Skip to main content

Ice Cores: Archive of the Climate System

  • Chapter
  • First Online:
Glaciers and Ice Sheets in the Climate System

Abstract

Polar ice sheets and high-altitude glaciers preserve an archive of information about the past climate in their internal stratigraphy that can be accessed by ice-core drilling. This chapter describes ice-core dating, a range of physical and chemical proxy data obtainable from ice cores, and their analyses. Key topics include stable water isotopes and their use in paleo-thermometry, aerosol species, volcanic signals and the synchronisation of ice-core chronologies, and the concentration of gases in bubble enclosures. The chapter reviews some of the key paleoclimatic knowledge gained from ice cores in Antarctica and Greenland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An isotopologue is a molecule that differs in one or several isotopes of its atoms. For simplicity, in this chapter we speak of isotopes, when we mean isotopologues.

References

  1. EPICA community members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628

    Google Scholar 

  2. Jouzel J and 31 others (2007) Orbital and millennial Antarctic climate variability over the last 800,000 years. Science 317(5,839):793–796

    Google Scholar 

  3. NEEM Community Members (2013) Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493(7433):489–494

    Google Scholar 

  4. Svensson A and 13 others (2008) A 60,000 year Greenland stratigraphic ice core chronology. Clim Past 4:47–57

    Google Scholar 

  5. Fischer H, Wagenbach D, Kipfstuhl J (1998) Sulfate and nitrate firn concentrations on the Greenland ice sheet 2. Temporal anthropogenic deposition changes. J Geophys Res 103:21935–21942

    Google Scholar 

  6. Majoube M (1971) Fractionnement en oxygène 18 et en deutérium entre l’eau et sa vapeur. J Chim Phys 68:1423–1436

    Google Scholar 

  7. Roedel W (1994) Physik unserer Umwelt — Die Atmosphäre. Springer, Heidelberg

    Google Scholar 

  8. Werner M, Heimann M, Hoffmann G (2001) Isotopic composition and origin of polar precipitation in present and glacial climate simulations. Tellus 53B:53–71

    Google Scholar 

  9. Dahl-Jensen D, Mosegaard K, Gundestrup N, Clow CD, Johnsen SJ, Hansen AW, Balling N (1998) Past temperatures directly from the Greenland Ice Sheet. Science 282:268–271

    Google Scholar 

  10. Masson-Delmotte V, Jouzel J, Landais A, Stievenard M, Johnsen SJ, White JWC, Werner M, Sveinbjornsdottir A, Fuhrer K (2005) GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin. Science 309:118–121

    Google Scholar 

  11. Steen‐Larsen HC and 23 others (2011) Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. J Geophys Res 116:D06108

    Google Scholar 

  12. Johnsen SJ, Dansgaard W, White JWC (1989) The origin of Arctic precipitation under present and glacial conditions. Tellus 41B:452–468

    Google Scholar 

  13. Stenni B and 13 others (2003) A late-glacial high-resolution site and source temperature record derived from the EPICA Dome C isotope records (East Antarctica). Earth Planet Sci Lett 217:183–195

    Google Scholar 

  14. Winkler R, Landais A, Sodemann H, Dümbgen L, Prie F, Masson-Delmotte V, Stenni B, Jouzel J (2012) Deglaciation records of 17O-excess in East Antarctica: reliable reconstruction of oceanic normalized relative humidity from coastal sites. Clim Past 8:1–16

    Google Scholar 

  15. North Greenland Ice Core Project Members (2004) High-resolution climate record of the northern hemisphere reaching into the last interglacial period. Nature 431:147–151

    Google Scholar 

  16. Johnsen SJ, Dansgaard W, Clausen HB, Langway CC Jr (1972) Oxygen isotope profiles through the Antarctic and Greenland Ice Sheets. Nature 435(5339):429–434

    Google Scholar 

  17. Simonsen SB, Johnsen SJ, Popp TJ, Vinther BM, Gkinis V, Steen-Larsen HC (2011) Past surface temperatures at the NorthGRIP drill site from the difference in firn diffusion of water isotopes. Clim Past 7:1327–1335

