Skip to main content

(Hybrid) SPECT and PET Technologies

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 216))

Abstract

SPECT and PET are nuclear tomographic imaging modalities that visualize functional information based on the accumulation of radioactive tracer molecules. However, SPECT and PET lack anatomical information, which has motivated their combination with an anatomical imaging modality such as CT or MRI. This chapter begins with an overview over the fundamental physics of SPECT and PET followed by a presentation of the respective detector technologies, including detection requirements, principles and different detector concepts. The reader is subsequently provided with an introduction into hybrid imaging concepts, before a dedicated section presents the challenges that arise when hybridizing SPECT or PET with MRI, namely, mutual distortions of the different electromagnetic fields in MRI on the nuclear imaging system and vice versa. The chapter closes with an overview about current hybrid imaging systems of both clinical and preclinical kind. Finally, future developments in hybrid SPECT and PET technology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Czernin J, Israel O, Herrmann K et al (2017) Clinical applications of PET/CT and SPECT/CT imaging. In: Dahlbohm M (ed) Physics of PET/CT and SPECT/CT. CRC Press, Boca Raton

    Google Scholar 

  2. Lu F, Yuan Z (2015) PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant Imaging Med Surg 5(3):433–447

    PubMed  PubMed Central  Google Scholar 

  3. Ruth T (2009) The uses of radiotracers in the life sciences. Rep Prog Phys 72:016701

    Google Scholar 

  4. Conti M, Eriksson L (2004) Physics of pure and non-pure positron emitters for PET: a review and a discussion. Appl Radiat Isot 60:301–305

    Google Scholar 

  5. Sanchez-Crespo A, Andreo P, Larsson S (2004) Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging 31:44–51

    PubMed  Google Scholar 

  6. Da Silva M, de Almeida M, da Silva C et al (2004) Use of the reference source method to determine the half-lives of radionuclides of importance in nuclear medicine. Appl Radiat Isot 60:301–305

    PubMed  Google Scholar 

  7. Severin GW, Engle JW, Nickles RJ, Barnhart TE (2011) 89Zr radiochemistry for PET. Med Chem 7(5):389–394

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Audenhaege K, Holen R, Vandenberghe S et al. (2015) Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging. Med Phys 42(8)

    Google Scholar 

  9. Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29:193–207

    PubMed  Google Scholar 

  10. Brasse D, Kinahan PE, Lartizien C et al (2005) Correction methods for random coincidences in fully 3D whole-body PET: impact on data and image quality. J Nucl Med 46:859–867

    PubMed  Google Scholar 

  11. Ollinger J, Fessler J (1997) Positron emission tomography. IEEE Signal Process Mag 43–55

    Google Scholar 

  12. Berker Y, Franke J, Salomon A et al (2012) MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 53(5)

    Google Scholar 

  13. Lewitt R, Matej S (2003) Overview of methods for image reconstruction from projections in emission computed tomography. Proc IEEE 91(10)

    Google Scholar 

  14. Tong S, Alessio AM, Kinahan PE (2010) Image reconstruction for PET/CT scanners: past achievements and future challenges. Imaging Med 2(5):529–545

    PubMed  PubMed Central  Google Scholar 

  15. Saha GB (2016) Basics of PET imaging: physics, chemistry, and regulations, 3rd edn. Springer International Publishing Switzerland

    Google Scholar 

  16. Bruyant P (2002) Analytic and iterative reconstruction algorithms in SPECT. J Nucl Med 43(10)

    Google Scholar 

  17. Moses WW (2011) Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res A 648(Supplement 1):S236–S240

    Google Scholar 

  18. Peterson TE, Furenlid LR (2011) SPECT detectors: the anger camera and beyond. Phys Med Biol 56(17):R145–R182

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Moses WW (2009) Photodetectors for nuclear medical imaging. Nucl Instrum Methods Phys Res A 610(1):11–15

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Spanoudaki VC, Levin CS (2010) Photo-detectors for time of flight positron emission tomography (ToF-PET). Sensors 10:10484–10505

    CAS  PubMed  Google Scholar 

  21. Russo P, Del Guerra A (2014) Solid-state detectors for small-animal imaging. In: Zaidi H (ed), Molecular imaging of small animals: instrumentation and applications. Springer Science + Business Media, New York

    Google Scholar 

  22. Lecoq P, Gektin A, Korzhik M (2017) Inorganic scintillators for detector systems: physical principles and crystal engineering, 2nd edn. Springer Publishing International Edition, Switzerland

