Skip to main content

Abstract

The discovery of Aquafaba as egg replacer has generated wide interested in the application of legume wastewater as food ingredient. Therefore, the cooking water from boiling and canning of chickpeas and other legumes have been analysed. The dry matter accounted for 3–6 g/100 g of the liquids, mainly consisting of carbohydrates: sugars, soluble and insoluble fibre. Proteins and minerals represented 10–30% of the dry matter.

High levels of iron, potassium, magnesium, molybdenum and other minerals were found. Similarly, nutritionally relevant levels of saponins (5–15 mg/g) and phenolic compounds (0.2–0.7 mg/g) leached in the cooking water. A 100 ml serve of these ingredients could provide the recommended daily intake of numerous nutrients. Interestingly, the levels of antinutritive phytic acid and trypsin inhibitors were low, possibly due to thermal degradation. Fascinatingly, it was observed that the nutritional profile of the cooking water did not correlate with legumes composition. Instead, seeds geometry determined cooking water profiles. For example, chickpeas irregular shape allowed the outer shell to break upon boiling, thus releasing more insoluble fibre than other legumes. Seed conformation, size and thickness affects solid release in the processing water, making it a new nutritionally interesting food ingredient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avilés-Gaxiola, S., Chuck-Hernández, C., & Serna Saldivar, S. O. (2018). Inactivation methods of trypsin inhibitor in legumes: A review. Journal of Food Science, 83(1), 17–29.

    Article  PubMed  Google Scholar 

  • Baker, E. C., & Mustakas, G. C. (1973). Heat inactivation of trypsin inhibitor, lipoxygenase and urease in soybeans: Effect of acid and base additives. Journal of the American Oil Chemists’ Society, 50(5), 137–141.

    Article  CAS  PubMed  Google Scholar 

  • Buhl, T. F., Christensen, C. H., & Hammershøj, M. (2019). Aquafaba as an egg white substitute in food foams and emulsions: Protein composition and functional behavior. Food Hydrocolloids, 96, 354–364.

    CAS  Google Scholar 

  • Campos-Vega, R., Loarca-Piña, G., & Oomah, B. D. (2010). Minor components of pulses and their potential impact on human health. Food Research International, 43(2), 461–482.

    Article  CAS  Google Scholar 

  • Clemente, A., & del Carmen Arques, M. (2014). Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World journal of gastroenterology: WJG, 20(30), 10305.

    Article  PubMed  Google Scholar 

  • Damian, J. J., Huo, S., & Serventi, L. (2018). Phytochemical content and emulsifying ability of pulses cooking water. European Food Research and Technology, 244(9), 1647–1655.

    CAS  Google Scholar 

  • de Almeida Costa, G. E., da Silva Queiroz-Monici, K., Reis, S. M. P. M., & de Oliveira, A. C. (2006). Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chemistry, 94(3), 327–330.

    Article  Google Scholar 

  • Ertaş, N., & Bilgiçli, N. (2014). Effect of different debittering processes on mineral and phytic acid content of lupin (Lupinus albus L.) seeds. Journal of Food Science and Technology, 51(11), 3348–3354.

    Article  PubMed  Google Scholar 

  • Francis, G., Kerem, Z., Makkar, H. P., & Becker, K. (2002). The biological action of saponins in animal systems: A review. British Journal of Nutrition, 88(6), 587–605.

    Article  CAS  PubMed  Google Scholar 

  • Ghribi, A. M., Sila, A., Gafsi, I. M., Blecker, C., Danthine, S., Attia, H., Bougatef, A., & Besbes, S. (2015). Structural, functional, and ACE inhibitory properties of water-soluble polysaccharides from chickpea flours. International Journal of Biological Macromolecules, 75, 276–282.

    Article  Google Scholar 

  • Greiner, R., Larsson Alminger, M., Carlsson, N. G., Muzquiz, M., Burbano, C., Cuadrado, C., Pedrosa, M. M., & Goyoaga, C. (2002). Pathway of dephosphorylation of myo-inositol hexakisphosphate by phytases of legume seeds. Journal of Agricultural and Food Chemistry, 50(23), 6865–6870.

    Article  CAS  PubMed  Google Scholar 

  • Güçlü-Üstündağ, Ö., & Mazza, G. (2007). Saponins: Properties, applications and processing. Critical Reviews in Food Science and Nutrition, 47(3), 231–258.

