Skip to main content

Future Directions for Lighting Environments

  • Chapter
  • First Online:
Circadian Rhythm Sleep-Wake Disorders

Abstract

Lighting for homes, schools, and commercial spaces has traditionally been designed for occupants’ visual performance, aesthetic appreciation, and energy conservation, with relatively little attention being paid to its influence on other human factors such as health and well-being, mood, and alertness. Recent discoveries and continued research into the effects of light and electric lighting on the human nonvisual system and its relationship to the human circadian system have dramatically changed how we think about light, how we specify light for the places we live and work in, and how industry has adapted to produce new lighting products and techniques. This chapter begins with a brief description of light and its effects on the human circadian system, followed by a discussion of current trends in the lighted environment and how those trends have guided research into human health and well-being. The need for proposing a 24-h lighting scheme in our lighted environments is addressed, and the chapter concludes with a review of future trends that might be expected in the workplace, healthcare facilities, and the home, as well as key considerations that should guide the future of the lighted environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Commission Internationale de l'Éclairage. Light as a true visual quantity: principles of measurement. Paris: Commission Internationale de l'Éclairage; 1978.

    Google Scholar 

  2. Boyce PR, Rea MS. Lighting and human performance II: beyond visibility models toward a unified human factors approach to performance. Electric Power Research Institute, Palo Alto, CA, National Electrical Manufacturers Association, VA, Environmental Protection Agency Office of Air and Radiation, Washington, DC; 2001.

    Google Scholar 

  3. Cajochen C. Alerting effects of light. Sleep Med Rev. 2007;11(6):453–64.

    Article  PubMed  Google Scholar 

  4. Souman JL, Tinga AM, Te Pas SF, van Ee R, Vlaskamp BNS. Acute alerting effects of light: a systematic literature review. Behav Brain Res. 2018;337:228–39.

    Article  PubMed  Google Scholar 

  5. Van de Werken M, Gimenez MC, de Vries B, Beersma DG, Gordijn MC. Short-wavelength attenuated polychromatic white light during work at night: limited melatonin suppression without substantial decline of alertness. Chronobiol Int. 2013;30(7):843–54.

    Article  PubMed  CAS  Google Scholar 

  6. Figueiro MG, Bierman A, Plitnick B, Rea MS. Preliminary evidence that both blue and red light can induce alertness at night. BMC Neurosci. 2009;10:105.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Plitnick B, Figueiro MG, Wood B, Rea MS. The effects of red and blue light on alertness and mood at night. Light Res Technol. 2010;42(4):449–58.

    Article  Google Scholar 

  8. Sahin L, Figueiro MG. Alerting effects of short-wavelength (blue) and long-wavelength (red) lights in the afternoon. Physiol Behav. 2013;116–117:1–7.

    Article  PubMed  CAS  Google Scholar 

  9. Figueiro MG, Sahin L, Wood B, Plitnick B. Light at night and measures of alertness and performance: implications for shift workers. Biol Res Nurs. 2016;18(1):90–100.

    Article  CAS  PubMed  Google Scholar 

  10. Elliot AJ, Maier MA. Color psychology: effects of perceiving color on psychological functioning in humans. Annu Rev Psychol. 2014;65:95–120.

    Article  PubMed  Google Scholar 

  11. United Nations Department of Economic and Social Affairs Population Division. World urbanization prospects: the 2018 revision. United Nations, New York. 2018. https://population.un.org/wup/. Accessed 8 Jan 2019.

  12. Bierman A, Klein TR, Rea MS. The Daysimeter: a device for measuring optical radiation as a stimulus for the human circadian system. Meas Sci Technol. 2005;16:2292–9.

    Article  CAS  Google Scholar 

  13. Figueiro MG, Hamner R, Bierman A, Rea MS. Comparisons of three practical field devices used to measure personal light exposures and activity levels. Light Res Technol. 2013;45(4):421–34.

    Article  CAS  PubMed  Google Scholar 

  14. Rea MS, Figueiro MG, Bierman A, Bullough JD. Circadian light. J Circadian Rhythms. 2010;8(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rea MS, Figueiro MG, Bullough JD, Bierman A. A model of phototransduction by the human circadian system. Brain Res Rev. 2005;50(2):213–28.

    Article  PubMed  Google Scholar 

  16. Rea MS, Figueiro MG, Bierman A, Hamner R. Modelling the spectral sensitivity of the human circadian system. Light Res Technol. 2012;44(4):386–96.

    Article  Google Scholar 

  17. Nagare R, Plitnick B, Figueiro MG. Does the iPad Night Shift mode reduce melatonin suppression? Light Res Technol. 2019;51(3):373–83.

    Article  CAS  PubMed  Google Scholar 

  18. Sharkey KM, Carskadon MA, Figueiro MG, Zhu Y, Rea MS. Effects of an advanced sleep schedule and morning short wavelength light exposure on circadian phase in young adults with late sleep schedules. Sleep Med. 2011;12(7):685–92.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rea MS, Brons JA, Figueiro MG. Measurements of light at night (LAN) for a sample of female school teachers. Chronobiol Int. 2011;28(8):673–80.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Leslie RP, Smith A, Radetsky LC, Figueiro MG, Yue L. Patterns to daylight schools for people and sustainability. Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY; 2010.

    Google Scholar 

  21. Miller D, Figueiro MG, Bierman A, Schernhammer E, Rea MS. Ecological measurements of light exposure, activity and circadian disruption. Light Res Technol. 2010;42(3):271–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stevens RG. Circadian disruption and breast cancer: from melatonin to clock genes. Epidemiology. 2005;16(2):254–8.

    Article  PubMed  Google Scholar 

  23. Stevens RG, Rea MS. Light in the built environment: potential role of circadian disruption in endocrine disruption and breast cancer. Cancer Causes Control. 2001;12(3):279–87.

    Article  CAS  PubMed  Google Scholar 

  24. Stevens RG, Blask DE, Brainard GC, Hansen J, Lockley SW, Provencio I, et al. Meeting report: the role of environmental lighting and circadian disruption in cancer and other diseases. Environ Health Perspect. 2007;115(9):1357–62.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wegrzyn LR, Tamimi RM, Rosner BA, Brown SB, Stevens RG, Eliassen AH, et al. Rotating night-shift work and the risk of breast cancer in the Nurses' health studies. Am J Epidemiol. 2017;185(5):532–40.

    Article  Google Scholar 

  26. Kamdar BB, Tergas AI, Mateen FJ, Bhayani NH, Oh J. Night-shift work and risk of breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat. 2013;138(1):291–301.

    Article  PubMed  Google Scholar 

  27. Heckman CJ, Kloss JD, Feskanich D, Culnan E, Schernhammer ES. Associations among rotating night shift work, sleep, and skin cancer in Nurses’ Health Study II participants. Occup Environ Med. 2017;74(3):169–75.

    Article  PubMed  Google Scholar 

  28. Gooley JJ, Chamberlain K, Smith KA, SBS K, SMW R, Van Reen E, et al. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J Clin Endocrinol Metab. 2011;96(3):E463–72.

    Article  CAS  PubMed  Google Scholar 

  29. Boubekri M, Cheung IN, Reid KJ, Wang CH, Zee PC. Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study. J Clin Sleep Med. 2014;10(6):603–11.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Figueiro MG, Steverson B, Heerwagen J, Kampschroer K, Hunter CM, Gonzales K, et al. The impact of daytime light exposures on sleep and mood in office workers. Sleep Health. 2017;3(3):204–15.

    Article  PubMed  Google Scholar 

  31. Figueiro MG, Kalsher M, Steverson BC, Heerwagen J, Kampschroer K, Rea MS. Circadian-effective light and its impact on alertness in office workers. Light Res Technol. 2019;51(2):171–83.

