Skip to main content

Phytolith Analysis in Paleoecology and Archaeology

  • Chapter
  • First Online:
Handbook for the Analysis of Micro-Particles in Archaeological Samples

Part of the book series: Interdisciplinary Contributions to Archaeology ((IDCA))

Abstract

Opaline phytoliths are formed when plants accumulate silica at the cellular level. This biomineralization process reproduces, to some extent, the original plant tissue in the form of microscopic particles that are incorporated into soils and sediments when the plant dies and decays. Phytoliths’ inorganic nature makes them resistant to most pre- and post-depositional processes, including fire, and they can preserve over long periods in a different range of conditions. However, not all plants produce the same amount of phytoliths and phytolith morphologies can be redundant, impeding the identification of the original plant tissue. Phytolith assemblages can also suffer post-depositional processes that might affect their preservation and bias the interpretation. The present chapter reviews the current knowledge on phytolith formation and cycling, sampling and extraction methods, identification procedures, taphonomy, and phytolith applications in paleoecology and archaeology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert, R. M., & Cabanes, D. (2007). Fire in prehistory: An experimental approach to combustion processes and phytolith remains. Israel Journal of Earth Sciences, 56(2-4), 175–189. https://doi.org/10.1560/IJES.56.2-4.175.

    Article  Google Scholar 

  • Albert, R. M., & Henry, D. O. (2004). Herding and agricultural activities at the early neolithic site of Ayn Ab? Nukhayla (Wadi Rum, Jordan). The results of phytolith and spherulite analyses. Paleorient, 30(2), 81–92.

    Article  Google Scholar 

  • Albert, R. M., & Marean, C. W. (2012). The exploitation of plant resources by early homo sapiens: The phytolith record from Pinnacle Point 13B Cave, South Africa. Geoarchaeology, 27(4), 363–384. https://doi.org/10.1002/gea.21413.

    Article  Google Scholar 

  • Albert, R. M., & Weiner, S. (2001). Study of phytolith in prehistoric ash leayers from Kebara and Tabun caves using a quantitative approach. In J. D. Meunier & F. Colin (Eds.), Phytolith: Applications in earth sciences and human history (pp. 251–266). Lisse: A. A. Balkema Publishers.

    Google Scholar 

  • Albert, R. M., Tsatskin, A., Ronen, A., Lavi, O., Estroff, L., Lev-Yadun, S., et al. (1999). Mode of occupation of Tabun Cave, Mt Carmel, Israel during the Mousterian Period: A study of the sediments and phytoliths. Journal of Archaeological Science, 26, 1249–1260.

    Article  Google Scholar 

  • Albert, R. M., Bar-Yosef, O., Meignen, L., & Weiner, S. (2003). Quantitative phytolith study of hearths from the Natufian and Middle Paleolithic levels of Hayonim Cave (Galilee, Israel). Journal of Archaeological Science, 30, 461–480.

    Article  Google Scholar 

  • Albert, R. M., Bamford, M. K., & Cabanes, D. (2006). Taphonomy of phytoliths and macroplants in different soils from Olduvai Gorge (Tanzania) and the application to Plio-Pleistocene palaeoanthropological samples. Quaternary International, 148(1), 78–94. https://doi.org/10.1016/j.quaint.2005.11.026.

    Article  Google Scholar 

  • Albert, R. M., Shahack-Gross, R., Cabanes, D., Gilboa, A., Lev-Yadun, S., Portillo, M., et al. (2008). Phytolith-rich layers from the Late Bronze and Iron Ages at Tel Dor (Israel): Mode of formation and archaeological significance. Journal of Archaeological Science, 35(1), 57–75. https://doi.org/10.1016/j.jas.2007.02.015.

    Article  Google Scholar 

  • Albert, R. M., Bamford, M. K., & Cabanes, D. (2009). Palaeoecological significance of palms at Olduvai Gorge, Tanzania, based on phytolith remains. Quaternary International, 193(1-2), 41–48. https://doi.org/10.1016/j.quaint.2007.06.008.

    Article  Google Scholar 

  • Albert, R. M., Berna, F., & Goldberg, P. (2012). Insights on Neanderthal fire use at Kebara Cave (Israel) through high resolution study of prehistoric combustion features: Evidence from phytoliths and thin sections. Quaternary International, 247(1), 278–293. https://doi.org/10.1016/j.quaint.2010.10.016.

    Article  Google Scholar 

  • Albert, R. M., Ruíz, J. A., & Sans, A. (2016). PhytCore ODB: A new tool to improve efficiency in the management and exchange of information on phytoliths. Journal of Archaeological Science, 68, 98–105. https://doi.org/10.1016/j.jas.2015.10.014.

    Article  Google Scholar 

  • Alexandre, A., Meunier, J. D., Colin, F., & Koud, J. M. (1997a). Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochimica et Cosmochimica Acta, 61(3), 677–682. https://doi.org/10.1016/S0016-7037(97)00001-X.

    Article  Google Scholar 

  • Alexandre, A., Meunier, J. D., Lezine, A. M., Vincens, A., & Schwartz, D. (1997b). Phytoliths: Indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeography Palaeoclimatology Palaeoecology, 136(1-4), 213–229.

    Article  Google Scholar 

  • Asscher, Y., Cabanes, D., Hitchcock, L. A., Maeir, A. M., Weiner, S., & Boaretto, E. (2015). Radiocarbon dating shows an early appearance of Philistine material culture in Tell es-Safi/Gath, Philistia. Radiocarbon, 57(5), 825–850. https://doi.org/10.2458/azu_rc.57.18391.

    Article  Google Scholar 

  • Asscher, Y., Weiner, S., & Boaretto, E. (2017). A new method for extracting the insoluble occluded carbon in archaeological and modern phytoliths: Detection of 14C depleted carbon fraction and implications for radiocarbon dating. Journal of Archaeological Science, 78, 57–65. https://doi.org/10.1016/j.jas.2016.11.005.

    Article  Google Scholar 

  • Baird, D., Fairbairn, A., Jenkins, E., Martin, L., Middleton, C., Pearson, J., et al. (2018). Agricultural origins on the Anatolian plateau. Proceedings of the National Academy of Sciences., 115(14), E3077–E3086. https://doi.org/10.1073/pnas.1800163115.

    Article  Google Scholar 

  • Balbo, A. L., Cabanes, D., García-Granero, J. J., Bonet, A., Ajithprasad, P., & Terradas, X. (2015). A microarchaeological approach for the study of pits. Environmental Archaeology, 20(4), 390–405. https://doi.org/10.1179/1749631414Y.0000000044.

    Article  Google Scholar 

  • Ball, T. B., Brotherson, J. D., Sangster, A. G., Twiss, P. C., & Mulholland, S. (1992). The effect of varying environmental conditions on phytolith morphometries in two species of grass (Bouteloua curtipendula and Panicum virgatum). Scanning Microscopy, 6(4), 1163–1181.

    Google Scholar 

  • Ball, T., Gardner, J. S., & Brotherson, J. D. (1996). Identifying phytoliths produced by the inflorescence bracts of three species of wheat (Triticum monococcum L., T. dicoccon Schrank., and T. aestivum L.) using computer-assisted image and statistical analyses. Journal of Archaeological Science, 23(4), 619–632. https://doi.org/10.1006/jasc.1996.0058.

    Article  Google Scholar 

  • Ball, T., Vrydaghs, L., Van Den Hauwe, I., Manwaring, J., & De Langhe, E. (2006). Differentiating banana phytoliths: Wild and edible Musa acuminata and Musa balbisiana. Journal of Archaeological Science, 33(9), 1228–1236. https://doi.org/10.1016/j.jas.2005.12.010.

    Article  Google Scholar 

  • Ball, T. B., Ehlers, R., & Standing, M. D. (2009). Review of typologic and morphometric analysis of phytoliths produced by wheat and barley. Breeding Science, 59(5), 505–512. https://doi.org/10.1270/jsbbs.59.505.

    Article  Google Scholar 

  • Ball, T., Chandler-Ezell, K., Dickau, R., Duncan, N., Hart, T. C., Iriarte, J., et al. (2016a). Phytoliths as a tool for investigations of agricultural origins and dispersals around the world. Journal of Archaeological Science, 68, 32–45. https://doi.org/10.1016/j.jas.2015.08.010.

    Article  Google Scholar 

  • Ball, T. B., Davis, A., Evett, R. R., Ladwig, J. L., Tromp, M., Out, W. A., et al. (2016b). Morphometric analysis of phytoliths: Recommendations towards standardization from the International Committee for Phytolith Morphometrics. Journal of Archaeological Science, 68, 106–111. https://doi.org/10.1016/j.jas.2015.03.023.

    Article  Google Scholar 

  • Ball, T., Vrydaghs, L., Mercer, T., Pearce, M., Snyder, S., Lisztes-Szabó, Z., et al. (2017). A morphometric study of variance in articulated dendritic phytolith wave lobes within selected species of Triticeae and Aveneae. Vegetation History and Archaeobotany, 26(1), 85–97. https://doi.org/10.1007/s00334-015-0551-x.

    Article  Google Scholar 

  • Bamford, M. K., Albert, R. M., & Cabanes, D. (2006). Plio-Pleistocene macroplant fossil remains and phytoliths from Lowermost Bed II in the eastern palaeolake margin of Olduvai Gorge, Tanzania. Quaternary International, 148, 95–112.

    Article  Google Scholar 

  • Barboni, D., Bonnefille, R., Alexandre, A., & Meunier, J. D. (1999). Phytoliths as paleoenvironmental indicators, West Side Middle Awash Valley, Ethiopia. Palaeogeography Palaeoclimatology Palaeoecology, 152(1-2), 87–100.

    Article  Google Scholar 

  • Bartoli, F., & Wilding, L. P. (1980). Dissolution of biogenic opal as a function of its physical and chemical-properties. Soil Science Society of America Journal, 44(4), 873–878.

    Article  Google Scholar 

  • Bestel, S., Crawford, G. W., Liu, L., Shi, J., Song, Y., & Chen, X. (2014). The evolution of millet domestication, Middle Yellow River Region, North China: Evidence from charred seeds at the late Upper Paleolithic Shizitan Locality 9 site. Holocene, 24(3), 261–265. https://doi.org/10.1177/0959683613518595.

    Article  Google Scholar 

  • Blinnikov, M. S. (2005). Phytoliths in plants and soils of the interior Pacific Northwest, USA. Review of Palaeobotany and Palynology, 135(1-2), 71–98.

    Article  Google Scholar 

  • Blinnikov, M., Busacca, A., & Whitlock, C. (2002). Reconstruction of the late Pleistocene grassland of the Columbia basin, Washington, USA, based on phytolith records in loess. Palaeogeography Palaeoclimatology Palaeoecology, 177(1-2), 77–101.

    Article  Google Scholar 

  • Boyd, M., Surette, C., & Nicholson, B. A. (2006). Archaeobotanical evidence of prehistoric maize (Zea mays) consumption at the northern edge of the Great Plains. Journal of Archaeological Science, 33(8), 1129–1140.

    Article  Google Scholar 

  • Bozarth, S. R. (1987). Diagnostic opal phytoliths from rinds of selected Cucurbita species. American Antiquity, 52(3), 607–615.

    Article  Google Scholar 

  • Bremond, L., Alexandre, A., Vela, E., & Guiot, J. (2004). Advantages and disadvantages of phytolith analysis for the reconstruction of Mediterranean vegetation: An assessment based on modern phytolith, pollen and botanical data (Luberon, France). Review of Palaeobotany and Palynology, 129(4), 213–228.

    Article  Google Scholar 

  • Bremond, L., Alexandre, A., Hély, C., & Guiot, J. (2005a). A phytolith index as a proxy of tree cover density in tropical areas: Calibration with Leaf Area Index along a forest-savanna transect in southeastern Cameroon. Global and Planetary Change, 45(4), 277–293. https://doi.org/10.1016/j.gloplacha.2004.09.002.

    Article  Google Scholar 

  • Bremond, L., Alexandre, A., Peyron, O., & Guiot, J. (2005b). Grass water stress estimated from phytoliths in West Africa. Journal of Biogeography, 32(2), 311–327.

    Article  Google Scholar 

  • Bremond, L., Alexandre, A., Wooller, M. J., Hély, C., Williamson, D., Schäfer, P. A., et al. (2008). Phytolith indices as proxies of grass subfamilies on East African tropical mountains. Global and Planetary Change, 61(3-4), 209–224. https://doi.org/10.1016/j.gloplacha.2007.08.016.

    Article  Google Scholar 

  • Bush, M. B., & Colinvaux, P. A. (1994). Tropical forest disturbance - Paleoecological records from Darien, Panama. Ecology, 75(6), 1761–1768.

    Article  Google Scholar 

  • Bush, M. B., Piperno, D. R., Colinvaux, P. A., Deoliveira, P. E., Krissek, L. A., Miller, M. C., et al. (1992). A 14 300-yr paleoecological profile of a lowland tropical lake in Panama. Ecological Monographs, 62(2), 251–275.

    Article  Google Scholar 

  • Cabanes, D., & Albert, R. M. (2011). Microarchaeology of a collective burial: Cova des Pas (Minorca). Journal of Archaeological Science, 38(5), 1119–1126. https://doi.org/10.1016/j.jas.2010.12.008.

    Article  Google Scholar 

  • Cabanes, D., & Shahack-Gross, R. (2015). Understanding fossil phytolith preservation: The role of partial dissolution in paleoecology and archaeology. PLoS One, 10(5), e0125532. https://doi.org/10.1371/journal.pone.0125532.

    Article  Google Scholar 

  • Cabanes, D., Allué, E., Vallverdú, J., Cáceres, I., Vaquero, M., & Pastó, I. (2007). Hearth structure and function at level J (50kyr, bp) from Abric Romaní (Capellades, Spain): Phytolith, charcaoal, bones and stone-tools. In M. Madella & D. Zurro (Eds.), Plant people and places - Recent studies in phytolith analysis (pp. 98–106). Oxford: Oxbow Books.

    Google Scholar 

  • Cabanes, D., Burjachs, F., Expósito, I., Rodríguez, A., Allué, E., Euba, I., et al. (2009). Formation processes through archaeobotanical remains: The case of the Bronze Age levels in El Mirador cave, Sierra de Atapuerca, Spain. Quaternary International, 193(1-2), 160–173. https://doi.org/10.1016/j.quaint.2007.08.002.

    Article  Google Scholar 

  • Cabanes, D., Mallol, C., Expósito, I., & Baena, J. (2010). Phytolith evidence for hearths and beds in the late Mousterian occupations of Esquilleu cave (Cantabria, Spain). Journal of Archaeological Science, 37(11), 2947–2957. https://doi.org/10.1016/j.jas.2010.07.010.

    Article  Google Scholar 

  • Cabanes, D., Weiner, S., & Shahack-Gross, R. (2011). Stability of phytoliths in the archaeological record: A dissolution study of modern and fossil phytoliths. Journal of Archaeological Science, 38(9), 2480–2490. https://doi.org/10.1016/j.jas.2011.05.020.

    Article  Google Scholar 

  • Cabanes, D., Gadot, Y., Cabanes, M., Finkelstein, I., Weiner, S., & Shahack-Gross, R. (2012). Human impact around settlement sites: A phytolith and mineralogical study for assessing site boundaries, phytolith preservation, and implications for spatial reconstructions using plant remains. Journal of Archaeological Science, 39(8), 2697–2705. https://doi.org/10.1016/j.jas.2012.04.008.

    Article  Google Scholar 

  • Calegari, M. R., Madella, M., Vidal-Torrado, P., Otero, X. L., Macias, F., & Osterrieth, M. (2013). Opal phytolith extraction in oxisols. Quaternary International, 287, 56–62. https://doi.org/10.1016/j.quaint.2011.11.005.

    Article  Google Scholar 

  • Carnelli, A. L., Theurillat, J. P., & Madella, M. (2004). Phytolith types and type-frequencies in subalpine-alpine plant species of the European Alps. Review of Palaeobotany and Palynology, 129(1-2), 39–65. https://doi.org/10.1016/j.revpalbo.2003.11.002.

    Article  Google Scholar 

  • Carter, J. A., & Lian, O. B. (2000). Palaeoenvironmental reconstruction from last interglacial using phytolith analysis, southeastern North Island, New Zealand. Journal of Quaternary Science, 15(7), 733–743.

    Article  Google Scholar 

  • Coil, J., Korstanje, M. A., Archer, S., & Hastorf, C. A. (2003). Laboratory goals and considerations for multiple microfossil extraction in archaeology. Journal of Archaeological Science, 30(8), 991–1008. https://doi.org/10.1016/S0305-4403(02)00285-6.

    Article  Google Scholar 

  • Conley, D. J. (2002). Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochemical Cycles, 16(4), 68-1–68-8.

    Article  Google Scholar 

  • Costa, F. G. C. M. d., Souza, P. C. T., Klein, D. E., & Bove, C. P. (2016). Application of acetolysis in phytoliths extraction. Review of Palaeobotany and Palynology, 228, 93–97. https://doi.org/10.1016/j.revpalbo.2016.01.001.

    Article  Google Scholar 

  • Delhon, C., Alexandre, A., Berger, J. F., Thiébault, S., Brochier, J. L., & Meunier, J. D. (2003). Phytolith assemblages as a promising tool for reconstructing Mediterranean Holocene vegetation. Quaternary Research, 59(1), 48–60. https://doi.org/10.1016/S0033-5894(02)00013-3.

    Article  Google Scholar 

  • Derry, L. A., Kurtz, A. C., Ziegler, K., & Chadwick, O. A. (2005). Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature, 433(7027), 728–731. https://doi.org/10.1038/nature03299.

    Article  Google Scholar 

  • Devos, Y., Vrydaghs, L., Degraeve, A., & Fechner, K. (2009). An archaeopedological and phytolitarian study of the “Dark Earth” on the site of Rue de Dinant (Brussels, Belgium). Catena, 78(3), 270–284. https://doi.org/10.1016/j.catena.2009.02.013.

    Article  Google Scholar 

  • Ding, T. P., Zhou, J. X., Wan, D. F., Chen, Z. Y., Wang, C. Y., & Zhang, F. (2008). Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon. Geochimica et Cosmochimica Acta, 72(5), 1381–1395. https://doi.org/10.1016/j.gca.2008.01.008.

    Article  Google Scholar 

  • Ehrenberg, C. G. (1843). Verbreitung und Einfluss des Mikroskopischen Lebens in Süd-und Nord Amerika. Abhandlungen der Akademie der Wissenschaften zu Berlin, 1841, 291–446.

    Google Scholar 

  • Ehrenberg, C. G. (1854). Mikrogeologie. Leipzig: Leopold Voss.

    Google Scholar 

  • Elbaum, R., Albert, R. M., Elbaum, M., & Weiner, S. (2003). Detection of burning of plant materials in the archaeological record by changes in the refractive indices of siliceous phytoliths. Journal Archaeological Science, 30, 217–226.

    Article  Google Scholar 

  • Epstein, E. (1994). The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America, 91(1), 11–17. https://doi.org/10.1073/pnas.91.1.11.

    Article  Google Scholar 

  • Esteban, I., Albert, R. M., Eixea, A., Zilhão, J., & Villaverde, V. (2017a). Neanderthal use of plants and past vegetation reconstruction at the Middle Paleolithic site of Abrigo de la Quebrada (Chelva, Valencia, Spain). Archaeological and Anthropological Sciences, 9(2), 265–278. https://doi.org/10.1007/s12520-015-0279-7.

    Article  Google Scholar 

  • Esteban, I., De Vynck, J. C., Singels, E., Vlok, J., Marean, C. W., Cowling, R. M., et al. (2017b). Modern soil phytolith assemblages used as proxies for Paleoscape reconstruction on the south coast of South Africa. Quaternary International, 434, 160–179. https://doi.org/10.1016/j.quaint.2016.01.037.

    Article  Google Scholar 

  • Esteban, I., Vlok, J., Kotina, E. L., Bamford, M. K., Cowling, R. M., Cabanes, D., et al. (2017c). Phytoliths in plants from the south coast of the Greater Cape Floristic Region (South Africa). Review of Palaeobotany and Palynology, 245, 69–84. https://doi.org/10.1016/j.revpalbo.2017.05.001.

    Article  Google Scholar 

  • Evett, R. R., & Cuthrell, R. Q. (2016). A conceptual framework for a computer-assisted, morphometric-based phytolith analysis and classification system. Journal of Archaeological Science, 68, 70–78. https://doi.org/10.1016/j.jas.2015.09.003.

    Article  Google Scholar 

  • Farmer, V. C. (2005). Forest vegetation does recycle substantial amounts of silicon from and back to the soil solution with phytoliths as an intermediate phase, contrary to recent reports. European Journal of Soil Science, 56(2), 271–272.

    Article  Google Scholar 

  • Farmer, V. C., Delbos, E., & Miller, J. D. (2005). The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma, 127(1-2), 71–79. https://doi.org/10.1016/j.geoderma.2004.11.014.

    Article  Google Scholar 

  • Fernández Honaine, M., Zucol, A. F., & Osterrieth, M. L. (2006). Phytolith assemblages and systematic associations in grassland species of the south-eastern Pampean Plains, Argentina. Annals of Botany, 98(6), 1155–1165. https://doi.org/10.1093/aob/mcl207.

    Article  Google Scholar 

  • Fisher, R. F., Bourn, C. N., & Fisher, W. F. (1995). Opal phytoliths as an indicator of the floristics of prehistoric grasslands. Geoderma, 68(4), 243–255.

    Article  Google Scholar 

  • Fishkis, O., Ingwersen, J., & Streck, T. (2009). Phytolith transport in sandy sediment: Experiments and modeling. Geoderma, 151(3-4), 168–178. https://doi.org/10.1016/j.geoderma.2009.04.003.

    Article  Google Scholar 

  • Fishkis, O., Ingwersen, J., Lamers, M., Denysenko, D., & Streck, T. (2010). Phytolith transport in soil: A field study using fluorescent labelling. Geoderma, 157(1-2), 27–36. https://doi.org/10.1016/j.geoderma.2010.03.012.

    Article  Google Scholar 

  • Fraysse, F., Cantais, F., Pokrovsky, O. S., Schott, J., & Meunier, J. D. (2006a). Aqueous reactivity of phytoliths and plant litter: Physico-chemical constraints on terrestrial biogeochemical cycle of silicon. Journal of Geochemical Exploration, 88(1-3 Spec Issue), 202–205. https://doi.org/10.1016/j.gexplo.2005.08.039.

    Article  Google Scholar 

  • Fraysse, F., Pokrovsky, O. S., Schott, J., & Meunier, J. D. (2006b). Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochimica et Cosmochimica Acta, 70(8), 1939–1951. https://doi.org/10.1016/j.gca.2005.12.025.

    Article  Google Scholar 

  • Fraysse, F., Pokrovsky, O. S., Schott, J., & Meunier, J. D. (2009). Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chemical Geology, 258(3-4), 197–206. https://doi.org/10.1016/j.chemgeo.2008.10.003.

    Article  Google Scholar 

  • Fredlund, G. G., & Tieszen, L. L. (1997). Calibrating grass phytolith assemblages in climatic terms: Application to late Pleistocene assemblages from Kansas and Nebraska. Palaeogeography Palaeoclimatology Palaeoecology, 136(1-4), 199–211.

    Article  Google Scholar 

  • Friesem, D. E. (2016). Geo-ethnoarchaeology in action. Journal of Archaeological Science, 70, 145–157. https://doi.org/10.1016/j.jas.2016.05.004.

    Article  Google Scholar 

  • Friesem, D., Boaretto, E., Eliyahu-Behar, A., & Shahack-Gross, R. (2011). Degradation of mud brick houses in an arid environment: A geoarchaeological model. Journal of Archaeological Science, 38(5), 1135–1147. https://doi.org/10.1016/j.jas.2010.12.011.

    Article  Google Scholar 

  • Friesem, D. E., Karkanas, P., Tsartsidou, G., & Shahack-Gross, R. (2014a). Sedimentary processes involved in mud brick degradation in temperate environments: A micromorphological approach in an ethnoarchaeological context in northern Greece. Journal of Archaeological Science, 41, 556–567. https://doi.org/10.1016/j.jas.2013.09.017.

    Article  Google Scholar 

  • Friesem, D. E., Tsartsidou, G., Karkanas, P., & Shahack-Gross, R. (2014b). Where are the roofs? A geo-ethnoarchaeological study of mud brick structures and their collapse processes, focusing on the identification of roofs. Archaeological and Anthropological Sciences, 6(1), 73–92. https://doi.org/10.1007/s12520-013-0146-3.

    Article  Google Scholar 

  • Friesem, D. E., Lavi, N., Madella, M., Ajithprasad, P., & French, C. (2016). Site formation processes and hunter-gatherers use of space in a tropical environment: A geo-ethnoarchaeological approach from South India. PLoS One, 11(10), e0164185. https://doi.org/10.1371/journal.pone.0164185.

    Article  Google Scholar 

  • Gal, A., Hirsch, A., Siegel, S., Li, C., Aichmayer, B., Politi, Y., et al. (2012). Plant cystoliths: A complex functional biocomposite of four distinct silica and amorphous calcium carbonate phases. Chemistry - A European Journal, 18(33), 10262–10270. https://doi.org/10.1002/chem.201201111.

    Article  Google Scholar 

  • Gallego, L., & Distel, R. A. (2004). Phytolith assemblages in grasses native to central Argentina. Annals of Botany, 94(6), 865–874. https://doi.org/10.1093/aob/mch214.

    Article  Google Scholar 

  • Gérard, F., Mayer, K. U., Hodson, M. J., & Ranger, J. (2008). Modelling the biogeochemical cycle of silicon in soils: Application to a temperate forest ecosystem. Geochimica et Cosmochimica Acta, 72(3), 741–758. https://doi.org/10.1016/j.gca.2007.11.010.

    Article  Google Scholar 

  • Goldberg, P., Miller, C. E., Schiegl, S., Ligouis, B., Berna, F., Conard, N. J., et al. (2009). Bedding, hearths, and site maintenance in the Middle Stone Age of Sibudu Cave, KwaZulu-Natal, South Africa. Archaeological and Anthropological Sciences, 1(2), 95–122.

    Article  Google Scholar 

  • Grave, P., & Kealhofer, L. (1999). Assessing bioturbation in archaeological sediments using soil morphology and phytolith analysis. Journal of Archaeological Science, 26, 1239–1248.

    Article  Google Scholar 

  • Gur-Arieh, S., Mintz, E., Boaretto, E., & Shahack-Gross, R. (2013). An ethnoarchaeological study of cooking installations in rural Uzbekistan: Development of a new method for identification of fuel sources. Journal of Archaeological Science, 40(12), 4331–4347. https://doi.org/10.1016/j.jas.2013.06.001.

    Article  Google Scholar 

  • Hart, T. C. (2016). Issues and directions in phytolith analysis. Journal of Archaeological Science, 68, 24–31. https://doi.org/10.1016/j.jas.2016.03.001.

    Article  Google Scholar 

  • Hart, J. P., Matson, R. G., Thompson, R. G., & Blake, M. (2011). Teosinte inflorescence phytolith assemblages mirror Zea taxonomy. PLoS One, 6(3), e18349. https://doi.org/10.1371/journal.pone.0018349.

    Article  Google Scholar 

  • Harvey, E. L., & Fuller, D. Q. (2005). Investigating crop processing using phytolith analysis: The example of rice and millets. Journal of Archaeological Science, 32(5), 739–752.

    Article  Google Scholar 

  • Henry, A. G., & Piperno, D. R. (2008). Using plant microfossils from dental calculus to recover human diet: A case study from Tell al-Raqa’i, Syria. Journal of Archaeological Science, 35, 1943–1950.

    Article  Google Scholar 

  • Henry, D. O., Hietala, H. J., Rosen, A. M., Demidenko, Y. E., Usik, V. I., & Armagan, T. L. (2004). Human behavioral organization in the middle paleolithic: Were Neanderthals different? American Anthropologist, 106(1), 17–31.

    Article  Google Scholar 

  • Henry, A. G., Brooks, A. S., & Piperno, D. R. (2011). Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proceedings of the National Academy of Sciences, 108(2), 486–491. https://doi.org/10.1073/pnas.1016868108.

    Article  Google Scholar 

  • Henry, A. G., Ungar, P. S., Passey, B. H., Sponheimer, M., Rossouw, L., Bamford, M., et al. (2012). The diet of Australopithecus sediba. Nature, 487, 90. https://doi.org/10.1038/nature11185.

    Article  Google Scholar 

  • Hodson, M. J., Parker, A. G., Leng, M. J., & Sloane, H. J. (2008). Silicon, oxygen and carbon isotope composition of wheat (Triticum aestivum L.) phytoliths: Implications for palaeoecology and archaeology. Journal of Quaternary Science, 23(4), 331–339. https://doi.org/10.1002/jqs.1176.

    Article  Google Scholar 

  • Holst, I., Moreno, J. E., & Piperno, D. R. (2007). Identification of teosinte, maize, and Tripsacum in Mesoamerica by using pollen, starch grains, and phytoliths. Proceedings of the National Academy of Sciences, 104(45), 17608–17613.

    Article  Google Scholar 

  • International Committee for Phytolith Taxonomy. (2019). International code for phytolith nomenclature (ICPN) 2.0. Annals of Botany, 124, 189. https://doi.org/10.1093/aob/mcz064. mcz064.

    Article  Google Scholar 

  • Iriarte, J. (2003). Assessing the feasibility of identifying maize through the analysis of cross-shaped size and three-dimentional morphology of phytoliths in the grasslands of southeastern South America. Journal of Archaeological Science, 30(9), 1085–1094. https://doi.org/10.1016/S0305-4403(02)00164-4.

    Article  Google Scholar 

  • Iriarte, J., & Paz, E. A. (2009). Phytolith analysis of selected native plants and modern soils from southeastern Uruguay and its implications for paleoenvironmental and archeological reconstruction. Quaternary International, 193(1-2), 99–123. https://doi.org/10.1016/j.quaint.2007.10.008.

    Article  Google Scholar 

  • Itzstein-Davey, F., Taylor, D., Dodson, J., Atahan, P., & Zheng, H. (2007). Wild and domesticated forms of rice (Oryza sp.) in early agriculture at Qingpu, lower Yangtze, China: Evidence from phytoliths. Journal of Archaeological Science, 34(12), 2101–2108.

    Article  Google Scholar 

  • Jenkins, E. (2009). Phytolith taphonomy: A comparison of dry ashing and acid extraction on the breakdown of conjoined phytoliths formed in Triticum durum. Journal of Archaeological Science, 36(10), 2402–2407. https://doi.org/10.1016/j.jas.2009.06.028.

    Article  Google Scholar 

  • Jenkins, E., Jamjoum, K., Nuimat, S., Stafford, R., Nortcliff, S., & Mithen, S. (2016). Identifying ancient water availability through phytolith analysis: An experimental approach. Journal of Archaeological Science, 73, 82–93. https://doi.org/10.1016/j.jas.2016.07.006.

    Article  Google Scholar 

  • Jiang, Q. (1995). Searching for evidence of early rice agriculture at prehistoric sites in China through phytolith analysis: An example from central China. Review of Palaeobotany and Palynology, 89(3-4), 481–485.

    Article  Google Scholar 

  • Jones, R. L., & Beavers, A. H. (1963). Some mineralogical and chemical properties of plant opal. Soil Science, 96, 375–379.

    Article  Google Scholar 

  • Karkanas, P., Bar-Yosef, O., Goldberg, P., & Weiner, S. (2000). Diagenesis in prehistoric caves: The use of minerals that form in situ to assess the completeness of the archaeological record. Journal of Archaeological Science, 27(10), 915–929. https://doi.org/10.1006/jasc.1999.0506.

    Article  Google Scholar 

  • Katz, O., Cabanes, D., Weiner, S., Maeir, A. M., Boaretto, E., & Shahack-Gross, R. (2010). Rapid phytolith extraction for analysis of phytolith concentrations and assemblages during an excavation: An application at Tell es-Safi/Gath, Israel. Journal of Archaeological Science, 37(7), 1557–1563. https://doi.org/10.1016/j.jas.2010.01.016.

    Article  Google Scholar 

  • Kealhofer, L., & Piperno, D. R. (1994). Early agriculture in Southeast-Asia - Phytolith evidence from the Bang-Pakong Valley, Thailand. Antiquity, 68(260), 564–572.

    Article  Google Scholar 

  • Kelly, E. F., Amundson, R. G., Marino, B. D., & Deniro, M. J. (1991). Stable isotope ratios of carbon in phytoliths as a quantitative method of monitoring vegetation and climate change. Quaternary Research, 35(2), 222–233.

    Article  Google Scholar 

  • Kelly, E. F., Blecker, S. W., Yonker, C. M., Olson, C. G., Wohl, E. E., & Todd, L. C. (1998). Stable isotope composition of soil organic matter and phytoliths as paleoenvironmental indicators. Geoderma, 82(1-3), 59–81.

    Article  Google Scholar 

  • Kerns, B. K. (2001). Diagnostic phytoliths for a ponderosa pine-bunchgrass community near Flagstaff, Arizona. Southwestern Naturalist, 46(3), 282–294.

    Article  Google Scholar 

  • Krishnan, S., Samson, N. P., Ravichandran, P., Narasimhan, D., & Dayanandan, P. (2000). Phytoliths of Indian grasses and their potential use in identification. Botanical Journal of the Linnean Society, 132(3), 241–252.

    Article  Google Scholar 

  • Lentfer, C. J., & Boyd, W. E. (1998). A comparison of three methods for the extraction of phytoliths from sediments. Journal of Archaeological Science, 25(12), 1159–1183. https://doi.org/10.1006/jasc.1998.0286.

    Article  Google Scholar 

  • Lentfer, C. J., & Boyd, W. E. (2000). Simultaneous extraction of phytoliths, pollen and spores from sediments. Journal of Archaeological Science, 27(5), 363–372. https://doi.org/10.1006/jasc.1998.0374.

    Article  Google Scholar 

  • Li, X. Q., Zhou, X. Y., Zhang, H. B., Zhou, J., Shang, X., & Dodson, J. (2007). The record of cultivated rice from archaeobiotogical evidence in northwestern China 5000 years ago. Chinese Science Bulletin, 52(10), 1372–1378.

    Article  Google Scholar 

  • Lombardo, U., Ruiz-Pérez, J., & Madella, M. (2016). Sonication improves the efficiency, efficacy and safety of phytolith extraction. Review of Palaeobotany and Palynology, 235, 1–5. https://doi.org/10.1016/j.revpalbo.2016.09.008.

    Article  Google Scholar 

  • Loucaides, S., Van Cappellen, P., & Behrends, T. (2008). Dissolution of biogenic silica from land to ocean: Role of salinity and pH. Limnology and Oceanography, 53(4), 1614–1621.

    Article  Google Scholar 

  • Loucaides, S., Behrends, T., & Van Cappellen, P. (2010). Reactivity of biogenic silica: Surface versus bulk charge density. Geochimica et Cosmochimica Acta, 74(2), 517–530. https://doi.org/10.1016/j.gca.2009.10.038.

    Article  Google Scholar 

  • Lu, H. Y., Wang, Y. J., Wang, G. A., Yang, H., & Li, Z. (2000). Analysis of carbon isotope in phytoliths from C3 and C4 plants and modern soils. Chinese Science Bulletin, 45(19), 1804–1808.

    Article  Google Scholar 

  • Lu, H., Yang, X., Ye, M., Liu, K.-B., Xia, Z., Ren, X., et al. (2005). Millet noodles in Late Neolithic China. Nature, 437, 967. https://doi.org/10.1038/437967a.

    Article  Google Scholar 

  • Lu, H., Zhang, J., Liu, K. B., Wu, N., Li, Y., Zhou, K., et al. (2009a). Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proceedings of the National Academy of Sciences, 106(18), 7367–7372. https://doi.org/10.1073/pnas.0900158106.

    Article  Google Scholar 

  • Lu, H., Zhang, J., Wu, N., Liu, K. B., Xu, D., & Li, Q. (2009b). Phytoliths analysis for the discrimination of Foxtail millet (Setaria italica) and Common millet (Panicum miliaceum). PLoS One, 4(2), e4448. https://doi.org/10.1371/journal.pone.0004448.

    Article  Google Scholar 

  • Lucas, P. W., Turner, I. M., Dominy, N. J., & Yamashita, N. (2000). Mechanical defenses to herbivory. Annals of Botany, 86, 913–920.

    Article  Google Scholar 

  • Ma, J. F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392–397. https://doi.org/10.1016/j.tplants.2006.06.007.

    Article  Google Scholar 

  • Madella, M., Alexandre, A., & Ball, T. (2005). International code for phytolith nomenclature. Annals of Botany, 96, 253–260. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246872/

  • Madella, M., & Lancelotti, C. (2012). Taphonomy and phytoliths: A user manual. Quaternary International, 275, 76–83. https://doi.org/10.1016/j.quaint.2011.09.008.

    Article  Google Scholar 

  • Madella, M., Powers-Jones, A. H., & Jones, M. K. (1998). A simple method of extraction of opal phytoliths from sediments using a non-toxic heavy liquid. Journal of Archaeological Science, 25(8), 801–803. https://doi.org/10.1006/jasc.1997.0226.

    Article  Google Scholar 

  • Madella, M., Jones, M. K., Goldberg, P., Goren, Y., & Hovers, E. (2002). The exploitation of plant resources by Neanderthals in Amud Cave (Israel): The evidence from phytolith studies. Journal of Archaeological Science, 29(7), 703–719.

    Article  Google Scholar 

  • Mallol, C., Cabanes, D., Baena, J. (2010). Microstratigraphy and diagenesis at the upper Pleistocenesite of Esquilleu Cave (Cantabria, Spain),Quaternary International, 214, 70–81.

    Google Scholar 

  • Marumo, Y., Ayr, B., & Yanai, H. (1986). Morphological analysis of opal phytoliths for soil discrimination in forensic science investigation. Journal of Forensic Sciences, 31(3), 1039–1049.

    Article  Google Scholar 

  • Massey, F. P., Ennos, A. R., & Hartley, S. E. (2006). Silica in grasses as a defence against insect herbivores: Contrasting effects on folivores and a phloem feeder. Journal of Animal Ecology, 75(2), 595–603.

    Article  Google Scholar 

  • Matthews, W. (2010). Geoarchaeology and taphonomy of plant remains and microarchaeological residues in early urban environments in the Ancient Near East. Quaternary International, 214(1-2), 98–113. https://doi.org/10.1016/j.quaint.2009.10.019.

    Article  Google Scholar 

  • Mercader, J., Bennett, T., Esselmont, C., Simpson, S., & Walde, D. (2009). Phytoliths in woody plants from the Miombo woodlands of Mozambique. Annals of Botany, 104(1), 91–113. https://doi.org/10.1093/aob/mcp097.

    Article  Google Scholar 

  • Mercader, J., Bennett, T., Esselmont, C., Simpson, S., & Walde, D. (2011). Soil phytoliths from miombo woodlands in Mozambique. Quaternary Research, 75(1), 138–150. https://doi.org/10.1016/j.yqres.2010.09.008.

    Article  Google Scholar 

  • Meunier, J. D., Alexandre, A., Colin, F., & Braun, J. J. (2001). Deciphering the dynamics of tropical soils through the study of the biogeochemical cycle of silica. Bulletin De La Societe Geologique De France, 172(5), 533–538.

    Article  Google Scholar 

  • Miller, C. E., & Sievers, C. (2012). An experimental micromorphological investigation of bedding construction in the Middle Stone Age of Sibudu, South Africa. Journal of Archaeological Science, 39(10), 3039–3051. https://doi.org/10.1016/j.jas.2012.02.007.

    Article  Google Scholar 

  • Morris, L. R., Baker, F. A., Morris, C., & Ryel, R. J. (2009). Phytolith types and type-frequencies in native and introduced species of the sagebrush steppe and Pinyon-Juniper Woodlands of the Great Basin, USA. Review of Palaeobotany and Palynology, 157(3-4), 339–357. https://doi.org/10.1016/j.revpalbo.2009.06.007.

    Article  Google Scholar 

  • Mulholland, S.C. & Rapp Jr., G. (1992) Phytolith systematics: An introduction. In G. Rapp Jr. & S. C. Mulholland (Eds.) Phytolith Systematics: Emerging Issues (pp. 1–14). New York, NY: Plenum Press.

    Google Scholar 

  • Mulholland, S. C., Rapp Jr., G & Ollendorf, A. L. (1988). Variation in phytoliths from Corn Leaves. Canadian Journal of Botany-Revue Canadienne De Botanique, 66(10), 2001–2008.

    Google Scholar 

  • Müller, W. E. G., Rothenberger, M., Boreiko, A., Tremel, W., Reiber, A., & Schröder, H. C. (2005). Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell and Tissue Research, 321(2), 285–297. https://doi.org/10.1007/s00441-005-1141-5.

    Article  Google Scholar 

  • Nadel, D., Danin, A., Power, R. C., Rosen, A. M., Bocquentin, F., Tsatskin, A., et al. (2013). Earliest floral grave lining from 13,700-11,700-y-old Natufian burials at Raqefet cave, Mt. Carmel, Israel. Proceedings of the National Academy of Sciences, 110(29), 11774–11778. https://doi.org/10.1073/pnas.1302277110.

    Article  Google Scholar 

  • Namdar, D., Zukerman, A., Maeir, A. M., Katz, J. C., Cabanes, D., Trueman, C., et al. (2011). The 9th century BCE destruction layer at Tell es-Safi/Gath, Israel: Integrating macro- and microarchaeology. Journal of Archaeological Science, 38(12), 3471–3482. https://doi.org/10.1016/j.jas.2011.08.009.

    Article  Google Scholar 

  • Novello, A., & Barboni, D. (2015). Grass inflorescence phytoliths of useful species and wild cereals from sub-Saharan Africa. Journal of Archaeological Science, 59, 10–22. https://doi.org/10.1016/j.jas.2015.03.031.

    Article  Google Scholar 

  • Novello, A., Bamford, M. K., van Wijk, Y., & Wurz, S. (2018). Phytoliths in modern plants and soils from Klasies River, Cape Region (South Africa). Quaternary International, 464, 440. https://doi.org/10.1016/j.quaint.2017.10.009.

    Article  Google Scholar 

  • Ollendorf, A. L. (1992). Toward a classification scheme of sedge (cyperaceae) phytoliths. In G. Rapp Jr. & S. C. Mulholland (Eds.), Phytolith systematics. Emerging issues. Advances in archaeological and museum science (pp. 91–111). New York, NY; London: Plenum Press.

    Google Scholar 

  • Ollendorf, A. L., Mulholland, S. C., & Rapp, Jr., G (1987). Phytoliths from some Israeli sedges. Israel Journal of Botany, 36(3), 125–132.

    Google Scholar 

  • Opfergelt, S., Cardinal, D., Henriet, C., Draye, X., André, L., & Delvaux, B. (2006). Silicon isotopic fractionation by banana (Musa spp.) grown in a continuous nutrient flow device. Plant and Soil, 285(1-2), 333–345. https://doi.org/10.1007/s11104-006-9019-1.

    Article  Google Scholar 

  • Osterrieth, M., Madella, M., Zurro, D., & Alvarez, M. F. (2009). Taphonomical aspects of silica phytoliths in the loess sediments of the Argentinean Pampas. Quaternary International, 193, 70–79. https://doi.org/10.1016/j.quaint.2007.09.002.

    Article  Google Scholar 

  • Out, W. A., & Madella, M. (2016). Morphometric distinction between bilobate phytoliths from Panicum miliaceum and Setaria italica leaves. Archaeological and Anthropological Sciences, 8(3), 505–521. https://doi.org/10.1007/s12520-015-0235-6.

    Article  Google Scholar 

  • Out, W. A., & Madella, M. (2017). Towards improved detection and identification of crop by-products: Morphometric analysis of bilobate leaf phytoliths of Pennisetum glaucum and Sorghum bicolor. Quaternary International, 434, 1–14. https://doi.org/10.1016/j.quaint.2015.07.017.

    Article  Google Scholar 

  • Out, W. A., Ryan, P., García-Granero, J. J., Barastegui, J., Maritan, L., Madella, M., et al. (2016). Plant exploitation in Neolithic Sudan: A review in the light of new data from the cemeteries R12 and Ghaba. Quaternary International, 412, 36–53. https://doi.org/10.1016/j.quaint.2015.12.066.

    Article  Google Scholar 

  • Parr, J. F. (2002). A comparison of heavy liquid floatation and microwave digestion techniques for the extraction of fossil phytoliths from sediments. Review of Palaeobotany and Palynology, 120(3-4), 315–336. https://doi.org/10.1016/S0034-6667(01)00138-5.

    Article  Google Scholar 

  • Parr, J. F. (2006). Effect of fire on phytolith coloration. Geoarchaeology, 21(2), 171–185. https://doi.org/10.1002/gea.20102.

    Article  Google Scholar 

  • Parr, J. F., & Sullivan, L. A. (2005). Soil carbon sequestration in phytoliths. Soil Biology and Biochemistry, 37(1), 117–124. https://doi.org/10.1016/j.soilbio.2004.06.013.

    Article  Google Scholar 

  • Parr, J. F., Dolic, V., Lancaster, G., & Boyd, W. E. (2001a). A microwave digestion method for the extraction of phytoliths from herbarium specimens. Review of Palaeobotany and Palynology, 116(3), 203–212. https://doi.org/10.1016/S0034-6667(01)00089-6.

    Article  Google Scholar 

  • Parr, J. F., Lentfer, C. J., & Boyd, W. E. (2001b). A comparative analysis of wet and dry ashing techniques for the extraction of phytoliths from plant material. Journal of Archaeological Science, 28(8), 875–886. https://doi.org/10.1006/jasc.2000.0623.

    Article  Google Scholar 

  • Pearsall, D. M. (2002). Maize is still ancient in prehistoric Ecuador: The view from Real Alto, with comments on Staller and Thompson. Journal of Archaeological Science, 29(1), 51–55.

    Article  Google Scholar 

  • Pearsall, D. M., Chandler-Ezell, K., & Chandler-Ezell, A. (2003). Identifying maize in neotropical sediments and soils using cob phytoliths. Journal of Archaeological Science, 30(5), 611–627.

    Article  Google Scholar 

  • Pearsall, D. M., Chandler-Ezell, K., & Chandler-Ezell, A. (2004a). Maize can still be identified using phytoliths: Response to Rovner. Journal of Archaeological Science, 31(7), 1029–1038.

    Article  Google Scholar 

  • Pearsall, D. M., Chandler-Ezell, K., & Zeidler, J. A. (2004b). Maize in ancient Ecuador: Results of residue analysis of stone tools from the Real Alto site. Journal of Archaeological Science, 31(4), 423–442.

    Article  Google Scholar 

  • Perry, R. S., Mcloughlin, N., Lynne, B. Y., Sephton, M. A., Oliver, J. D., Perry, C. C., et al. (2007). Defining biominerals and organominerals: Direct and indirect indicators of life. Sedimentary Geology, 201(1-2), 157–179.

    Article  Google Scholar 

  • Peto, Á., Gyulai, F., Pópity, D., & Kenéz, Á. (2013). Macro- and micro-archaeobotanical study of a vessel content from a Late Neolithic structured deposition from southeastern Hungary. Journal of Archaeological Science, 40(1), 58–71. https://doi.org/10.1016/j.jas.2012.08.027.

    Article  Google Scholar 

  • Pierantoni, M., Tenne, R., Brumfeld, V., Kiss, V., Oron, D., Addadi, L., et al. (2017). Plants and light manipulation: The integrated mineral system in okra leaves. Advanced Science, 4(5), 1600416. https://doi.org/10.1002/advs.201600416.

    Article  Google Scholar 

  • Pierantoni, M., Tenne, R., Rephael, B., Brumfeld, V., van Casteren, A., Kupczik, K., et al. (2018). Mineral deposits in Ficus leaves: Morphologies and locations in relation to function. Plant Physiology, 176(2), 1751–1763. https://doi.org/10.1104/pp.17.01516.

    Article  Google Scholar 

  • Piperno, D. R. (1988). Phytolith analysis: An archaeological and geological perspective. San Diego, CA: Academic Press.

    Google Scholar 

  • Piperno, D. R. (1989). The occurrence of phytoliths in the reproductive structures of selected tropical angiosperms and their significance in tropical paleoecology, paleoethnobotany and systematics. Review of Palaeobotany and Palynology, 61(1-2), 147–173. https://doi.org/10.1016/0034-6667(89)90067-5.

    Article  Google Scholar 

  • Piperno, D. R. (1991). The status of phytolith analysis in the American tropics. Journal of World Prehistory, 5(2), 155–191.

    Article  Google Scholar 

  • Piperno, D. R. (2006). Phytoliths: A comprehensive guide for archaeologists and paleoecologists. Lanham, MD: AltaMira Press.

    Google Scholar 

  • Piperno, D. R. (2009). Identifying crop plants with phytoliths (and starch grains) in Central and South America: A review and an update of the evidence. Quaternary International, 193(1), 146–159. https://doi.org/10.1016/j.quaint.2007.11.011.

    Article  Google Scholar 

  • Piperno, D. R. (2016). Phytolith radiocarbon dating in archaeological and paleoecological research: A case study of phytoliths from modern Neotropical plants and a review of the previous dating evidence. Journal of Archaeological Science, 68, 54–61. https://doi.org/10.1016/j.jas.2015.06.002.

    Article  Google Scholar 

  • Piperno, D. R., & Pearsall, D. M. (1993). The nature and status of phytolith analysis. In D. M. Pearsall & D. R. Piperno (Eds.), Current research in phytolith analysis: Applications in archaeology and paleoecology. MASCA research papers in science and archaeology (Vol. 10, pp. 9–20). Philadelphia, PA: Museum Applied Science Center for Archaeology and The University Museum of Archaeology and Anthropology University of Pennsylvania.

    Google Scholar 

  • Piperno, D. R., & Stothert, K. E. (2003). Phytolith evidence for early Holocene Cucurbita domestication in Southwest Ecuador. Science, 299(5609), 1054–1057.

    Article  Google Scholar 

  • Piperno, D. R., Andres, T. C., & Stothert, K. E. (2000). Phytoliths in Cucurbita and other neotropical Curcurbitaceae and their occurrence in early archaeological sties from the Lowland American tropics. Journal of Archaeological Science, 27(3), 193–208.

    Article  Google Scholar 

  • Piperno, D. R., Holst, I., Wessel-Beaver, L., & Andres, T. C. (2002). Evidence for the control of phytolith formation in Cucurbita fruits by the hard rind (Hr) genetic locus: Archaeological and ecological implications. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10923–10928. https://doi.org/10.1073/pnas.152275499.

    Article  Google Scholar 

  • Pohl, M. E. D., Piperno, D. R., Pope, K. O., & Jones, J. G. (2007). Microfossil evidence for pre-Columbian maize dispersals in the neotropics from San Andres, Tabasco, Mexico. Proceedings of the National Academy of Sciences, 104(16), 6870–6875.

    Article  Google Scholar 

  • Portillo, M., Ball, T., & Manwaring, J. (2006). Morphometric analysis of inflorescence phytoliths produced by Avena sativa L. and Avena strigosa Schreb. Economic Botany, 60(2), 121–129. https://doi.org/10.1663/0013-0001(2006)60[121:MAOIPP]2.0.CO;2.

    Article  Google Scholar 

  • Portillo, M., Albert, R. M., & Henry, D. O. (2009). Domestic activities and spatial distribution in Ain Abu Nukhayla (Wadi Rum, Southern Jordan): The use of phytoliths and spherulites studies. Quaternary International, 193(1-2), 174.

    Article  Google Scholar 

  • Portillo, M., Kadowaki, S., Nishiaki, Y., & Albert, R. M. (2014). Early neolithic household behavior at Tell Seker al-Aheimar (Upper Khabur, Syria): A comparison to ethnoarchaeological study of phytoliths and dung spherulites. Journal of Archaeological Science, 42(1), 107–118. https://doi.org/10.1016/j.jas.2013.10.038.

    Article  Google Scholar 

  • Portillo, M., Llergo, Y., Ferrer, A., & Albert, R. M. (2017). Tracing microfossil residues of cereal processing in the archaeobotanical record: An experimental approach. Vegetation History and Archaeobotany, 26(1), 59–74. https://doi.org/10.1007/s00334-016-0571-1.

    Article  Google Scholar 

  • Power, R. C., Rosen, A. M., & Nadel, D. (2014). The economic and ritual utilization of plants at the Raqefet Cave Natufian site: The evidence from phytoliths. Journal of Anthropological Archaeology, 33(1), 49–65. https://doi.org/10.1016/j.jaa.2013.11.002.

    Article  Google Scholar 

  • Power, R. C., Salazar-García, D. C., Wittig, R. M., Freiberg, M., & Henry, A. G. (2015). Dental calculus evidence of Taï Forest Chimpanzee plant consumption and life history transitions. Scientific Reports, 5, 15161. https://doi.org/10.1038/srep15161.

    Article  Google Scholar 

  • Power, R. C., Salazar-García, D. C., Rubini, M., Darlas, A., Harvati, K., Walker, M., et al. (2018). Dental calculus indicates widespread plant use within the stable Neanderthal dietary niche. Journal of Human Evolution, 119, 27–41. https://doi.org/10.1016/j.jhevol.2018.02.009.

    Article  Google Scholar 

  • Powers, A. H., & Gilbertson, D. D. (1987). A simple preparation technique for the study of opal phytoliths from archaeological and quaternary sediments. Journal of Archaeological Science, 14(5), 529–535. https://doi.org/10.1016/0305-4403(87)90036-7.

    Article  Google Scholar 

  • Prebble, M., & Shulmeister, J. (2002). An analysis of phytolith assemblages for the quantitative reconstruction of late Quaternary environments of the Lower Taieri Plain, Otago, South Island, New Zealand II. Paleoenvironmental reconstruction. Journal of Paleolimnology, 27(4), 415–427.

    Article  Google Scholar 

  • Quigley, K. M., & Anderson, T. M. (2014). Leaf silica concentration in Serengeti grasses increases with watering but not clipping: Insights from a common garden study and literature review. Frontiers in Plant Science, 5, 568. https://doi.org/10.3389/fpls.2014.00568.

    Article  Google Scholar 

  • Rapp Jr., G. & Mulholland, S.C. (1992). Phytolith systematics: Emerging issues. New York, NY: Plenum Press

    Google Scholar 

  • Raven, J. A. (2008). The transport and function of silicon in plants. Biological Reviews, 58(2), 179–207. https://doi.org/10.1111/j.1469-185X.1983.tb00385.x.

  • Raviele, M. E. (2011). Experimental assessment of maize phytolith and starch taphonomy in carbonized cooking residues. Journal of Archaeological Science, 38(10), 2708–2713. https://doi.org/10.1016/j.jas.2011.06.008.

    Article  Google Scholar 

  • Regev, L., Cabanes, D., Homsher, R., Kleiman, A., Weiner, S., Finkelstein, I., et al. (2015). Geoarchaeological investigation in a domestic iron age quarter, Tel Megiddo, Israel. Bulletin of the American Schools of Oriental Research, 374, 135–157. https://doi.org/10.5615/bullamerschoorie.374.0135.

    Article  Google Scholar 

  • Rodríguez-Cintas, Á., & Cabanes, D. (2017). Phytolith and FTIR studies applied to combustion structures: The case of the Middle Paleolithic site of El Salt (Alcoy, Alicante). Quaternary International, 431, 16–26. https://doi.org/10.1016/j.quaint.2015.09.043.

    Article  Google Scholar 

  • Rosen, A. M. (1989). Microbotanical evidence for cereals in neolithic levels at Tel Teo and Yiftahel in the Galilee, Israel. Mitekufat Haeven, Journal of the Israel Prehistoric Society, 22, 68–77.

    Google Scholar 

  • Rosen, A. (1992). Preliminary identification of silica skeletons from Near Eastern archaeological sites: An anatomical approach. In G. Rapp Jr. & S. C. Mulholland (Eds.), Phytolith systematics: Emerging issues (pp. 129–147). New York, NY: Plenum Press.

    Google Scholar 

  • Rosen, A. M. (1993). Phytolith evidence for early cereal exploitation in the Levant. In D. M. Pearsall & D. R. Piperno (Eds.), Current research in phytolith analysis: Applications in archaeology and paleoecology. MASCA research papers in science and archaeology (Vol. 10, pp. 160–171). Philadelphia, PA: Museum Applied Science Center for Archaeology and The University Museum of Archaeology and Anthropology University of Pennsylvania.

    Google Scholar 

  • Rosen, A. M. (1997). Phytolith evidence for cereal cultivation at Horvat Galil and Nahal Beset. Tel Aviv. Journal of the Institute of Archaeology of Tel Aviv University, 24(2), 229–236.

    Google Scholar 

  • Rosen, A. M. (2001). Phytolith evidence for agro-pastoral economies in the Scythian period of southern Kazakhstan. In Phytoliths: Applications in earth sciences and human history (pp. 183–198). Boca Raton, FL: CRC Press.

    Chapter  Google Scholar 

  • Rosen, A. M., & Weiner, S. (1994). Identifying ancient irrigation - A new method using opaline phytoliths from emmer wheat. Journal of Archaeological Science, 21(1), 125–132.

    Article  Google Scholar 

  • Rovner, I. (1971). Potential of opal phytoliths for use in paleoecological reconstruction. Quaternary Research, 1, 343–359.

    Article  Google Scholar 

  • Rovner, I. (1972). Note on a safer procedure for opal phytolith extraction. Quaternary Research, 2(4), 591. https://doi.org/10.1016/0033-5894(72)90093-2.

    Article  Google Scholar 

  • Rovner, I. (2004). On transparent blindfolds - Comments on identifying maize in Neotropical sediments and soils using cob phytoliths. Journal of Archaeological Science, 31(6), 815–819.

    Article  Google Scholar 

  • Runge, F. (1999). The opal phytolith inventory of soils in central Africa - Quantities, shapes, classification, and spectra. Review of Palaeobotany and Palynology, 107(1-2), 23–53.

    Article  Google Scholar 

  • Santos, G. M., Alexandre, A., Coe, H. H. G., Reyerson, P. E., Southon, J. R., & De Carvalho, C. N. (2010). The phytolith 14c puzzle: A tale of background determinations and accuracy tests. Radiocarbon, 52(1), 113–128. https://doi.org/10.1017/S0033822200045070.

    Article  Google Scholar 

  • Santos, G. M., Alexandre, A., Southon, J. R., Treseder, K. K., Corbineau, R., & Reyerson, P. E. (2012). Possible source of ancient carbon in phytolith concentrates from harvested grasses. Biogeosciences, 9(5), 1873–1884. https://doi.org/10.5194/bg-9-1873-2012.

    Article  Google Scholar 

  • Saxena, A., Prasad, V., Singh, I. B., Chauhan, M. S., & Hasan, R. (2006). On the Holocene record of phytoliths of wild and cultivated rice from Ganga Plain: Evidence for rice-based agriculture. Current Science, 90(11), 1547–1552.

    Google Scholar 

  • Schiegl, S., Stockhammer, P., Scott, C., & Wadley, L. (2004). A mineralogical and phytolith study of the Middle Stone Age hearths in Sibudu Cave, KwaZulu-Natal, South Africa. South African Journal of Science, 100(3-4), 185–194.

    Google Scholar 

  • Shahack-Gross, R. (2011). Herbivorous livestock dung: Formation, taphonomy, methods for identification, and archaeological significance. Journal of Archaeological Science, 38(2), 205–218. https://doi.org/10.1016/j.jas.2010.09.019.

    Article  Google Scholar 

  • Shahack-Gross, R., Shemesh, A., Yakir, D., & Weiner, S. (1996). Oxygen isotopic composition of opaline phytoliths: Potential for terrestrial climatic reconstruction. Geochimica et Cosmochimica Acta, 60(20), 3949–3953. https://doi.org/10.1016/0016-7037(96)00237-2.

    Article  Google Scholar 

  • Shahack-Gross, R., Marshall, F., & Weiner, S. (2003). Geo-ethnoarchaeology of pastoral sites: The identification of livestock enclosures in abandoned Maasai settlements. Journal of Archaeological Science, 30(4), 439–459. https://doi.org/10.1006/jasc.2002.0853.

    Article  Google Scholar 

  • Shahack-Gross, R., Marshall, F., Ryan, K., & Weiner, S. (2004). Reconstruction of spatial organization in abandoned Maasai settlements: Implications for site structure in the Pastoral Neolithic of East Africa. Journal of Archaeological Science, 31(10), 1395–1411. https://doi.org/10.1016/j.jas.2004.03.003.

    Article  Google Scholar 

  • Shahack-Gross, R., Albert, R.-M., Gilboa, A., Nagar-Hilman, O., Sharon, I., & Weiner, S. (2005). Geoarchaeology in an urban context: The uses of space in a Phoenician monumental building at Tel Dor (Israel). Journal of Archaeological Science, 32(9), 1417–1431. https://doi.org/10.1016/j.jas.2005.04.001.

    Article  Google Scholar 

  • Smith, F. A., & White, J. W. C. (2004). Modern calibration of phytolith carbon isotope signatures for C 3/C4 paleograssland reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 207(3-4), 277–304. https://doi.org/10.1016/S0031-0182(04)00044-6.

    Article  Google Scholar 

  • Street-Perrott, F. A., & Barker, P. A. (2008). Biogenic silica: A neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surface Processes and Landforms, 33(9), 1436–1457. https://doi.org/10.1002/esp.1712.

    Article  Google Scholar 

  • Stromberg, C. A. E. (2002). The origin and spread of grass-dominated ecosystems in the late Tertiary of North America: Preliminary results concerning the evolution of hypsodonty. Palaeogeography Palaeoclimatology Palaeoecology, 177(1-2), 59–75.

    Article  Google Scholar 

  • Stromberg, C. A. E. (2004). Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of North America during the late Eocene to early Miocene. Palaeogeography Palaeoclimatology Palaeoecology, 207(3-4), 239–275.

    Article  Google Scholar 

  • Strömberg, C. A. E. (2009). Methodological concerns for analysis of phytolith assemblages: Does count size matter? Quaternary International, 193(1), 124–140. https://doi.org/10.1016/j.quaint.2007.11.008.

    Article  Google Scholar 

  • Strömberg, C. A. E., Di Stilio Verónica, S., Song, Z., & De Gabriel, J. (2016). Functions of phytoliths in vascular plants: An evolutionary perspective. Functional Ecology, 30(8), 1286–1297. https://doi.org/10.1111/1365-2435.12692.

    Article  Google Scholar 

  • Sullivan, K. A., & Kealhofer, L. (2004). Identifying activity areas in archaeological soils from a colonial Virginia house lot using phytolith analysis and soil chemistry. Journal of Archaeological Science, 31(12), 1659–1673. https://doi.org/10.1016/j.jas.2004.04.007.

    Article  Google Scholar 

  • Thorn, V. C. (2004a). Phytolith evidence for C4-dominated grassland since the early Holocene at long pocket, northeast Queensland, Australia. Quaternary Research, 61(2), 168–180.

    Article  Google Scholar 

  • Thorn, V. C. (2004b). Phytoliths from subantarctic Campbell Island: Plant production and soil surface spectra. Review of Palaeobotany and Palynology, 132(1-2), 37–59. https://doi.org/10.1016/j.revpalbo.2004.04.003.

    Article  Google Scholar 

  • Toffolo, M., Maeir, A. M., Chadwick, J. R., & Boaretto, E. (2012). Characterization of contexts for radiocarbon dating: Results from the Early Iron Age at Tell Es-Safi/Gath, Israel. Radiocarbon, 54(3-4), 371–390. https://doi.org/10.1017/S0033822200047159.

    Article  Google Scholar 

  • Tsartsidou, G., Lev-Yadun, S., Albert, R. M., Miller-Rosen, A., Efstratiou, N., & Weiner, S. (2007). The phytolith archaeological record: Strengths and weaknesses evaluated based on a quantitative modern reference collection from Greece. Journal of Archaeological Science, 34(8), 1262–1275. https://doi.org/10.1016/j.jas.2006.10.017.

    Article  Google Scholar 

  • Tsartsidou, G., Lev-Yadun, S., Efstratiou, N., & Weiner, S. (2008). Ethnoarchaeological study of phytolith assemblages from an agro-pastoral village in Northern Greece (Sarakini): Development and application of a Phytolith Difference Index. Journal of Archaeological Science, 35(3), 600–613. https://doi.org/10.1016/j.jas.2007.05.008.

    Article  Google Scholar 

  • Tsartsidou, G., Lev-Yadun, S., Efstratiou, N., & Weiner, S. (2009). Use of space in a Neolithic village in Greece (Makri): Phytolith analysis and comparison of phytolith assemblages from an ethnographic setting in the same area. Journal of Archaeological Science, 36(10), 2342–2352. https://doi.org/10.1016/j.jas.2009.06.017.

    Article  Google Scholar 

  • Twiss, P. C. (1987). Grass-opal phytolith as climatic indicators of the Great Plains Pleistocene. In W. C. Johnson (Ed.), Quaternary environments of Kansas (pp. 179–188). Lawrence, KS: Geological Survey.

    Google Scholar 

  • Twiss, P. C. (1992). Predicted world distribution of C3 and C4 grass phytolith. In G. Rapp Jr. & S. C. Mulholland (Eds.), Phytolith systematics. Emerging issues. Advances in archaeological and museum science (pp. 113–128). New York, NY; London: Plenum Press.

    Google Scholar 

  • Twiss, P. C., Suess, E., & Smith, R. M. (1969). Morphological classification of grass phytoliths. Soil Science Society of America, 33, 109–115.

    Article  Google Scholar 

  • Vrydaghs, L., Devos, Y., & Pető, Á. (2017). Opal phytoliths. In C. Nicosia & G. Stoops (Eds.), Archaeological soil and sediment micromorphology (pp. 155–164). Hoboken, NJ: Wiley.

    Chapter  Google Scholar 

  • Wadley, L., Sievers, C., Bamford, M., Goldberg, P., Berna, F., & Miller, C. (2011). Middle Stone Age bedding construction and settlement patterns at Sibudu, South Africa. Science, 334(6061), 1388–1391. https://doi.org/10.1126/science.1213317.

    Article  Google Scholar 

  • Wallis, L. (2003). An overview of leaf phytolith production patterns in selected northwest Australian flora. Review of Palaeobotany and Palynology, 125(3-4), 201–248.

    Article  Google Scholar 

  • Wang, J., Liu, L., Ball, T., Yu, L., Li, Y., & Xing, F. (2016). Revealing a 5,000-y-old beer recipe in China. Proceedings of the National Academy of Sciences, 113(23), 6444–6448. https://doi.org/10.1073/pnas.1601465113.

    Article  Google Scholar 

  • Watling, J., & Iriarte, J. (2013). Phytoliths from the coastal savannas of French Guiana. Quaternary International, 287, 162–180. https://doi.org/10.1016/j.quaint.2012.10.030.

    Article  Google Scholar 

  • Webb, E. A., & Longstaffe, F. J. (2000). The oxygen isotopic composition of silica phytoliths and plant water in grasses: Implications for the study of paleoclimate. Geochimica Cosmochimica Acta, 64, 767–780.

    Article  Google Scholar 

  • Webb, E. A., & Longstaffe, F. J. (2002). Climatic influences on the oxygen isotopic composition of biogenic silica in prairie grass. Geochimica et Cosmochimica Acta, 66(11), 1891–1904.

    Article  Google Scholar 

  • Webb, E. A., & Longstaffe, F. J. (2003). The relationship between phytolith- and plant-water delta O-18 values in grasses. Geochimica et Cosmochimica Acta, 67(8), 1437–1449.

    Article  Google Scholar 

  • Webb, E. A., & Longstaffe, F. J. (2006). Identifying the delta O-18 signature of precipitation in grass cellulose and phytoliths: Refining the paleoclimate model. Geochimica et Cosmochimica Acta, 70(10), 2417–2426.

    Article  Google Scholar 

  • Whang, S. S., Kim, K., & Hess, W. M. (1998). Variation of silica bodies in leaf epidermal long cells within and among seventeen species of Oryza (Poaceae). American Journal of Botany, 85(4), 461–466.

    Article  Google Scholar 

  • Wilding, L. P. (1967). Radiocarbon dating of biogenetic opal. Science, 156, 166–167.

    Article  Google Scholar 

  • Zhang, J., Lu, H., Gu, W., Wu, N., Zhou, K., Hu, Y., et al. (2012). Early mixed farming of millet and rice 7800 years ago in the Middle Yellow River Region, China. PLoS One, 7(12), e52146. https://doi.org/10.1371/journal.pone.0052146.

    Article  Google Scholar 

  • Zhao, Z., & Pearsall, D. M. (1998). Experiments for improving phytolith extraction from soils. Journal of Archaeological Science, 25(6), 587–598. https://doi.org/10.1006/jasc.1997.0262.

    Article  Google Scholar 

  • Zhao, Z., Pearsall, D. M., Benfer, R. A., Jr., & Piperno, D. R. (1998). Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis, II: Finalized method. Economic Botany, 52(2), 134–145. https://doi.org/10.1007/BF02861201.

    Article  Google Scholar 

  • Zheng, Y. F., Dong, Y. J., Matsui, A., Udatsu, T., & Fujiwara, H. (2003). Molecular genetic basis of determining subspecies of ancient rice using the shape of phytoliths. Journal of Archaeological Science, 30(10), 1215–1221.

    Article  Google Scholar 

  • Zucol, A. F., Brea, M., & Scopel, A. (2005). First record of fossil wood and phytolith assemblages of the Late Pleistocene in El Palmar National Park (Argentina). Journal of South American Earth Sciences, 20(1-2), 33–43.

    Article  Google Scholar 

  • Zurro, D. (2017). One, two, three phytoliths: Assessing the minimum phytolith sum for archaeological studies. Archaeological and Anthropological Sciences, 10, 1673–1691. https://doi.org/10.1007/s12520-017-0479-4.

    Article  Google Scholar 

  • Zurro, D., García-Granero, J. J., Lancelotti, C., & Madella, M. (2016). Directions in current and future phytolith research. Journal of Archaeological Science, 68, 112–117. https://doi.org/10.1016/j.jas.2015.11.014.

    Article  Google Scholar 

  • Zurro, D., Negre, J., Pérez, J. R., Álvarez, M., Godino, I. B. I., & Caro, J. (2017). An ethnoarchaeological study on anthropic markers from a shell-midden in Tierra del Fuego (Southern Argentina): Lanashuaia II. Environmental Archaeology, 22(4), 394–411. https://doi.org/10.1080/14614103.2017.1299961.

    Article  Google Scholar 

Download references

Acknowledgments

I would like to acknowledge Amanda Henry for organizing a magnificent meeting, giving me the opportunity to write this chapter, and especially, for being a great colleague. I would like to thank also Carolina Mallol, Irene Esteban, Aitor Burguet, and Ágata Rodríguez-Cintas for contributing with their own pictures to this chapter. I am grateful for the comments of the anonymous reviewers that helped to improve the earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Cabanes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cabanes, D. (2020). Phytolith Analysis in Paleoecology and Archaeology. In: Henry, A.G. (eds) Handbook for the Analysis of Micro-Particles in Archaeological Samples. Interdisciplinary Contributions to Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-030-42622-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42622-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42621-7

  • Online ISBN: 978-3-030-42622-4

  • eBook Packages: HistoryHistory (R0)

Publish with us

Policies and ethics