Skip to main content

Data Augmentation in Training Deep Learning Models for Medical Image Analysis

  • Chapter
  • First Online:
Deep Learners and Deep Learner Descriptors for Medical Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 186))

Abstract

Data augmentation is widely utilized to achieve more generalizable and accurate deep learning models based on relatively small labeled datasets. Data augmentation techniques are particularly critical in medical applications, where access to labeled data samples is commonly limited. Although data augmentation methods generally have a positive impact on the performance of deep learning models, not all data augmentation techniques are applicable and suitable for analyzing medical images. In this chapter, we review common image augmentation techniques and their properties. Furthermore, we present and evaluate application-specific data augmentation methods that are beneficial for medical image analysis. The material presented in this chapter aims to guide the use of data augmentation techniques in training deep learning models for various medical image analysis applications, in which annotated data are not abundant or are difficult to acquire.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He, K., et al.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  2. Bengio, Y.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127 (2009)

    Google Scholar 

  3. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533 (1986)

    Google Scholar 

  4. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int J Comput Vision 115(3), 211–252 (2015)

    MathSciNet  Google Scholar 

  5. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Icdar. IEEE (2003)

    Google Scholar 

  6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  8. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  9. Eaton-Rosen, Z., et al.: Improving data augmentation for medical image segmentation (2018)

    Google Scholar 

  10. Izadi, S., et al.: Generative adversarial networks to segment skin lesions. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE (2018)

    Google Scholar 

  11. Frid-Adar, M., et al.: Synthetic data augmentation using GAN for improved liver lesion classification. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE (2018)

    Google Scholar 

  12. Larson, D.B., et al.: Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287(1), 313–322 (2017)

    MathSciNet  Google Scholar 

  13. Lee, H., et al.: Fully automated deep learning system for bone age assessment. J Digit Imaging 30(4), 427–441 (2017)

    Google Scholar 

  14. Fischer, A.H., et al.: Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor Protoc. 2008(5), pdb. prot4986 (2008)

    Google Scholar 

  15. Biberacher, V., et al.: Intra-and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis. Neuroimage 142, 188–197 (2016)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2015)

    Google Scholar 

  17. Castro, E., Cardoso, J.S., Pereira, J.C.: Elastic deformations for data augmentation in breast cancer mass detection. In: 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). IEEE (2018)

    Google Scholar 

  18. Christ, P.F., et al.: Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. arXiv:1702.05970 (2017)

  19. Sugino, T., et al.: Automatic segmentation of eyeball structures from micro-CT images based on sparse annotation. In: Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging. International Society for Optics and Photonics (2018)

    Google Scholar 

  20. Zhang, H., et al.: Mixup: Beyond empirical risk minimization. arXiv:1710.09412 (2017)

  21. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  22. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434 (2015)

  23. Salimans, T., et al.: Improved techniques for training gans. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  24. Paszke, A., et al.: PyTorch (2017)

    Google Scholar 

  25. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI (2016)

    Google Scholar 

  26. https://www.tensorflow.org/api_docs/python/tf/contrib/image.

  27. https://opencv.org.

  28. https://github.com/aleju/imgaug.

  29. arXiv:1606.00897Bauer, S., et al.: Multi-organ cancer classification and survival analysis. (2016)

  30. Korbar, B., et al.: Deep learning for classification of colorectal polyps on whole-slide images. J. Pathol. Inf. 8 (2017)

    Google Scholar 

  31. Veta, M., Van Diest, P.J., Pluim, J.P.: Cutting out the middleman: measuring nuclear area in histopathology slides without segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2016)

    Google Scholar 

  32. Maninis, K.-K., et al.: Deep retinal image understanding. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2016)

    Google Scholar 

  33. Yang, Y., et al.: Lesion detection and grading of diabetic retinopathy via two-stages deep convolutional neural networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2017)

    Google Scholar 

  34. Galdran, A., et al.: Data-driven color augmentation techniques for deep skin image analysis. arXiv:1703.03702 (2017)

  35. Tomita, N., et al.: Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans.98, 8–15 (2018)

    Google Scholar 

  36. Pereira, S., et al.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5), 1240–1251 (2016)

    Google Scholar 

  37. Madani, A., et al.: Chest x-ray generation and data augmentation for cardiovascular abnormality classification. In: Medical Imaging 2018: Image Processing. International Society for Optics and Photonics (2018)

    Google Scholar 

  38. Quan, T.M., Hildebrand, D.G., Jeong, W.-K.: Fusionnet: a deep fully residual convolutional neural network for image segmentation in connectomics (2016)

    Google Scholar 

  39. Goodfellow, I., et al.: Deep learning, vol. 1. MIT press, Cambridge (2016).

    Google Scholar 

  40. Abràmoff, M.D., et al.: Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci 57(13), 5200–5206 (2016)

    Google Scholar 

  41. BenTaieb, A., Hamarneh, G.: Topology aware fully convolutional networks for histology gland segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Hassanpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdollahi, B., Tomita, N., Hassanpour, S. (2020). Data Augmentation in Training Deep Learning Models for Medical Image Analysis. In: Nanni, L., Brahnam, S., Brattin, R., Ghidoni, S., Jain, L. (eds) Deep Learners and Deep Learner Descriptors for Medical Applications. Intelligent Systems Reference Library, vol 186. Springer, Cham. https://doi.org/10.1007/978-3-030-42750-4_6

Download citation

Publish with us

Policies and ethics