    Google Scholar 

  18. Röthlisberger R, Mulvaney R, Wolff EW, Hutterli MA, Bigler M, Sommer S, Jouzel J (2002) Dust and sea salt variability in central East Antarctica (Dome C) over the last 45 kyrs and its implications for southern high‐latitude climate. Geophys Res Lett 29(20): 24-1–24-4

    Google Scholar 

  19. Mayewski PA and 13 others (1994) Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41,000 years. Science 263:1747–1751

    Google Scholar 

  20. Stenberg M, Isaksson E, Hansson M, Karlén W, Mayewski PA, Twickler MS, Whitlow SI, Gundestrup N (1998) Spatial variability of snow chemistry in western Dronning Maud Land, Antarctica. Ann Glaciol 27:378–384

    Google Scholar 

  21. Finlayson-Pitts BJ and Pitts JN (2000) Chemistry of the upper and lower atmosphere. Academic Press, New York

    Google Scholar 

  22. Bertler N and 54 others (2005) Snow chemistry across Antarctica. Ann Glaciol 41:167–179

    Google Scholar 

  23. Mulvaney R, Wolff EW, Oates K (1988) Sulphuric acid at grain boundaries in Antarctic ice. Nature 331:247–249

    Google Scholar 

  24. Pasteur EC, Mulvaney R (2000) Migration of methane sulphonate in Antarctic firn and ice. J Geophys Res Atmos 105:11525–11534

    Google Scholar 

  25. Kaufmann PR, Federer U, Hutterli MA, Bigler M, Schüpbach S, Ruth U, Schmitt J, Stocker TF (2008) An improved continuous flow analysis system for high-resolution field measurements on ice cores. Environ Sci Technol 42:8044–8050

    Google Scholar 

  26. Svensson A, Bigler M, Kettner E, Dahl-Jensen D, Johnsen S, Kipfstuhl S, Nielsen M, Steffensen JP (2011) Annual layering in the NGRIP ice core during the Eemian. Clim Past 7:1427–1437

    Google Scholar 

  27. Rasmussen SO and 15 others (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res 111:D06102

    Google Scholar 

  28. Severi M, Udisti R, Becagli S, Stenni B, Traversi R (2012) Volcanic synchronisation of the EPICA-DC and TALDICE ice cores for the last 42 kyr BP. Clim Past 8:509–517

    Google Scholar 

  29. Curran MAJ, van Ommen TD, Morgan VI, Phillips KL, Palmer AS (2003) Ice core evidence for Antarctic sea ice decline since the 1950s. Science 302:1203–1206

    Google Scholar 

  30. Abram NJ, Thomas ER, McConnell JR, Mulvaney R, Bracegirdle TJ, Sime LC, Aristarain AJ (2010) Ice core evidence for a 20th century decline of sea ice in the Bellingshausen Sea, Antarctica. J Geophys Res Atmospheres 115:D23101

    Google Scholar 

  31. Wolff EW, Suttie ED (1994) Antarctic snow record of southern hemisphere lead pollution. Geophys Res Lett 21:781–784

    Google Scholar 

  32. McConnell JR, Edwards R (2008) Coal burning leaves toxic heavy metal legacy in the Arctic. Proc Natl Acad Sci 105:12140–12144

    Google Scholar 

  33. Legrand M, Mayewski P (1997) Glaciochemistry of polar ice cores: a review. Rev Geophys 35:219–243

    Google Scholar 

  34. Bond TC and 30 others (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552

    Google Scholar 

  35. McConnell JR, Edwards R, Kok GL, Flanner MG, Zender CS, Saltzman ES, Banta JR, Pasteris DR, Carter MM, Kahl JDW (2007) 20th-century industrial black carbon emissions altered Arctic climate forcing. Science 317:1381–1384

    Google Scholar 

  36. Wolff EW and 27 others (2006) Southern Ocean sea ice, DMS production and iron flux over the last eight glacial cycles. Nature 440:491–496

    Google Scholar 

  37. Schüpbach S and 50 others (2018) Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene. Nat Commun 9:1476

    Google Scholar 

  38. Paren JG, Robin GdeQ (1975) Internal reflections in polar ice sheets. J Glaciol 14:251–259

    Google Scholar 

  39. Wolff EW, Paren JG (1984) A two-phase model for electrical conduction in polar ice sheets. J Geophys Res 89:9433–9438