    Google Scholar 

  23. Weber MJ (2002) Inorganic scintillators: today and tomorrow. J Lumin 100:35–45

    CAS  Google Scholar 

  24. Melcher CL (2000) Scintillation crystals for PET. J Nucl Med 41:6

    Google Scholar 

  25. Lecomte R (2009) Novel detector technology for clinical PET. Eur J Nucl Med Mol Imaging 36(Suppl 1):S69–S85

    PubMed  Google Scholar 

  26. Lecoq P (2016) Development of new scintillators for medical applications. Nucl Instrum. Methods Phys Res A(809):130–139

    Google Scholar 

  27. Grupen C, Buvat I (eds) (2012) Handbook of particle detection and imaging. Springer, Berlin-Heidelberg

    Google Scholar 

  28. Northrup RB (2002) Noninvaive instrumentation and measurement in medical diagnosis. CRC Press, Boca Raton

    Google Scholar 

  29. Ferrario (2018) Liquid xenon in nuclear medicine: state-of-the-art and the PETALO approach. JINST 13 C01044

    Google Scholar 

  30. Moskal P, Bednarski T, Białas P (2012) TOF-PET detector concept based on organic scintillators. Nucl Med Rev 15(suppl. C):C81–C84

    Google Scholar 

  31. Dahlbohm M (ed) (2017) Physics of PET/CT and SPECT/CT. CRC Press, Boca Raton

    Google Scholar 

  32. Lewellen TK (2008) Recent developments in PET detector technology. Phys Med Biol 53(17):R287–R317

    PubMed  PubMed Central  Google Scholar 

  33. Bisogni MG, Del Guerra A, Belcari M (2018) Med Appl Silicon Photomultipl. https://doi.org/10.1016/j.nima.2018.10.175

    Article  Google Scholar 

  34. Anger HO (1958) Scintillation camera. Rev Sci Instrum 29:27

    CAS  Google Scholar 

  35. Casey ME, Nutt R (1986) A multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 33(1):460–463

    Google Scholar 

  36. Ito M, Hong SJ, Lee JS (2011) Positron emission tomography (PET) Detectors with depth-of-interaction (DOI) capability. Biomed Eng Lett 1:70–81

    Google Scholar 

  37. Hunter WCJ, Barrett HH, Furenlid L (2009) Calibration method for ml estimation of 3D interaction position in a thick gamma-ray detector. IEEE Trans Nucl Sci 56(3):725

    PubMed  PubMed Central  Google Scholar 

  38. Gross‐Weege N, Schug D, Hallen P, Schulz V (2016). Maximum likelihood positioning algorithm for high‐resolution PET scanners. Med Phys 43(6Part1):3049–3061

    Google Scholar 

  39. Mueller F, Schug D, Hallen P et al (2018) A novel DOI positioning algorithm for monolithic scintillator crystals in PET based on gradient tree boosting. https://doi.org/10.1109/TRPMS.2018.2884320

  40. Müller F, Schug D, Hallen P, Grahe J, Schulz V (2018) Gradient tree boosting-based positioning method for monolithic scintillator crystals in positron emission tomography. IEEE Trans Radiat Plasma Med Sci 2(5):411–421

    Google Scholar 

  41. Kinahan PE et al (1998) Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25(10):2046–2053

    CAS  PubMed  Google Scholar 

  42. Dumoulin CL et al (1989) Three-dimensional phase contrast angiography. Magn Reson Med 9(1):139–149

    CAS  PubMed  Google Scholar 

  43. Walker-Samuel S et al (2013) In vivo imaging of glucose uptake and metabolism in tumors. Nat Med 19(8):1067

    Google Scholar 

  44. Jackson A, Buckley DL (2005) Dynamic contrast-enhanced magnetic resonance imaging in oncology. Ed. Geoffrey JM Parker. Springer, Berlin

    Google Scholar 

  45. Catana C (2015) Motion correction options in PET/MRI. In: Seminars in nuclear medicine, vol 45, no 3. WB Saunders

    Google Scholar 

  46. Levin CS, Hoffman EJ (1999) Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 44(3):781

    CAS  PubMed  Google Scholar 

  47. Weissler B (2016) Digital PET/MRI for preclinical applications. Diss. PhD thesis, dissertation, RWTH Aachen

    Google Scholar 

  48. Maramraju SH et al (2012) Electromagnetic interactions in a shielded PET/MRI system for simultaneous PET/MR imaging in 9.4 T: evaluation and results. IEEE Trans Nucl Sci 59(5):1892–1899

    Google Scholar 

  49. Occhipinti M et al (2018) Characterization of the detection module of the INSERT SPECT/MRI clinical system. IEEE Trans Rad Plasma Med Sci 2(6):554–563

    Google Scholar 

  50. Yamamoto S et al (2011) Interference between PET and MRI sub-systems in a silicon-photomultiplier-based PET/MRI system. Phys Med Biol 56(13):4147

    Google Scholar 

  51. Gebhardt P et al (2015) RESCUE-reduction of MRI SNR degradation by using an MR-synchronous low-interference PET acquisition technique. IEEE Trans Nucl Sci 62(3):634–643

    Google Scholar 

  52. Gebhardt P et al (2016) FPGA-based RF interference reduction techniques for simultaneous PET–MRI. Phys Med Biol 61(9):3500

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, BJ et al (2018) MR performance in the presence of a radio frequency-penetrable positron emission tomography (PET) insert for simultaneous PET/MRI. IEEE Trans on Med Imaging 37(9):2060–2069

    Google Scholar 

  54. Gross‐Weege N et al (2018) Characterization methods for comprehensive evaluations of shielding materials used in an MRI. Med phys 45(4):1415–1424

    Google Scholar 

  55. Wehner J et al (2015) MR-compatibility assessment of the first preclinical PET-MRI insert equipped with digital silicon photomultipliers. Phys Med Biol 60(6) 2231

    Google Scholar 

  56. Weirich C et al (2012) Analysis and correction of count rate reduction during simultaneous MR-PET measurements with the BrainPET scanner. IEEE Trans Med Imaging 31(7):1372–1380

    Google Scholar 

  57. Omidvari, N et al (2018) MR-compatibility assessment of MADPET4: a study of interferences between an SiPM-based PET insert and a 7 T MRI system. Phys Med Biol 63(9):095002

    Google Scholar 

  58. Jezzard P, Barnett AS, Pierpaoli C (1998) Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med 39(5):801–812

    CAS  PubMed  Google Scholar 

  59. Weissler B et al (2015) A digital preclinical PET/MRI insert and initial results. IEEE Trans Med Imaging 34(11):2258–2270

    Google Scholar 

  60. Gross‐Weege N, Nolte T, Schulz V (2018) MR image corrections for PET-induced gradient distortions. Phys Med Biol

    Google Scholar 

  61. Jones D, Townsend D (2017) History and future technical innovation in positron emission tomography. J Med Imag 4(1):011013

    Google Scholar 

  62. Vandenberghe S, Mikhaylova E, D’Hoe E (2016) Recent developments in time-of-flight PET. EJNMMI Phys 3:3

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Slomka PJ, Pan T, Germano G (2016) Recent advances and future progress in PET instrumentation. Semin Nucl Med 46:5–19

    PubMed  Google Scholar 

  64. Sluis J, Jong J, Schaar J (2019) Performance characteristics of the digital biograph vision PET/CT system. J Nucl Med. https://doi.org/10.2967/jnumed.118.215418

  65. Cherry SR, Jones T, Karp JS (2018) Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med 59:3–12

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kagadis GC, Ford NL, Karnabatidis DN (eds) (2018) Handbook of small animal imaging: preclinical imaging, therapy, and applications. CRC Press

    Google Scholar 

  67. Gu Z, Taschereau R, Vu NT et al (2018) Performance evaluation of G8, a high sensitivity benchtop preclinical PET/CT tomograph. https://doi.org/10.2967/jnumed.118.208827

  68. Magota K, Kubo N, Yuji K (2011) Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging. Eur J Nucl Med Mol Imaging 38(4):742–752

    PubMed  Google Scholar 

  69. Sanchez F, Orero A, Soriano A, et al (2013) ALBIRA: a small animal PET/SPECT/CT imaging system. Med Phys 40(5)

    Google Scholar 

  70. Siemens (2013) Symbia t-series system specifications. https://3.imimg.com/data3/AC/PC/MY-13438971/gamma-camera.pdf. Accessed 6th April 2019

  71. Siemens Healthineers (2017) Symbia Intevo Series https://static.healthcare.siemens.com/siemens_hwem-hwem_ssxa_websites-context-root/wcm/idc/groups/public/@global/@imaging/@molecular/documents/download/mda4/mjyz/~edisp/symbia_intevo_brochure-05353616.pdf. Accessed 6th April 2019

  72. GE Discovery NM/CT 670 Pro Data Sheet (2014) https://mind.net.au/wp-content/uploads/2017/01/Discovery-NMCT-670-Pro-Data-Sheet.pdf. Accessed 6th April 2019

  73. Ritt P, Sanders J, Kuwert T (2014) SPECT/CT technology. Clin Transl Imaging (2014) 2:445–457

    Google Scholar 

  74. Mediso (2015) AnyScan https://www.mediso.de/media/Brochure%20AnyScan%20Mediso%20English_0915_web.pdf. Accessed 6th April 2019

  75. Philips (2012) Brightview X and XCT specifications http://incenter.medical.philips.com/doclib/enc/6281414/BrightView_X_and_XCT_Technical_Specifications_Data_Sheet.pdf%3ffunc%3ddoc.Fetch%26nodeid%3d6281414. Accessed 6th April 2019

  76. Khalil MM, Tremoleda JL, Bayomy TB, et al (2011) Molecular SPECT imaging: an overview. Int J Mol Imaging. Article ID 796025

    Google Scholar 

  77. Gupta A, Kim KY, Hwang D et al (2018) Performance evaluation and quantitative accuracy of multipinhole nanoSPECT/CT scanner for theranostic Lu-177 imaging. J Korean Phys Soc 72(11):1379–1386

    Google Scholar 

  78. Goorden MC, van der Have F, Kreuger R (2013) VECTor: a preclinical imaging system for simultaneous submillimeter SPECT and PET. J Nucl Med 54:1–7

    Google Scholar 

  79. Ljungberg M, Pretorius PH (2018) SPECT/CT: an update on technological developments and clinical applications. Br J Radiol 90:20160402

    Google Scholar 

  80. Delso G et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52.12 (2011):1914–1922

    Google Scholar 

  81. Grant AM et al (2016) NEMA NU 2‐2012 performance studies for the SiPM‐based ToF‐PET component of the GE SIGNA PET/MR system. Med phys 43(5):2334–2343

    Google Scholar 

  82. Disselhorst JA et al (2016) Principles of PET/MR imaging. J Nucl Med jnumed-113

    Google Scholar 

  83. Vandenberghe S, Marsden PK (2015) PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol 60(4):R115

    PubMed  Google Scholar 

  84. Zaidi H, Del Guerra A (2011) An outlook on future design of hybrid PET/MRI systems. Med Phys 38(10):5667–5689

    Google Scholar 

  85. Shao Y et al (1965) Simultaneous PET and MR imaging. Phys Med Biol 42.10:1965

    Google Scholar 

  86. Parl C et al (2017) A novel optically transparent RF shielding for fully integrated PET/MRI systems. Phys Med Biol 62(18):7357

    CAS  PubMed  Google Scholar 

  87. González AJ et al (2016) The MINDView brain PET detector, feasibility study based on SiPM arrays. Nucl Instrum Methods Phys Res Sect A: Accel, Spect, Detect Assoc Equip 818:82–90

    Google Scholar 

  88. Benlloch JM et al (2018) The MINDVIEW project: first results. Eur Psychiatry 50:21–27

    Google Scholar 

  89. Hutton BF, Erlandsson K, Thielemanns K (2018) Advances in clinical molecular imaging instrumentation. Clin Transl Imaging 6:31–45

    Google Scholar 

  90. Hutton BF et al (2018) Development of clinical simultaneous SPECT/MRI. Brit J Radiol 91(1081):20160690

    Google Scholar 

  91. Van Holen R, Vandenberghe S (2013) Optimization of a stationary small animal SPECT system for simultaneous SPECT/MRI. In: 2013 IEEE nuclear science symposium and medical imaging conference (2013 NSS/MIC). IEEE

    Google Scholar 

  92. Meier D et al (2011) A SPECT camera for combined MRI and SPECT for small animals. Nucl Instrum Methods Phys Res, Sect A 652(1):731–734

    CAS  Google Scholar 

  93. Hamamura MJ et al (2010) Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition. Phys Med Biol 556:1563

    Google Scholar 

  94. Cai L et al (2014) MRC-SPECT: A sub-500 µm resolution MR-compatible SPECT system for simultaneous dual-modality study of small animals. Nucl Instrum Methods Phys Res Sect A: Accel, Spectrometers, Detect Assoc Equip 734:147–151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkmar Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nolte, T., Gross-Weege, N., Schulz, V. (2020). (Hybrid) SPECT and PET Technologies. In: Schober, O., Kiessling, F., Debus, J. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-030-42618-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42618-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42617-0

  • Online ISBN: 978-3-030-42618-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics