scholar 

  145. Pearl, J.: Causality: Models. Springer, Reasoning and Inference (2000)

    MATH  Google Scholar 

  146. Pearl, J., Glymour, M., Jewell, N.P.: Causal Inference in Statistics: A Primer. Wiley (2016)

    Google Scholar 

  147. Pedreschi, D., Ruggieri, S., Turini, F.: Measuring discrimination in socially-sensitive decision records. In: SIAM International Conference on Data Mining (2009)

    Google Scholar 

  148. Pedreshi, D., Ruggieri, S., Turini, F.: Discrimination-aware data mining. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2008)

    Google Scholar 

  149. Pérez-Suay, A., Laparra, V., Mateo-García, G., Muñoz-Marí, J., Gómez-Chova, L., Camps-Valls, G.: Fair kernel learning. In: Machine Learning and Knowledge Discovery in Databases (2017)

    Google Scholar 

  150. Perlich, C., Dalessandro, B., Raeder, T., Stitelman, O., Provost, F.: Machine learning for targeted display advertising: transfer learning in action. Mach. Learn. 95(1), 103–127 (2014)

    Article  MathSciNet  Google Scholar 

  151. Peters, J., Janzing, D., Schölkopf, B.: Elements of causal inference: foundations and learning algorithms. MIT Press (2017)

    Google Scholar 

  152. Peyré, G., Cuturi, M.: Computational optimal transport. Found. Trends Mach. Learn. 11(5–6), 355–607 (2019)

    Google Scholar 

  153. Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J., Weinberger, K.Q.: On fairness and calibration. In: Proceedings of the 31st Conference on Neural Information Processing Systems, pp. 5684–5693 (2017)

    Google Scholar 

  154. Quadrianto, N., Sharmanska, V.: Recycling privileged learning and distribution matching for fairness. In: Proceedings of the 31st Conference on Neural Information Processing Systems, pp. 677–688 (2017)

    Google Scholar 

  155. Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset shift in machine learning. The MIT Press (2009)

    Google Scholar 

  156. Raff, E., Sylvester, J., Mills, S.: Fair forests: regularized tree induction to minimize model bias. In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society (2018)

    Google Scholar 

  157. Redmond, M.: Communities and crime data set (2009). http://archive.ics.uci.edu/ml/datasets/communities+and+crime

  158. Rosenberg, M., Levinson, R.: Trump’s catch-and-detain policy snares many who call the U.S. home (2018). https://www.reuters.com/investigates/special-report/usa-immigration-court

  159. Russell, C., Kusner, M.J., Loftus, J., Silva, R.: When worlds collide: integrating different counterfactual assumptions in fairness. In: Proceedings of the 31st Conference on Neural Information Processing Systems, pp. 6414–6423 (2017)

    Google Scholar 

  160. Selbst, A.D.: Disparate impact in big data policing. Georg. Law Rev. 52, 109–195 (2017)

    Google Scholar 

  161. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press (2014)

    Google Scholar 

  162. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press (2004)

    Google Scholar 

  163. Smola, A.J., Schölkopf, B.: Learning with Kernels. MIT Press (2001)

    Google Scholar 

  164. Song, J., Kalluri, P., Grover, A., Zhao, S., Ermon, S.: Learning controllable fair representations (2018). CoRR arXiv:1812.04218

  165. Speicher, T., Heidari, H., Grgic-Hlaca, N., Gummadi, K.P., Singla, A., Weller, A., Zafar, M.B.: A unified approach to quantifying algorithmic unfairness: measuring individual & group unfairness via inequality indices. In: ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2018)

    Google Scholar 

  166. Spirtes, P., Glymour, C.N., Scheines, R., Heckerman, D., Meek, C., Cooper, G., Richardson, T.: Causation, Prediction, and Search. MIT Press (2000)

    Google Scholar 

  167. Srebro, N.: Learning with matrix factorizations (2004)

    Google Scholar 

  168. Stevenson, M.T.: Assessing risk assessment in action. Minn. Law Rev. 103 (2017)

    Google Scholar 

  169. Strack, B., DeShazo, J.P., Gennings, C., Olmo, J.L., Ventura, S., Cios, K.J., Clore, J.N.: Diabetes 130-US hospitals for years 1999–2008 data set (2014). https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008

  170. Vahdat, M., Oneto, L., Anguita, D., Funk, M., Rauterberg, M.: A learning analytics approach to correlate the academic achievements of students with interaction data from an educational simulator. In: European Conference on Technology Enhanced Learning (2015)

    Google Scholar 

  171. Vaithianathan, R., Maloney, T., Putnam-Hornstein, E., Jiang, N.: Children in the public benefit system at risk of maltreatment: identification via predictive modeling. Am. J. Prev. Med. 45(3), 354–359 (2013)

    Article  Google Scholar 

  172. Verma, S., Rubin, J.: Fairness definitions explained. In: IEEE/ACM International Workshop on Software Fairness (2018)

    Google Scholar 

  173. Villani, C.: Optimal Transport Old and New. Springer (2009)

    Google Scholar 

  174. Wang, Y., Koike-Akino, T., Erdogmus, D.: Invariant representations from adversarially censored autoencoders (2018). CoRR arXiv:1805.08097

  175. Wightman, L.F.: Law school admissions (1998). https://www.lsac.org/data-research

  176. Williamson, R.C., Menon, A.K.: Fairness risk measures. In: Proceedings of the 36th International Conference on Machine Learning, pp. 6786–6797 (2019)

    Google Scholar 

  177. Woodworth, B., Gunasekar, S., Ohannessian, M.I., Srebro, N.: Learning non-discriminatory predictors. In: Computational Learning Theory (2017)

    Google Scholar 

  178. Wu, Y., Wu, X.: Using loglinear model for discrimination discovery and prevention. In: IEEE International Conference on Data Science and Advanced Analytics (2016)

    Google Scholar 

  179. Yang, K., Stoyanovich, J.: Measuring fairness in ranked outputs. In: International Conference on Scientific and Statistical Database Management (2017)

    Google Scholar 

  180. Yao, S., Huang, B.: Beyond parity: Fairness objectives for collaborative filtering. In: Proceedings of the 31st Conference on Neural Information Processing Systems, pp. 2921–2930 (2017)

    Google Scholar 

  181. Yeh, I.C., Lien, C.H.: Default of credit card clients data set (2016). https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

  182. Yona, G., Rothblum, G.: Probably approximately metric-fair learning. In: Proceedings of the 35th International Conference on Machine Learning, pp. 5680–5688 (2018)

    Google Scholar 

  183. Zafar, M.B., Valera, I., Gomez Rodriguez, M., Gummadi, K.P.: Fairness beyond disparate treatment & disparate impact: learning classification without disparate mistreatment. In: International Conference on World Wide Web (2017)

    Google Scholar 

  184. Zafar, M.B., Valera, I., Gomez Rodriguez, M., Gummadi, K.P.: Fairness constraints: mechanisms for fair classification. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, pp. 962–970 (2017)

    Google Scholar 

  185. Zafar, M.B., Valera, I., Gomez-Rodriguez, M., Gummadi, K.P.: Fairness constraints: a flexible approach for fair classification. J. Mach. Learn. Res. 20(75), 1–42 (2019)

    MathSciNet  MATH  Google Scholar 

  186. Zafar, M.B., Valera, I., Rodriguez, M., Gummadi, K., Weller, A.: From parity to preference-based notions of fairness in classification. In: Proceedings of the 31st Conference on Neural Information Processing Systems, pp. 229–239 (2017)

    Google Scholar 

  187. Zehlike, M., Hacker, P., Wiedemann, E.: Matching code and law: achieving algorithmic fairness with optimal transport (2017). arXiv:1712.07924

  188. Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representations. In: Proceedings of the 30th International Conference on Machine Learning, pp. 325–333 (2013)

    Google Scholar 

  189. Zhang, B.H., Lemoine, B., Mitchell, M.: Mitigating unwanted biases with adversarial learning. In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp. 335–340 (2018)

    Google Scholar 

  190. Zhang, L., Wu, Y., Wu, X.: Achieving non-discrimination in data release. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017)

    Google Scholar 

  191. Zhang, L., Wu, Y., Wu, X.: A causal framework for discovering and removing direct and indirect discrimination. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 3929–3935 (2017)

    Google Scholar 

  192. Zhang, L., Wu, Y., Wu, X.: Achieving non-discrimination in prediction. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 3097–3103 (2018)

    Google Scholar 

  193. Zliobaite, I., Kamiran, F., Calders, T.: Handling conditional discrimination. In: IEEE International Conference on Data Mining (2011)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by Amazon AWS Machine Learning Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Oneto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oneto, L., Chiappa, S. (2020). Fairness in Machine Learning. In: Oneto, L., Navarin, N., Sperduti, A., Anguita, D. (eds) Recent Trends in Learning From Data. Studies in Computational Intelligence, vol 896. Springer, Cham. https://doi.org/10.1007/978-3-030-43883-8_7

Download citation

Publish with us

Policies and ethics