    Article  PubMed  Google Scholar 

  • Huang, S., Liu, Y., Zhang, W., Dale, K. J., Liu, S., Zhu, J., & Serventi, L. (2018). Composition of legume soaking water and emulsifying properties in gluten-free bread. Food Science and Technology International, 24(3), 232–241.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal, A., Khalil, I. A., Ateeq, N., & Khan, M. S. (2006). Nutritional quality of important food legumes. Food Chemistry, 97(2), 331–335.

    Article  CAS  Google Scholar 

  • Jourdan, G. A., Noreña, C. P., & Brandelli, A. (2007). Inactivation of trypsin inhibitor activity from Brazilian varieties of beans (Phaseolus vulgaris L.). Food Science and Technology International, 13(3), 195–198.

    Article  CAS  Google Scholar 

  • Ma, W., Guo, A., Zhang, Y., Wang, H., Liu, Y., & Li, H. (2014). A review on astringency and bitterness perception of tannins in wine. Trends in Food Science & Technology, 40(1), 6–19.

    Article  CAS  Google Scholar 

  • Martín-Cabrejas, M. A., Aguilera, Y., Benítez, V., Mollá, E., López-Andréu, F. J., & Esteban, R. M. (2006). Effect of industrial dehydration on the soluble carbohydrates and dietary fiber fractions in legumes. Journal of Agricultural and Food Chemistry, 54(20), 7652–7657.

    Article  PubMed  Google Scholar 

  • McKie, V. A., & Mc Cleary, B. V. (2016). A novel and rapid colorimetric method for measuring total phosphorus and phytic acid in foods and animal feeds. Journal of AOAC International, 99(3), 738–743.

    Article  CAS  Google Scholar 

  • Ministry of Health New Zealand. Nutrient Reference Values. URL: https://www.nrv.gov.au/nutrients. Accessed on 01 Aug 2019.

  • Mubarak, A. E. (2005). Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chemistry, 89(4), 489–495.

    Article  CAS  Google Scholar 

  • Napoleão, T. H., dos Santos-Filho, T. G., Pontual, E. V., da Silva Ferreira, R., Coelho, L. C. B. B., & Paiva, P. M. G. (2013). Affinity matrices of Cratylia mollis seed lectins for isolation of glycoproteins from complex protein mixtures. Applied Biochemistry and Biotechnology, 171(3), 744–755.

    Article  PubMed  Google Scholar 

  • Nleya, T., Arganosa, G., Vandenberg, A., & Tyler, R. (2011). Genotype and environment effect on canning quality of kabuli chickpea. Canadian Journal of Plant Science, 82, 267–272.

    Article  Google Scholar 

  • Parmar, N., Singh, N., Kaur, A., Virdi, A., & Thakur, S. (2016). Effect of canning on color, protein and phenolic profile of grains from kidney bean, field pea and chickpea. Food Research International, 89(1), 526–532.

    Article  CAS  PubMed  Google Scholar 

  • Pesic, M., Vucelic-Radovic, B., Barac, M., Stanojevic, S., & Nedovic, V. (2007). Influence of different genotypes on trypsin inhibitor levels and activity in soybeans. Sensors, 7(1), 67–74.

    Article  CAS  Google Scholar 

  • Pisulewska, E., & Pisulewski, P. M. (2000). Trypsin inhibitor activity of legume seeds (peas, chickling vetch, lentils, and soya beans) as affected by the technique of harvest. Animal Feed Science and Technology, 86(3–4), 261–265.

    Article  CAS  Google Scholar 

  • Redondo-Cuenca, A., Villanueva-Suárez, M. J., Rodríguez-Sevilla, M. D., & Mateos-Aparicio, I. (2007). Chemical composition and dietary fibre of yellow and green commercial soybeans (Glycine max). Food Chemistry, 101(3), 1216–1222.

    Article  CAS  Google Scholar 

  • Rehman, Z., & Shah, W. H. (2005). Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food Chemistry, 91(2005), 327–331.

    Article  CAS  Google Scholar 

  • Sandberg, A. S. (2002). Bioavailability of minerals in legumes. British Journal of Nutrition, 88(S3), 281–285.

    Article  Google Scholar 

  • Sardesai, V. M. (1993). Molybdenum: An essential trace element. Nutrition in Clinical Practice, 8(6), 277–281.

    Article  CAS  PubMed  Google Scholar 

  • Schoeninger, V., Coelho, S. R. M., & Bassinello, P. Z. (2017). Industrial processing of canned beans. Ciência Rural, 47(5), 1–9.

    Google Scholar 

  • Serventi, L., Chitchumroonchokchai, C., Riedl, K. M., Kerem, Z., Berhow, M. A., Vodovotz, Y., ... & Failla, M. L. (2013). Saponins from soy and chickpea: Stability during beadmaking and in vitro bioaccessibility. Journal of agricultural and food chemistry, 61(27), 6703–6710.

    Google Scholar 

  • Serventi, L., Wang, S., Zhu, J., Liu, S., & Fei, F. (2018). Cooking water of yellow soybeans as emulsifier in gluten-free crackers. European Food Research and Technology, 244(12), 2141–2148.

    Article  CAS  Google Scholar 

  • Shi, J., Arunasalam, K., Yeung, D., Kakuda, Y., Mittal, G., & Jiang, Y. (2004). Saponins from edible legumes: Chemistry, processing, and health benefits. Journal of Medicinal Food, 7(1), 67–78.

    Article  CAS  PubMed  Google Scholar 

  • Shi, L., Arntfield, S. D., & Nickerson, M. (2018). Changes in levels of phytic acid, lectins and oxalates during soaking and cooking of Canadian pulses. Food Research International, 107, 660–668.

    Article  CAS  PubMed  Google Scholar 

  • Shim, Y. Y., Mustafa, R., Shen, J., Ratanapariyanuch, K., & Reaney, M. J. (2018). Composition and properties of aquafaba: Water recovered from commercially canned chickpeas. JoVE (Journal of Visualized Experiments), 132, e56305.

    Google Scholar 

  • Shurtleff, W., & Aoyagi, A. (2000). Tofu & soymilk production: A craft and technical manual (Vol. 2). Soyinfo Center.

    Google Scholar 

  • Siddiq, M., & Uebersax, M. A. (2012). Dry beans and pulses production and consumption: An overview. In Dry beans and pulses production, processing and nutrition (pp. 3–22), Wiley, Hoboken, NJ, USA.

    Google Scholar 

  • Singh, B., Singh, J. P., Singh, N., & Kaur, A. (2017). Saponins in pulses and their health promoting activities: A review. Food Chemistry, 233, 540–549.

    Article  CAS  PubMed  Google Scholar 

  • Stantiall, S. E., Dale, K. J., Calizo, F. S., & Serventi, L. (2018). Application of pulses cooking water as functional ingredients: The foaming and gelling abilities. European Food Research and Technology, 244(1), 97–104.

    Article  CAS  Google Scholar 

  • Tiwari, B. K., & Singh, N. (2012). Pulse chemistry and technology. Royal Society of Chemistry, Cambridge, UK.

    Google Scholar 

  • Xu, B. J., & Chang, S. K. C. (2007). A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of Food Science, 72(2), S159–S166.

    Article  CAS  PubMed  Google Scholar 

  • Xu, B., & Chang, S. K. C. (2008). Effect of soaking, boiling and steaming on total phenolic content and antioxidant activities of cool season food legumes. Food Chemistry, 110(1), 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Xu, G., Ye, X., Chen, J., & Liu, D. (2007). Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract. Journal of Agricultural and Food Chemistry, 55(2), 330–335.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Cartier, A., Obielodan, M., Jordan, K., Hairston, T., Shannon, A., & Sismour, E. (2016). Nutritional and anti-nutritional composition, and in vitro protein digestibility of Kabuli chickpea (Cicer arietinum L.) as affected by differential processing methods. Journal of Food Measurement and Characterization, 10(3), 625–633.

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges Kaviya Sathyanarayanan for quantifying phytic acid and Lirisha Vinola Dsouza for analysing trypsin inhibitor, both funded by the courses “FOOD 699 – Research Placement”. Further acknowledgments go to Letitia Stipkovits for planning their experimental design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Serventi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Serventi, L. (2020). Cooking Water Composition. In: Upcycling Legume Water: from wastewater to food ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-42468-8_6

Download citation

Publish with us

Policies and ethics