Skip to main content

Photoacoustic Tomography of Neural Systems

  • Chapter
  • First Online:
Neural Engineering

Abstract

Neuroscience has become one of the most exciting contemporary research areas with major breakthroughs expected in the coming decades. Modern imaging techniques have enabled scientific understanding of the neural system by revealing anatomical, functional, metabolic, and molecular information about the brain. Among these techniques, photoacoustic tomography (PAT), drawing more and more attention, is playing an increasingly important role in brain studies, thanks to its rich optical absorption contrast, high spatiotemporal resolution, and deep penetration. More importantly, PAT’s unique scalability empowers neuroscientists to examine the brain at multiple spatial scales using the same contrast mechanism, bridging microscopic insights to macroscopic observations of the brain. In this chapter, we review the principles of PAT, present the major implementations, and summarize the representative neuroscience applications. We also discuss challenges in translating PAT to human brain imaging and envision its potential promise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.G. Bell, ART. XXXIV.--On the production and reproduction of sound by light. Am. J. Sci. (1880–1910) 20(118), 305 (1880)

    Google Scholar 

  2. L. Li et al., Label-free photoacoustic tomography of whole mouse brain structures ex vivo. NEUROW 3(3), 035001 (2016)

    Google Scholar 

  3. T.T. Wong et al., Use of a single xenon flash lamp for photoacoustic computed tomography of multiple-centimeter-thick biological tissue ex vivo and a whole mouse body in vivo. J. Biomed. Opt. 22(4), 041003 (2016)

    Google Scholar 

  4. T. Imai et al., High-throughput ultraviolet photoacoustic microscopy with multifocal excitation. J. Biomed. Opt. 23(3), 036007 (2018)

    Google Scholar 

  5. Y. Qu et al., Dichroism-sensitive photoacoustic computed tomography. Optica 5(4), 495–501 (2018)

    CAS  Google Scholar 

  6. J. Yao et al., In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth. Opt. Lett. 35(9), 1419–1421 (2010)

    Google Scholar 

  7. D.-K. Yao et al., Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei. J. Biomed. Opt. 17(5), 056004 (2012)

    Google Scholar 

  8. D.-K. Yao et al., In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA. Opt. Lett. 35(24), 4139–4141 (2010)

    CAS  Google Scholar 

  9. L. Lin et al., In vivo photoacoustic tomography of myoglobin oxygen saturation. J. Biomed. Opt. 21(6), 061002 (2015)

    Google Scholar 

  10. X.L. Deán-Ben, D. Razansky, Functional optoacoustic human angiography with handheld video rate three dimensional scanner. Photo-Dermatology 1(3–4), 68–73 (2013)

    Google Scholar 

  11. S. Gottschalk et al., Noninvasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography. J. Cereb. Blood Flow Metab. 35(4), 531–535 (2015)

    Google Scholar 

  12. D. Razansky, A. Buehler, V. Ntziachristos, Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat. Protoc. 6(8), 1121–1129 (2011)

    CAS  Google Scholar 

  13. Y. Li et al., Snapshot photoacoustic topography through an ergodic relay for high-throughput imaging of optical absorption. Nat. Photonics 14(3), 1–7 (2020)

    CAS  Google Scholar 

  14. V. Ntziachristos, D. Razansky, Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem. Rev. 110(5), 2783–2794 (2010)

    CAS  Google Scholar 

  15. D. Razansky, C. Vinegoni, V. Ntziachristos, Multispectral photoacoustic imaging of fluorochromes in small animals. Opt. Lett. 32(19), 2891–2893 (2007)

    CAS  Google Scholar 

  16. A. Taruttis et al., Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography. Opt. Express 18(19), 19592–19602 (2010)

    CAS  Google Scholar 

  17. E. Herzog et al., Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography. Radiology 263(2), 461–468 (2012)

    Google Scholar 

  18. N.C. Burton et al., Multispectral Opto-Acoustic Tomography (MSOT) of the brain and glioblastoma characterization. NeuroImage 65, 522–528 (2013)

    Google Scholar 

  19. J. Yao et al., Reversibly switchable photoacoustic tomography using a genetically encoded near-infrared phytochrome, in Photons Plus Ultrasound: Imaging and Sensing 2016 97082U (2016)

    Google Scholar 

  20. L. Li et al., In vivo photoacoustic multi-contrast imaging and detection of protein interactions using a small near-infrared photochromic protein, in Photons Plus Ultrasound: Imaging and Sensing 2019 1087818 (2019)

    Google Scholar 

  21. N.C. Deliolanis et al., Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: A performance overview. Mol. Imaging Biol. 16(5), 652–660 (2014)

    Google Scholar 

  22. C. Vinegoni et al., Transillumination fluorescence imaging in mice using biocompatible upconverting nanoparticles. Opt. Lett. 34(17), 2566–2568 (2009)

    CAS  Google Scholar 

  23. A.C. Stiel et al., High-contrast imaging of reversibly switchable fluorescent proteins via temporally unmixed multispectral optoacoustic tomography. Opt. Lett. 40(3), 367–370 (2015)

    CAS  Google Scholar 

  24. G.S. Filonov et al., Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe. Angew. Chem. Int. Ed. 51(6), 1448–1451 (2012)

    CAS  Google Scholar 

  25. C. Kim et al., In vivo photoacoustic mapping of lymphatic systems with plasmon-resonant nanostars. J. Mater. Chem. 21(9), 2841–2844 (2011)

    CAS  Google Scholar 

  26. J. Yao et al., Evans blue dye-enhanced capillary-resolution photoacoustic microscopy in vivo. J. Biomed. Opt. 14(5). 054049 (2009)

    Google Scholar 

  27. M. Baker, Whole-animal imaging: The whole picture. Nature 463(7283), 977–980 (2010)

    CAS  Google Scholar 

  28. L.H.V. Wang, S. Hu, Photoacoustic tomography: In vivo imaging from organelles to organs. Science 335(6075), 1458–1462 (2012)

    CAS  Google Scholar 

  29. L. Li et al., Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nat. Biomed. Eng. 1, 0071 (2017)

    Google Scholar 

  30. V.E. Gusev, A.A. Karabutov, Laser optoacoustics. NASA STI/Recon Technical Report A 93 (1991)

    Google Scholar 

  31. M. Xu, L.V. Wang, Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 71(1), 016706 (2005)

    Google Scholar 

  32. Y. Xu et al., Reconstructions in limited-view thermoacoustic tomography. Med. Phys. 31(4), 724–733 (2004)

    Google Scholar 

  33. Y. Xu, L.V. Wang, Effects of acoustic heterogeneity in breast thermoacoustic tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(9), 1134–1146 (2003)

    Google Scholar 

  34. J. Xia et al., Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array. Opt. Lett. 38(16), 3140–3143 (2013)

    Google Scholar 

  35. K. Wang et al., Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography. Phys. Med. Biol. 57(17), 5399–5423 (2012)

    Google Scholar 

  36. C. Huang et al., Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media. IEEE Trans. Med. Imaging 32(6), 1097–1110 (2013)

    Google Scholar 

  37. Q. Sheng et al., A constrained variable projection reconstruction method for photoacoustic computed tomography without accurate knowledge of transducer responses. IEEE Trans. Med. Imaging 34(12), 2443–2458 (2015)

    Google Scholar 

  38. J. Poudel et al., Mitigation of artifacts due to isolated acoustic heterogeneities in photoacoustic computed tomography using a variable data truncation-based reconstruction method. J. Biomed. Opt. 22(4), 041018 (2017)

    Google Scholar 

  39. T.P. Matthews et al., Parameterized joint reconstruction of the initial pressure and sound speed distributions for photoacoustic computed tomography. SIAM J. Imag. Sci. 11(2), 1560–1588 (2018)

    Google Scholar 

  40. B.E. Treeby, B.T. Cox, k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields, SPIE (2010)

    Google Scholar 

  41. B.E. Treeby, E.Z. Zhang, B.T. Cox, Photoacoustic tomography in absorbing acoustic media using time reversal. Inverse Probl. 26(11), 115003 (2010)

    Google Scholar 

  42. B.E. Treeby et al., Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. J. Acoust. Soc. Am. 131(6), 4324–4336 (2012)

    Google Scholar 

  43. X.L. Dean-Ben et al., Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography. IEEE Trans. Med. Imaging 31(10), 1922–1928 (2012)

    Google Scholar 

  44. A. Rosenthal, V. Ntziachristos, D. Razansky, Model-based optoacoustic inversion with arbitrary-shape detectors. Med. Phys. 38(7), 4285–4295 (2011)

    Google Scholar 

  45. A. Rosenthal, V. Ntziachristos, D. Razansky, Acoustic inversion in optoacoustic tomography: A review. Curr. Med. Imaging Rev. 9(4), 318–336 (2013)

    Google Scholar 

  46. T. Jetzfellner et al., Performance of iterative optoacoustic tomography with experimental data. Appl. Phys. Lett. 95(1), 013703 (2009)

    Google Scholar 

  47. J. Yao, L.V. Wang, Sensitivity of photoacoustic microscopy. Photo-Dermatology 2(2), 87–101 (2014)

    Google Scholar 

  48. X. Wang et al., Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21(7), 803 (2003)

    CAS  Google Scholar 

  49. K. Maslov, G. Stoica, L.V. Wang, In vivo dark-field reflection-mode photoacoustic microscopy. Opt. Lett. 30(6), 625–627 (2005)

    Google Scholar 

  50. H.F. Zhang et al., Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24(7), 848 (2006)

    CAS  Google Scholar 

  51. J. Gamelin et al., A real-time photoacoustic tomography system for small animals. Opt. Express 17(13), 10489–10498 (2009)

    CAS  Google Scholar 

  52. L. Song, K. Maslov, L.V. Wang, Multifocal optical-resolution photoacoustic microscopy in vivo. Opt. Lett. 36(7), 1236–1238 (2011)

    Google Scholar 

  53. H.-P.F. Brecht et al., Whole-body three-dimensional optoacoustic tomography system for small animals. J. Biomed. Opt. 14(6), 064007 (2009)

    Google Scholar 

  54. E. Z. Zhang, J. Laufer, P. Beard, Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system, in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics 64370S (2007)

    Google Scholar 

  55. Z. Wu et al., A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4(32), eaax0613 (2019)

    Google Scholar 

  56. J. Yao et al., Label-free oxygen-metabolic photoacoustic microscopy <i>in vivo</i>, SPIE (2011)

    Google Scholar 

  57. J. Yao et al., Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. NeuroImage 64, 257–266 (2013)

    Google Scholar 

  58. R. Cao et al., Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain. NeuroImage 150, 77–87 (2017)

    Google Scholar 

  59. L. Li et al., Photoacoustic imaging of lacZ gene expression in vivo. J. Biomed. Opt. 12(2), 020504 (2007)

    Google Scholar 

  60. X. Cai et al., Multi-scale molecular photoacoustic tomography of gene expression. PloS one 7(8), e43999 (2012)

    CAS  Google Scholar 

  61. J. Aguirre et al., Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat. Biomed. Eng. 1(5), 0068 (2017)

    Google Scholar 

  62. T.T.W. Wong et al., Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy. Sci. Adv. 3(5), e1602168 (2017)

    Google Scholar 

  63. T.T.W. Wong et al., Label-free automated three-dimensional imaging of whole organs by microtomy-assisted photoacoustic microscopy. Nat. Commun. 8(1), 1386 (2017)

    Google Scholar 

  64. L. Lin et al., In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography. J. Biomed. Opt. 20(1), 016019–016019 (2015)

    Google Scholar 

  65. P. Zhang et al., In vivo superresolution photoacoustic computed tomography by localization of single dyed droplets. Light-Sci. Appl. 8(1), 1–9 (2019)

    Google Scholar 

  66. F. Knieling et al., Multispectral optoacoustic tomography for assessment of Crohn’s disease activity. N. Engl. J. Med. 376(13), 1292–1294 (2017)

    Google Scholar 

  67. J.-M. Yang et al., Photoacoustic endoscopy. Opt. Lett. 34(10), 1591–1593 (2009)

    Google Scholar 

  68. J.-M. Yang et al., Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat. Med. 18(8), 1297 (2012)

    CAS  Google Scholar 

  69. B. Dong et al., Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications. Opt. Lett. 39(15), 4372–4375 (2014)

    Google Scholar 

  70. K. Jansen et al., Intravascular photoacoustic imaging of human coronary atherosclerosis. Opt. Lett. 36(5), 597–599 (2011)

    Google Scholar 

  71. S. Sethuraman et al., Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques. Opt. Express 16(5), 3362–3367 (2008)

    CAS  Google Scholar 

  72. L. Lin et al., Handheld optical-resolution photoacoustic microscopy. J. Biomed. Opt. 22(4), 041002 (2016)

    Google Scholar 

  73. J.-T. Oh et al., Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy. J. Biomed. Opt. 11(3), 034032 (2006)

    Google Scholar 

  74. L. Li et al., Fully motorized optical-resolution photoacoustic microscopy. Opt. Lett. 39(7), 2117–2120 (2014)

    Google Scholar 

  75. X. Luís Deán-Ben, D. Razansky, Adding fifth dimension to optoacoustic imaging: Volumetric time-resolved spectrally enriched tomography. Light-Sci Appl 3, e137 (2014)

    Google Scholar 

  76. H. Ke et al., Performance characterization of an integrated ultrasound, photoacoustic, and thermoacoustic imaging system. J. Biomed. Opt. 17(5), 056010 (2012)

    Google Scholar 

  77. A. Danielli et al., Label-free photoacoustic nanoscopy. J. Biomed. Opt. 19(8), 086006 (2014)

    Google Scholar 

  78. V. Ermolayev et al., Simultaneous visualization of tumour oxygenation, neovascularization and contrast agent perfusion by real-time three-dimensional optoacoustic tomography. Eur. Radiol. 26(6), 1843–1851 (2016)

    Google Scholar 

  79. C. Lutzweiler et al., Real-time optoacoustic tomography of indocyanine green perfusion and oxygenation parameters in human finger vasculature. Opt. Lett. 39(14), 4061–4064 (2014)

    Google Scholar 

  80. S. Gottschalk et al., Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures, SPIE (2016)

    Google Scholar 

  81. L. Wang et al., Ultrasonically encoded photoacoustic flowgraphy in biological tissue. Phys. Rev. Lett. 111(20), 204301 (2013)

    Google Scholar 

  82. J. Xia et al., Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals. Opt. Lett. 38(15), 2800–2803 (2013)

    CAS  Google Scholar 

  83. S. Hu, K. Maslov, L.V. Wang, Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt. Lett. 36(7), 1134–1136 (2011)

    Google Scholar 

  84. S. Hu et al., Functional transcranial brain imaging by optical-resolution photoacoustic microscopy, SPIE (2009)

    Google Scholar 

  85. S. Hu, K. Maslov, L.V. Wang, Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy. Opt. Express 17(9), 7688–7693 (2009)

    CAS  Google Scholar 

  86. Z. Guo, S. Hu, L.V. Wang, Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue. Opt. Lett. 35(12), 2067–2069 (2010)

    CAS  Google Scholar 

  87. Y. Zhou et al., Calibration-free in vivo transverse blood flowmetry based on cross correlation of slow time profiles from photoacoustic microscopy. Opt. Lett. 38(19), 3882–3885 (2013)

    Google Scholar 

  88. S.N. Hennen et al., Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits. Exp. Eye Res. 138, 153–158 (2015)

    CAS  Google Scholar 

  89. X. Wang et al., Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography, SPIE (2006)

    Google Scholar 

  90. L. Li, J. Yao, L.V. Wang, Photoacoustic tomography enhanced by nanoparticles, in Wiley Encyclopedia of Electrical and Electronics Engineering, (2016), pp. 1–14

    Google Scholar 

  91. G.P. Luke, D. Yeager, S.Y. Emelianov, Biomedical applications of photoacoustic imaging with exogenous contrast agents. Ann. Biomed. Eng. 40(2), 422–437 (2012)

    Google Scholar 

  92. L.V. Wang, J. Yao, A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 13, 627 (2016)

    CAS  Google Scholar 

  93. Y. Zhou et al., Handheld photoacoustic probe to detect both melanoma depth and volume at high speed in vivo. J. Biophotonics 8(11–12), 961–967 (2015)

    Google Scholar 

  94. C.H. Lee et al., Chemical imaging in vivo: Photoacoustic-based 4-dimensional chemical analysis. Anal. Chem. 91(4), 2561–2569 (2019)

    CAS  Google Scholar 

  95. J. Jo et al., Detecting joint inflammation by an LED-based photoacoustic imaging system: A feasibility study, SPIE (2018)

    Google Scholar 

  96. J. Jo et al., Photoacoustic tomography for human musculoskeletal imaging and inflammatory arthritis detection. Photoacoustics 12, 82–89 (2018)

    Google Scholar 

  97. Y. Zhu et al., Identifying intestinal fibrosis and inflammation by spectroscopic photoacoustic imaging: An animal study in vivo. Biomed. Opt. Express 9(4), 1590–1600 (2018)

    CAS  Google Scholar 

  98. A. Garcia-Uribe et al., Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer. Sci. Rep. 5, 15748 (2015)

    CAS  Google Scholar 

  99. B. Huang et al., Improving limited-view photoacoustic tomography with an acoustic reflector. J. Biomed. Opt. 18(11), 110505 (2013)

    Google Scholar 

  100. R. Ellwood et al., Photoacoustic imaging using acoustic reflectors to enhance planar arrays. J. Biomed. Opt. 19(12), 126012 (2014)

    Google Scholar 

  101. G. Li et al., Tripling the detection view of high-frequency linear-array-based photoacoustic computed tomography by using two planar acoustic reflectors. Quant. Imaging Med. Surg. 5(1), 57 (2015)

    Google Scholar 

  102. P. Zhang et al., High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo. J. Biophotonics 11(1), e201700024 (2018)

    Google Scholar 

  103. G. Li et al., Multiview Hilbert transformation for full-view photoacoustic computed tomography using a linear array, SPIE (2015)

    Google Scholar 

  104. J. Xia et al., Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo, SPIE (2012)

    Google Scholar 

  105. C. Li et al., Real-time photoacoustic tomography of cortical hemodynamics in small animals, SPIE (2010)

    Google Scholar 

  106. J. Xia et al., Three-dimensional photoacoustic tomography based on the focal-line concept, SPIE (2011)

    Google Scholar 

  107. M.R. Chatni et al., Tumor glucose metabolism imaged <i>in vivo</i> in small animals with whole-body photoacoustic computed tomography, SPIE (2012)

    Google Scholar 

  108. J. Xia et al., Retrospective respiration-gated whole-body photoacoustic computed tomography of mice, SPIE (2014)

    Google Scholar 

  109. L. Li et al., Imaging small animal whole-body dynamics by single-impulse panoramic photoacoustic computed tomography, in Photons Plus Ultrasound: Imaging and Sensing 2017 100640M (2017)

    Google Scholar 

  110. L. Lin et al., Single-breath-hold photoacoustic computed tomography of the breast. Nat. Commun. 9(1), 2352 (2018)

    Google Scholar 

  111. X.L. Deán-Ben et al., Spiral volumetric optoacoustic tomography visualizes multi-scale dynamics in mice. Light-Sci Appl 6(4), e16247 (2017)

    Google Scholar 

  112. H.-P.F. Brecht et al., Whole-body three-dimensional optoacoustic tomography system for small animals, SPIE (2009)

    Google Scholar 

  113. K. Nagae et al., Real-time 3D photoacoustic visualization system with a wide field of view for imaging human limbs [version 2; referees: 2 approved]. F1000Research 7(1813) (2019)

    Google Scholar 

  114. R.A. Kruger et al., Dedicated 3D photoacoustic breast imaging. Med. Phys. 40(11), 113301 (2013)

    Google Scholar 

  115. R.A. Kruger et al., Photoacoustic angiography of the breast. Med. Phys. 37(11), 6096–6100 (2010)

    Google Scholar 

  116. I. Yamaga et al., Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: A potential biomarker for breast cancer. Photoacoustics 11, 6–13 (2018)

    Google Scholar 

  117. T. Shiina, M. Toi, T. Yagi, Development and clinical translation of photoacoustic mammography. Biomed. Eng. Lett. 8(2), 157–165 (2018)

    Google Scholar 

  118. Y. Matsumoto et al., Visualising peripheral arterioles and venules through high-resolution and large-area photoacoustic imaging. Sci. Rep. 8(1), 14930 (2018)

    Google Scholar 

  119. K. Nagae et al., Real-time 3D photoacoustic visualization system with a wide field of view for imaging human limbs. F1000Research 7, 1813–1813 (2019)

    Google Scholar 

  120. R. Su et al., Small animal optoacoustic tomography system for molecular imaging of contrast agents, SPIE (2016)

    Google Scholar 

  121. O. Ogunlade et al., In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models. Am. J. Physiol. Renal Physiol. 314(6), F1145–F1153 (2018)

    CAS  Google Scholar 

  122. J. Buchmann et al., Evaluation of Fabry-Perot polymer film sensors made using hard dielectric mirror deposition, in Photons Plus Ultrasound: Imaging and Sensing 2016 970856 (2016)

    Google Scholar 

  123. E. Zhang, J. Laufer, P. Beard, Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl. Opt. 47(4), 561–577 (2008)

    CAS  Google Scholar 

  124. E.Z.Y. Zhang, P.C. Beard, Ultrahigh-sensitivity wideband Fabry-Perot ultrasound sensors as an alternative to piezoelectric PVDF transducers for biomedical photoacoustic detection, SPIE (2004)

    Google Scholar 

  125. E.Z. Zhang et al., In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys. Med. Biol. 54(4), 1035–1046 (2009)

    CAS  Google Scholar 

  126. J.G. Laufer et al., <i>In vivo</i> preclinical photoacoustic imaging of tumor vasculature development and therapy, SPIE (2012)

    Google Scholar 

  127. A.P. Jathoul et al., Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photonics 9, 239 (2015)

    CAS  Google Scholar 

  128. R. Ellwood et al., Photoacoustic tomography using orthogonal Fabry–Pérot sensors, SPIE (2016)

    Google Scholar 

  129. A.A. Plumb et al., Rapid volumetric photoacoustic tomographic imaging with a Fabry-Perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli. Eur. Radiol. 28(3), 1037–1045 (2018)

    Google Scholar 

  130. J. Laufer et al., Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner. Appl. Opt. 48(10), D299–D306 (2009)

    Google Scholar 

  131. M. Xu, L.V. Wang, Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction. Phys. Rev. E 67(5), 056605 (2003)

    Google Scholar 

  132. K. Maslov et al., Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt. Lett. 33(9), 929–931 (2008)

    Google Scholar 

  133. J. Yao, L.V. Wang, Photoacoustic microscopy. Laser Photonics Rev. 7(5), 758–778 (2013)

    Google Scholar 

  134. L.V. Wang, Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics 3(9), 503 (2009)

    CAS  Google Scholar 

  135. L.V. Wang, Tutorial on photoacoustic microscopy and computed tomography. IEEE J. Sel. Top. Quantum Electron. 14(1), 171–179 (2008)

    Google Scholar 

  136. E.W. Stein, K.I. Maslov, L.V. Wang, Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy. J. Biomed. Opt. 14(2), 020502 (2009)

    Google Scholar 

  137. C.P. Favazza et al., In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus. J. Biomed. Opt. 16(1), 016015 (2011)

    Google Scholar 

  138. L. Wang et al., Fast voice-coil scanning optical-resolution photoacoustic microscopy. Opt. Lett. 36(2), 139–141 (2011)

    Google Scholar 

  139. J. Yao et al., High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods 12, 407 (2015)

    CAS  Google Scholar 

  140. Y.S. Zhang et al., Optical-resolution photoacoustic microscopy for volumetric and spectral analysis of histological and immunochemical samples. Angew. Chem. 126(31), 8237–8241 (2014)

    Google Scholar 

  141. C. Zhang et al., In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer. J. Biomed. Opt. 17(11), 116016–116016 (2012)

    Google Scholar 

  142. H.-C. Hsu et al., Dual-axis illumination for virtually augmenting the detection view of optical-resolution photoacoustic microscopy. J. Biomed. Opt. 23(7), 076001 (2018)

    Google Scholar 

  143. B. Ning et al., Ultrasound-aided multi-parametric photoacoustic microscopy of the mouse brain. Sci. Rep. 5, 18775 (2015)

    CAS  Google Scholar 

  144. T.P. Matthews et al., Label-free photoacoustic microscopy of peripheral nerves, SPIE (2014)

    Google Scholar 

  145. J. Shi et al., High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy. Nat. Photonics 13(9), 609–615 (2019)

    CAS  Google Scholar 

  146. S.V. Ovsepian et al., Pushing the boundaries of neuroimaging with optoacoustics. Neuron 96(5), 966–988 (2017)

    CAS  Google Scholar 

  147. S. Hu et al., Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy. Opt. Lett. 34(24), 3899–3901 (2009)

    Google Scholar 

  148. J. Yao, L.V. Wang, Photoacoustic brain imaging: From microscopic to macroscopic scales. NEUROW 1(1), 011003 (2014)

    Google Scholar 

  149. M.-L. Li et al., Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc. IEEE 96(3), 481–489 (2008)

    CAS  Google Scholar 

  150. L. Li et al., Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo. Nat. Commun. 9(1), 2734 (2018)

    Google Scholar 

  151. J. Yao et al., Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat. Methods 13(1), 67 (2016)

    CAS  Google Scholar 

  152. J. Yang et al., Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star. Sci. Adv. 5(12), eaay1211 (2019)

    CAS  Google Scholar 

  153. L. Wang, K. Maslov, L.V. Wang, Single-cell label-free photoacoustic flowoxigraphy in vivo. Proc. Natl. Acad. Sci. 110(15), 5759–5764 (2013)

    CAS  Google Scholar 

  154. M. Nasiriavanaki et al., High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proc. Natl. Acad. Sci. 111(1), 21–26 (2014)

    CAS  Google Scholar 

  155. C. Rui et al., Comprehensive characterization of cerebrovascular dysfunction in blast traumatic brain injury using photoacoustic microscopy. J. Neurotrauma 0(0), null

    Google Scholar 

  156. M. Kneipp et al., Functional real-time optoacoustic imaging of middle cerebral artery occlusion in mice. PloS one 9(4), e96118 (2014)

    Google Scholar 

  157. S. Hu et al., Optical-resolution photoacoustic microscopy of ischemic stroke, in Photons Plus Ultrasound: Imaging and Sensing 2011 789906 (2011)

    Google Scholar 

  158. R. Cao et al., Photoacoustic microscopy reveals the hemodynamic basis of sphingosine 1-phosphate-induced neuroprotection against ischemic stroke. Theranostics 8(22), 6111 (2018)

    CAS  Google Scholar 

  159. S. Gottschalk et al., Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures. NEUROW 4(1), 011007 (2016)

    Google Scholar 

  160. V. Tsytsarev et al., In vivo imaging of epileptic activity using 2-NBDG, a fluorescent deoxyglucose analog. J. Neurosci. Methods 203(1), 136–140 (2012)

    CAS  Google Scholar 

  161. Q. Zhang et al., Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography. Phys. Med. Biol. 53(7), 1921–1931 (2008)

    Google Scholar 

  162. B. Rao et al., Photoacoustic imaging of voltage responses beyond the optical diffusion limit. Sci. Rep. 7(1), 2560 (2017)

    Google Scholar 

  163. X.L. Deán-Ben et al., Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators. Light-Sci. Appl. 5, e16201 (2016)

    Google Scholar 

  164. T.-W. Chen et al., Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295 (2013)

    CAS  Google Scholar 

  165. Y. Gong et al., High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 350(6266), 1361–1366 (2015)

    CAS  Google Scholar 

  166. G. Ku, L.V. Wang, Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast. Med. Phys. 28(1), 4–10 (2001)

    CAS  Google Scholar 

  167. R.A. Kruger, D.R. Reinecke, G.A. Kruger, Thermoacoustic computed tomography–technical considerations. Med. Phys. 26(9), 1832–1837 (1999)

    CAS  Google Scholar 

  168. M. Xu, L.V. Wang, Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans. Med. Imaging 21(7), 814–822 (2002)

    Google Scholar 

  169. R.A. Kruger et al., Thermoacoustic CT with radio waves: A medical imaging paradigm. Radiology 211(1), 275–278 (1999)

    CAS  Google Scholar 

  170. G. Ku et al., Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging. Technol. Cancer Res. Treat. 4(5), 559–565 (2005)

    Google Scholar 

  171. Y. Xu, L.V. Wang, Rhesus monkey brain imaging through intact skull with thermoacoustic tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(3), 542–548 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong V. Wang .

Editor information

Editors and Affiliations

Homework

Homework

  1. 1.

    Show that the units of the pressure and the energy density are the same.

  2. 2.

    Estimate the temperature and the initial pressure rises upon short-pulsed laser excitation of whole arterial blood at the body temperature, with an optical fluence of 10 mJ cm−2 at 532 nm.

  3. 3.

    Estimate the local initial pressure rise per one-degree local temperature rise at the body temperature.

  4. 4.

    In water, estimate the fractional PA amplitude change upon one-degree local temperature rise with the baseline temperature of (a) 20 °C and (b) 37 °C.

  5. 5.

    Given d c = 1 mm or 0.01 mm, compute τ th and τ s in muscles.

  6. 6.

    Derive the photoacoustic equation shown in Eq. (12.10).

  7. 7.

    Show that the time reversal of the temporal function is equivalent to the complex conjugation of the temporal spectrum.

  8. 8.

    Use Eq. (12.17) to derive and plot the PA pressure wave as a function of time observed outside a sphere excited by (a) a delta pulse and (b) a Gaussian pulse.

  9. 9.

    Use Eq. (12.17) to derive and plot the pressure wave as a function of time observed outside a line object excited by (a) a delta pulse and (b) a Gaussian pulse.

  10. 10.

    The line in Question 9 has a finite length; please simulate the PA pressure wave detected by (a) a linear transducer array and (b) a ring array (see the geometry below). Please reconstruct the PA image using the forward data from the linear array and the ring array. Hint: please use the MATLAB k-wave toolbox for both the forward and reconstruction simulations. Please download the k-wave toolbox from http://www.k-wave.org/.

    figure a

    Fig. 21.33

  11. 11.

    For the circular geometry, if the designed imaging FOV is 25 mm in diameter, to satisfy the spatial Nyquist sampling requirement, what is the minimum number of sampling channels for detection at a cutoff frequency of (a) 2.25 MHz and (b) 15 MHz?

  12. 12.

    Under the same conditions in Q.10, please calculate the minimum number of sampling channels for the full spherical geometry.

  13. 13.

    Derive Eq. (12.31), assuming the frequency response of the detector has a Gaussian profile.

  14. 14.

    Assuming you are engineering a “perfect” PA contrast agent for molecular imaging, please list all the desired key characteristics and explain the reasons.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, L., Yao, J., Wang, L.V. (2020). Photoacoustic Tomography of Neural Systems. In: He, B. (eds) Neural Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-43395-6_12

Download citation

Publish with us

Policies and ethics