    Google Scholar 

  40. Hammer CU (1980) Acidity of polar ice cores in relation to absolute dating, past volcanism, and radio echoes. J Glaciol 25:359–372

    Google Scholar 

  41. Schwander J (1996) Gas diffusion in firn. In: Wolff EW, Bales RC (eds) Chemical exchange between the atmosphere and polar snow. Springer, Berlin, pp 527–540

    Google Scholar 

  42. Buizert C and 25 others (2012) Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland. Atmos Chem Phys 12:4259–4277

    Google Scholar 

  43. Huber C, Leuenberger M, Spahni R, Flückiger J, Schwander J, Stocker TF, Johnsen S, Landais A, Jouzel J (2006) Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation to CH4. Earth Planet Sci Lett 243:504–519

    Google Scholar 

  44. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. C.U.P., Cambridge

    Google Scholar 

  45. Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola J-M, Morgan VI (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res 101:4115–4128

    Google Scholar 

  46. Flückiger J, Dällenbach A, Blunier T, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (1999) Variations in atmospheric N2O concentration during abrupt climatic changes. Science 285:227–230

    Google Scholar 

  47. Machida T, Nakazawa T, Fujii Y, Aoki S, Watanabe O (1995) Increase in the atmospheric nitrous oxide concentration during the last 250 years. Geophys Res Lett 22:2291–2924

    Article  Google Scholar 

  48. Battle M and 10 others (1996) Atmospheric gas concentrations over the past century measured in air from firn at the South Pole. Nature 383:231–235

    Google Scholar 

  49. Barnola J-M (1999) Status of the atmospheric CO2 reconstruction from ice cores analyses. Tellus 51B:151–155

    Google Scholar 

  50. Keeling CD, Whorf TP (2000) Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.

    Google Scholar 

  51. McEvedy C, Jones R (1979) Atlas of world population history. Penguin Books

    Google Scholar 

  52. Francey RJ, Allison CE, Etheridge DM, Trudinger CM, Enting IG, Leuenberger M, Langenfelds RL, Michel E, Steele LP (1998) A 1000-year high precision record of 13C in atmospheric CO2. Tellus 51B:170–193

    Google Scholar 

  53. Elsig J, Schmitt J, Leuenberger D, Schneider R, Eyer M, Leuenberger M, Joos F, Fischer H, Stocker TF (2009) Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature 461:507–510

    Google Scholar 

  54. Chappellaz J, Blunier T, Kints S, Dällenbach A, Barnola J-M, Schwander J, Raynaud D, Stauffer B (1997) Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. J Geophys Res Atmos 102:15987–15997

    Google Scholar 

  55. Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Climatic Change 61:261–293

    Article  Google Scholar 

  56. Sapart CJ and 15 others (2012) Natural and anthropogenic variations in methane sources during the past two millennia. Nature 490:85–88

    Article  Google Scholar 

  57. Bereiter B, Eggleston S, Schmitt J, Nehrbass-Ahles C, Stocker TF, Fischer H, Kipfstuhl S, Chappellaz J (2015) Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys Res Lett 42:542–549

    Google Scholar 

  58. Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J-M, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383–386

    Article  Google Scholar 

  59. Möller L, Sowers T, Bock M, Spahni R, Behrens M, Schmitt J, Miller H, Fischer H (2013) Independent variations of CH4 emissions and isotopic composition over the past 160,000 years. Nat Geosci 6:885–890

    Google Scholar 

  60. Blunier T, Brook EJ (2001) Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291:109–112

    Article  Google Scholar 

  61. EPICA Community Members (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444:195–198

    Google Scholar 

  62. Capron E and 14 others (2010) Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period. Clim Past 6:345–365

    Google Scholar 

  63. Lüthi D and 10 others (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382

    Google Scholar 

  64. Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner B, Schmittner A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubertus Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fischer, H., Blunier, T., Mulvaney, R. (2021). Ice Cores: Archive of the Climate System. In: Fowler, A., Ng, F. (eds) Glaciers and Ice Sheets in the Climate System. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-42584-5_12

Download citation

Publish with us

Policies and ethics