    Article  Google Scholar 

  32. Figueiro MG. A proposed 24 h lighting scheme for older adults. Light Res Technol. 2008;40(2):153–60.

    Article  Google Scholar 

  33. Figueiro MG, Hunter CM, Higgins PA, Hornick TR, Jones GE, Plitnick B, et al. Tailored lighting intervention for persons with dementia and caregivers living at home. Sleep Health. 2015;1(4):322–30.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Higuchi S, Lee SI, Kozaki T, Harada T, Tanaka I. Late circadian phase in adults and children is correlated with use of high color temperature light at home at night. Chronobiol Int. 2016;33(4):448–52.

    Article  PubMed  Google Scholar 

  35. Hysing M, Pallesen S, Stormark KM, Jakobsen R, Lundervold AJ, Sivertsen B. Sleep and use of electronic devices in adolescence: results from a large population-based study. BMJ Open. 2015;5(1):e006748.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Figueiro MG, Erdener B, Jayawardena A, Lesniak NZ, Reh R, Sahin L, et al. The impact of self-luminous electronic devices on melatonin suppression. Dig Tech Pap. 2011;42(1):408–11.

    Article  CAS  Google Scholar 

  37. Figueiro MG, Wood B, Plitnick B, Rea MS. The impact of watching television on evening melatonin levels. J Soc Inf Disp. 2013;21(10):417–21.

    Article  CAS  Google Scholar 

  38. Owens J. Insufficient sleep in adolescents and young adults: an update on causes and consequences. Pediatrics. 2014;134(3):e921–32.

    Article  PubMed  Google Scholar 

  39. Figueiro MG, Brons JA, Plitnick B, Donlan B, Leslie RP, Rea MS. Measuring circadian light and its impact on adolescents. Light Res Technol. 2011;43(2):201–15.

    Article  PubMed  Google Scholar 

  40. Figueiro MG, Rea MS. Short-wavelength light enhances cortisol awakening response in sleep-restricted adolescents. Int J Endocrinol. 2012;2012:301935.

    PubMed  PubMed Central  Google Scholar 

  41. Figueiro MG, Overington D. Self-luminous devices and melatonin suppression in adolescents. Light Res Technol. 2016;48(8):966–75.

    Article  Google Scholar 

  42. Figueiro MG, Rea MS, Eggleston G. Light therapy and Alzheimer’s disease. Sleep Review. 2003;4(1):24.

    Google Scholar 

  43. Hanford N, Figueiro MG. Light therapy and Alzheimer's disease and related dementia: past, present, and future. J Alzheimers Dis. 2013;33(4):913–22.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Figueiro MG, Plitnick BA, Lok A, Jones GE, Higgins P, Hornick TR, et al. Tailored lighting intervention improves measures of sleep, depression, and agitation in persons with Alzheimer's disease and related dementia living in long-term care facilities. Clin Interv Aging. 2014;9:1527–37.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Engwall M, Fridh I, Johansson L, Bergbom I, Lindahl B. Lighting, sleep and circadian rhythm: an intervention study in the intensive care unit. Intensive Crit Care Nurs. 2015;31(6):325–35.

    Article  PubMed  Google Scholar 

  46. Giménez MC, Geerdinck LM, Versteylen M, Leffers P, Meekes GJ, Herremans H, et al. Patient room lighting influences on sleep, appraisal and mood in hospitalized people. J Sleep Res. 2017;26(2):236–46.

    Article  PubMed  Google Scholar 

  47. Figueiro M, Plitnick B, Rea M. Research note: a self-luminous light table for persons with Alzheimer’s disease. Light Res Technol. 2016;48(2):253–9.

    Article  CAS  PubMed  Google Scholar 

  48. Valdimarsdottir HB, Figueiro MG, Holden W, Lutgendorf S, Wu LM, Ancoli-Israel S, et al. Programmed environmental illumination during autologous stem cell transplantation hospitalization for the treatment of multiple myeloma reduces severity of depression: a preliminary randomized controlled trial. Cancer Med. 2018;7(9):4345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oldham MA, Lee HB, Desan PH. Circadian rhythm disruption in the critically ill: an opportunity for improving outcomes. Crit Care Med. 2016;44(1):207–17.

    Article  PubMed  Google Scholar 

  50. Choi JH, Beltran LO, Kim HS. Impacts of indoor daylight environments on patient average length of stay (ALOS) in a healthcare facility. Build Environ. 2012;50:65–75.

    Article  Google Scholar 

  51. Reutrakul S, Knutson KL. Consequences of circadian disruption on Cardiometabolic health. Sleep Med Clin. 2015;10(4):455–68.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Smolensky MH, Hermida RC, Reinberg A, Sackett-Lundeen L, Portaluppi F. Circadian disruption: new clinical perspective of disease pathology and basis for chronotherapeutic intervention. Chronobiol Int. 2016;33(8):1101–19.

    Article  PubMed  Google Scholar 

  53. Wirz-Justice A, Graw P, Krauchi K, Sarrafzadeh A, English J, Arendt J, et al. 'Natural' light treatment of seasonal affective disorder. J Affect Disord. 1996;37(2–3):109–20.

    Article  CAS  PubMed  Google Scholar 

  54. Avery DH, Eder DN, Bolte MA, Hellekson CJ, Dunner DL, Vitiello MV, et al. Dawn simulation and bright light in the treatment of SAD: a controlled study. Biol Psychiatry. 2001;50(3):205–16.

    Article  CAS  PubMed  Google Scholar 

  55. Terman M, Terman J. Bright light therapy: side effects and benefits across the symptom spectrum. J Clin Psychiatry. 1999;60(11):799–808.

    Article  CAS  PubMed  Google Scholar 

  56. Kronauer RE, Forger DB, Jewett ME. Quantifying human circadian pacemaker response to brief, extended, and repeated light stimuli over the phototopic range. J Biol Rhythm. 1999;14(6):500–16.

    Article  CAS  Google Scholar 

  57. Rea MS, Bierman A, Ward G, Figueiro MG. Field tests of a model of the human circadian oscillator. SLEEP 2014, the 28th Annual Meeting of the American Academy of Sleep Medicine; May 31 to June 4, 2014; Minneapolis, MN; 2014.

    Google Scholar 

  58. Appleman K, Figueiro MG, Rea MS. Controlling light-dark exposure patterns rather than sleep schedules determines circadian phase. Sleep Med. 2013;14(5):456–61.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Figueiro MG, Plitnick B, Rea MS. The effects of chronotype, sleep schedule and light/dark pattern exposures on circadian phase. Sleep Med. 2014;15(12):1554–64.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Figueiro MG, Steverson B, Heerwagen J, Rea MS, editors. Daylight in office buildings: impact of building design on personal light exposures, sleep and mood. 28th CIE Session; 2015 June 28 – July 4; Manchester, UK: Commission Internationale de l'Éclairage.

    Google Scholar 

  61. Haus EL, Smolensky MH. Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med Rev. 2013;17(4):273–84.

    Article  PubMed  Google Scholar 

  62. Boivin DB, Boudreau P. Impacts of shift work on sleep and circadian rhythms. Pathol Biol (Paris). 2014;62(5):292–301.

    Article  CAS  Google Scholar 

  63. Young CR, Jones GE, Figueiro MG, Soutière SE, Keller MW, Richardson AM, et al. At-sea trial of 24-h-based submarine watchstanding schedules with high and low correlated color temperature light sources. J Biol Rhythm. 2015;30(2):144–54.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana G. Figueiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Figueiro, M.G. (2020). Future Directions for Lighting Environments. In: Auger, R. (eds) Circadian Rhythm Sleep-Wake Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-43803-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43803-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43802-9

  • Online ISBN: 978-3-030-43803-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics