Skip to main content

Proof-of-Work Sidechains

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11599))

Included in the following conference series:

Abstract

During the last decade, the blockchain space has exploded with a plethora of new cryptocurrencies, covering a wide array of different features, performance and security characteristics. Nevertheless, each of these coins functions in a stand-alone manner, independently. Sidechains have been envisioned as a mechanism to allow blockchains to communicate with one another and, among other applications, allow the transfer of value from one chain to another, but so far there have been no decentralized constructions. In this paper, we put forth the first side chains construction that allows communication between proof-of-work blockchains without trusted intermediaries. Our construction is generic in that it allows the passing of any information between blockchains. Using this construction, two blockchains can be connected in a “two-way peg” in which an asset can be transferred from one chain to another and back. We pinpoint the features needed for two chains to communicate: On the source side, a proof-of-work blockchain that has been interlinked, potentially with a velvet fork; on the destination side, a blockchain with smart contract support. We put forth the smart contracts needed to implement these sidechains and explain them in detail. In the heart of our construction, we use a recently introduced cryptographic primitive, Non-Interactive Proofs of Proof-of-Work (NIPoPoWs).

Research partially supported by H2020 project PRIVILEDGE # 780477.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The ERC20 standard [17] defines an interface implementable by smart contracts that enables holding and transferring custom fungible tokens such as ICO tokens.

References

  1. Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014). http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains

  2. Buchman, E.: Tendermint: Byzantine fault tolerance in the age of blockchains. Ph.D. thesis (2016)

    Google Scholar 

  3. Buterin, V., et al.: A next-generation smart contract and decentralized application platform. White paper (2014)

    Google Scholar 

  4. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_10

    Chapter  Google Scholar 

  5. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_10. Updated version at http://eprint.iacr.org/2014/765

    Chapter  Google Scholar 

  6. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_10

    Chapter  Google Scholar 

  7. The Interledger Payments Community Group: Interledger protocol v4. https://interledger.org/rfcs/0027-interledger-protocol-4/draft-5.html

  8. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-to-peer network. Cryptology ePrint Archive, Report 2015/263 (2015). http://eprint.iacr.org/2015/263

  9. Hosp, J., Hoenisch, T., Kittiwongsunthorn, P.: COMIT: cryptographically-secure off-chain multi-asset instant transaction network. https://www.comit.network/doc/COMIT%20white%20paper%20v1.0.2.pdf, 2017

  10. Khalil, R., Gervais, A.: Nocust-a non-custodial 2nd-layer financial intermediary. Technical report, Cryptology ePrint Archive, Report 2018/642 (2018). https://eprint.iacr.org/2018/642

  11. Kiayias, A., Lamprou, N., Stouka, A.-P.: Proofs of proofs of work with sublinear complexity. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 61–78. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_5

    Chapter  Google Scholar 

  12. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work (2017)

    Google Scholar 

  13. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  14. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_22

    Chapter  MATH  Google Scholar 

  15. Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts. White paper (2017)

    Google Scholar 

  16. Inc Smart Contract Solutions: Openzeppelin crowdsale contract (2017). https://github.com/OpenZeppelin/openzeppelin-solidity/blob/v2.0.0-rc.1/contracts/token/ERC20/ERC20.sol

  17. Vogelsteller, F., Buterin, V.: Erc 20 token standard (2015). https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

  18. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151, 1–32 (2014)

    Google Scholar 

  19. Wood, G.: Polkadot: vision for a heterogeneous multi-chain framework (2016)

    Google Scholar 

  20. Karl, W., Arthur, G.: Ethereum eclipse attacks. Technical report, ETH Zurich (2016)

    Google Scholar 

  21. Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Arthur, G., Knottenbelt, W.J.: Xclaim: interoperability with cryptocurrency-backed tokens

    Google Scholar 

  22. Zamyatin, A., Stifter, N., Judmayer, A., Schindler, P., Weippl, E., Knottenbelt, W.J.: A wild velvet fork appears! Inclusive blockchain protocol changes in practice. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 31–42. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8_3

    Chapter  Google Scholar 

  23. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authenticated data feed for smart contracts. In: Edgar, R.W, Stefan, K., Christopher, K., Andrew C.M., Shai, H. (eds.) ACM CCS 2016, pp. 270–282. ACM Press (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dionysis Zindros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiayias, A., Zindros, D. (2020). Proof-of-Work Sidechains. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P., Sala, M. (eds) Financial Cryptography and Data Security. FC 2019. Lecture Notes in Computer Science(), vol 11599. Springer, Cham. https://doi.org/10.1007/978-3-030-43725-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43725-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43724-4

  • Online ISBN: 978-3-030-43725-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics