Skip to main content

Breeding Advancements in Barnyard Millet

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 1

Abstract

Barnyard millet is a small seeded cereal grown in India, China, and Japan as a substitute for rice in dry areas. It has the fastest growing character among all millets and is generally cultivated in hill slopes and undulating fields of hilly, tribal, or backward areas, where few options exist for crop diversification. Two main species, Echinochloa esculenta (Japanese Barnyard millet) and Echinochloa frumentacea (Indian Barnyard millet), are cultivated and grown as cereals. It has a wide adaptation capacity and grow up to a height of 2000 m during summer season. Globally, more than 8000 accessions of barnyard millet have been assembled and conserved. Least research attention due to small area of the crop is a major reason for nondevelopment of improved breeding methodologies in the crop. Several high-yielding cultivars have been released till date with wider adaptation and adaptability in India. But production gap exists between yields realized at farmers’ fields because of prevalence of local cultivation practices. In recent years, barnyard millet has received attention, mainly because of its high nutritive value and climate resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altop EK, Mennan H (2011) Genetic and morphologic diversity of Echinochloa crus-galli populations from different origins. Phytoparasitica 39:93–102

    Article  Google Scholar 

  • Anonymous (2001) Annual report 2000–2001. All India Coordinated Small Millet Improvement Project (ICAR), Bangalore, p 6

    Google Scholar 

  • Anonymous (2019) Annual report 2016–17. Vivekanada Parvatiya Krishi Anusandhan Sansthan (Indian Council of Agricultural Research), Almora, p 25

    Google Scholar 

  • Arora S, Srivastava S (2002) Suitability of millet based food products for diabetics. J Food Sci Technol 39:423–428

    Google Scholar 

  • Babu BK, Joshi A, Sood S, Agrawal PK (2017) Identification of microsatellite markers for finger millet genomics application through cross transferability of rice genomic SSR markers. Indian J Genet 77:92–98

    CAS  Google Scholar 

  • Babu BK, Rashmi C, Sood S (2018a) Cross transferability of finger millet and maize genomic SSR markers for genetic diversity and population structure analysis of barnyard millet. Indian J Genet 78:364–372

    Google Scholar 

  • Babu BK, Sood S, Kumar D, Joshi A, Pattanayak A, Kant L, Upadhyaya HD (2018b) Cross genera transferability of rice and finger millet genomic SSRs to barnyard millet (Echinochloa spp.). 3 Biotech 8:95

    Article  Google Scholar 

  • Bobkov SV (2005) Long-term regeneration in callus culture of paisa (Echinochloa frumentacea link). Int Sorghum Millets Newsl 46:120–122

    Google Scholar 

  • Brand-Miller J, McMillan-Price J, Steinbeck K, Caterson I (2009) Dietary glycemic index: health implications. J Am Coll Nutr 28:446S–449S

    Article  CAS  PubMed  Google Scholar 

  • Clayton WD, Renvoize SA (2006) Genera Graminum: grasses of the world. Kew bulletin additional series XIII. Royal Botanical Gardens Kew, Her Majesty Stationery Office, London

    Google Scholar 

  • Danquah EY, Hanley SJ, Brookes RC, Aldam C, Karp A (2002) Isolation and characterisation of microsatellites in Echinochloa (L.) Beauv. Spp. Mol Ecol Notes 2:54–56

    Article  CAS  Google Scholar 

  • de Wet JMJ, Rao KEP, Mengesha MH, Brink DE (1983) Domestication of Sawa millet (Echinochloacolona). Econ Bot 37:283–291

    Article  Google Scholar 

  • Doggett H (1989) Small millets—a selective overview. In: Seetharam A, Riley KW, Harinarayana G (eds) Small millets in global agriculture. Oxford & IBH, Oxford, pp 3–18

    Google Scholar 

  • Dvorakovaa Z, Cepkovaa PH, Janovska D, Viehmannovaa I, Svobodova E, Cusimamani EF, Milella L (2015) Comparative analysis of genetic diversity of eight millet genera revealed by ISSR markers. Emir J Food Agr 27:617–628

    Article  Google Scholar 

  • Dwivedi S, Upadhyaya H, Senthilvel S, Hash C, Fukunaga K, Diao X, Santra D, Baltensperger D, Prasad M (2012) Millets: genetic and genomic resources. Plant Breed Rev 35:247–375

    Google Scholar 

  • Gomashe SS (2015) Genetic improvement in barnyard millet. In: Millets ensuring climate resilience and nutritional security. Daya Publishing House, New Delhi

    Google Scholar 

  • Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front Plant Sci 6:157

    PubMed  PubMed Central  Google Scholar 

  • Gowda J, Bharathi S, Somu G, Krishnappa M, Rekha D (2009) Formation of core set in barnyard millet [Echinochloa frumentacea (Roxb.) link] germplasm using data on twenty four morpho-agronomic traits. Int J Plant Sci 4:1–5

    Google Scholar 

  • Gupta A, Mahajan V, Kumar M, Gupta HS (2009) Biodiversity in the barnyard millet (Echinochloa frumentacea link, Poaceae) germplasm in India. Genet Resour Crop Evol 56:883–889

    Article  Google Scholar 

  • Gupta A, Mahajan V, Singh KP, Bhatt JC (2006) Production technology of minor millets for north-eastern region. Technical bulletin 24 (1/2006). VPKAS, Almora

    Google Scholar 

  • Gupta A, Sood S, Agrawal PK, Bhatt JC (2015) B 29: an easy dehulling barnyard millet (Echinochloa frumentacea link) genotype. Natl Acad Sci Lett 38:21–24

    Article  CAS  Google Scholar 

  • Gupta P, Raghuvanshi S, Tyagi AK (2001) Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli. Plant Biotechnol 18:275–282

    Article  CAS  Google Scholar 

  • Halaswamy BH, Srinivas GV, Ramakrishna BM, Magar VK, Krishnappa M, Gowda J (2001) Characterization and preliminary evaluation of national collections of barnyard millet (Echinochloa spp.) germplasm. Indian J Plant Genet Resour 14:213–216

    Google Scholar 

  • Hamilton JP, Buell CR (2012) Advances in plant genome sequencing. Plant J 70:177–190

    Article  CAS  PubMed  Google Scholar 

  • Hilu KW (1994) Evidence from RAPD markers in the evolution of Echinochloa millets (Poaceae). Plant Syst Evol 189:247–257

    Article  CAS  Google Scholar 

  • Hoshino T, Nakamura T, Seimiya Y, Kamada T, Ishikawa G, Ogasawara A, Sagawa S, Satto M, Shimizu H, Nishi M, Watanabe M, Takeda J, Takahata Y (2010) Production of a full waxy line and analysis of waxy genes in the allohexaploid crop, Japanese barnyard millet. Plant Breed 129:349–355

    CAS  Google Scholar 

  • Kim CS, Alamgir KM, Matsumoto S, Tebayashi S, Koh HS (2008) Antifeedants of Indian barnyard millet, Echinochloa frumentacea link, against brown plant hopper. Z Naturforsch C 63:755–760

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Jang KC, Park BR, Han SI, Choi KJ, Kim SY, Oh SH, Ra JE, Ha TJ, Lee JH, Hwang J, Kang HW, Seo WD (2011) Physicochemical and antioxidative properties of selected barnyard millet (Echinochloa utilis) species in Korea. Food Sci Biotechnol 20:461–469

    Article  CAS  Google Scholar 

  • Krishna Kumari S, Thayumanavan B (1998) Characterization of starches of proso, foxtail, barnyard, kodo, and little millets. Plant Foods Human Nutr 53:47–56

    Article  CAS  Google Scholar 

  • Kumari K, Muthamilarasan M, Misra G, Gupta S, Subramanian A et al (2013) Development of eSSR-markers in Setaria italica and their applicability in studying genetic diversity, cross-transferability and comparative mapping in millet and non-millet species. PLoS One 8:e67742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Kim JW, Lee IY, Ahn JH (2017) Comparison of the complete genomes of two Echinochloa species: barnyard grass and jungle rice. Mitochondrial DNA Part B 2:512–513

    Article  Google Scholar 

  • Li G, Wu S, Cai WQ, Zhao X, Wu C (2013) Identification and mRNA expression profile of glutamate receptor-like gene in quinclorac-resistant and susceptible Echinochloa crus-galli. Gene 531:489–495

    Article  CAS  PubMed  Google Scholar 

  • Mandelbaum CI, Barbeau WE, Hilu KW (1995) Protein, calcium, and iron content of wild and cultivated species of Echinochloa. Plant Foods Hum Nutr 47:101–108

    Article  CAS  PubMed  Google Scholar 

  • Manimekalai M, Dhasarathan M, Karthikeyan A, Murukarthick J, Renganathan VG, Thangaraj K, Vellaikumar S, Vanniarajan C, Senthil N (2018) Genetic diversity in the barnyard millet (Echinochola frumentacea) germplasm revealed by morphological traits and simple sequence repeat markers. Current Plant Biology 14:71–78

    Article  Google Scholar 

  • Maun MA, Barnett SCH (1986) The biology of Canadian weeds: 77. Echinochloa crus-galli (L.) Beauv. Can J Plant Sci 66:739–759

    Article  Google Scholar 

  • Mehta H, Tyagi PC, Mohapatra KP (2007) Genetic divergence in relation to morpho-physiological traits in barnyard millet. Crop Improv 34:86–89

    Google Scholar 

  • Mehta H, Tyagi PC, Mohapatra KP (2005) Genetic diversity in Barnyard millet (Echinochloa frumentacea Roxb.). Indian J Genet 65:293–295

    Google Scholar 

  • Mitchell WA (1989) Japanese millet (Echinochloa crusgalli var. frumentacea). Technical report EL-89-13 environment laboratory. Department of the Army, Waterways Experiment Station, Corps of Engineers, Halls Ferry Road, MO, p 8

    Google Scholar 

  • Monteiro PV, Sudharshana L, Ramachandra G (1987) Japanese barnyard millet (Echinochloa frumentacea): protein content, quality and SDS-PAGE of protein fractions. J Sci Food Agric 43:17–25

    Article  Google Scholar 

  • Nagaraja A, Mantur SG (2008) Evaluation of barnyard millet entries for grain smut resistance and yield. Mysore J Agric Sci 42:375–377

    Google Scholar 

  • Nirmalakumari A, Vetriventhan M (2009) Phenotypic analysis of anther and pollen in diversified genotype of barnyard millet (Echinochloa frumentacea) floral characters. IUP J Genet Evol 2:12–16

    Google Scholar 

  • Nielsen NH, Jahoor A, Jensen JD, Orabi J, Cericola F et al (2016) Genomic prediction of seed quality traits using advanced barley breeding lines. PLoS One 11:e0164494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nozawa S, Takahashi M, Nakai H, Sato YI (2006) Differences in SSR variations between Japanese barnyard millet (Echinochloa esculenta) and its wild relative E. crusgalli. Breed Sci 56:335–340

    Article  Google Scholar 

  • Obara T (1936) On the nutritive value of Japanese barnyard millet. J Agr Chem Soc Japan 12:1049–1058

    Google Scholar 

  • Odintsova TI, Rogozhin EA, Baranov Y, Musolyamov AK, Yalpani N, Egorov TA, Grishin EV (2008) Seed defensins of barnyard grass Echinochloa crusgalli (L.) Beauv. Biochimie 90:1667–1673

    Article  CAS  PubMed  Google Scholar 

  • Padulosi S, Bhagmal, Bala Ravi S, Gowda J, KTK G, Shanthakumar G, Yenagi N, Dutta M (2009) Food security and climate change: role of plant genetic resources of minor millets. Indian J Plant Genet Resour 22:1–16

    Google Scholar 

  • Pandey G, Mishra G, Kumari K, Gupta S, Parida SK, Chattopadhyay D, Prasad M (2013) Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Res 20:197–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabha D, Negi YK, Khanna VK (2010) Morphological and isozyme diversity in the accessions of two cultivated species of barnyard millet. Nature and Science 8:71–76

    Google Scholar 

  • Prabha D, Negi YK, Khanna VK (2012) Assessment of genetic diversity of barnyard millet accessions using molecular markers. Indian J Plant Genet Res 25:174–179

    Google Scholar 

  • Rout GR, Samantaray S, Das P (1997) Regeneration of a metal tolerant grass Echinochloa colona via somatic embryogenesis from suspension cultures. Biol Plant 40:17–23

    Article  Google Scholar 

  • Samantaray S, Rout GR, Das P (1995) In vitro plant regeneration from leaf base and mesocotyl cultures of Echinochloa colona. Plant Cell Tissue Organ Cult 40:37–41

    Article  Google Scholar 

  • Samantaray S, Rout GR, Das P (1996) Regeneration of plants via somatic embryogenesis from leaf base and leaf tip segments of Echinochloa colona. Plant Cell Tissue Organ Cult 47:119–125

    Article  Google Scholar 

  • Samantaray S, Rout GR, Das P (2001) Induction, selection and characterization of Cr and Ni-tolerant cell lines of Echinochloa colona (L.) link in vitro. J Plant Physiol 158:1281–1290

    Article  CAS  Google Scholar 

  • Sankhla A, Davis TD, Sankhla D, Upadhyay A, Joshi S (1992) Influence of growth regulators on somatic embryogenesis, plant regeneration and post-transplant survival of Echinochloa frumentacea. Plant Cell Rep 11:368–371

    Article  CAS  PubMed  Google Scholar 

  • Singh HS, Singh K (2005) Status and needs of pasture and fodder management in Uttaranchal. In: road MAP for pasture and fodder development in NWHR for livestock sustenance (Eds Bish K, Srivastava AK). Vivekananda Parvatiya Krishi Anusandhan Sansthan (Indian Council of Agriculture research), Almora, Uttarakhand, India

    Google Scholar 

  • Sood S, Khulbe RK, Arun Kumar R, Agrawal PK, Upadhaya HD (2015b) Barnyard millet global core collection evaluation in the submontane Himalayan region of India using multivariate analysis. The Crop Journal 3:517–525

    Article  Google Scholar 

  • Sood S, Khulbe RK, Gupta A, Agrawal PK, Upadhaya HD, Bhatt JC (2015a) Barnyard millet- a potential food and feed crop of future. Plant Breed 134:135–147

    Article  Google Scholar 

  • Sood S, Khulbe RK, Kant L (2016) Optimal yield related attributes for high grain yield using ontogeny based sequential path analysis in barnyard millet (Echinochloa spp.). J Agric Sci techno l18: 1933-1944

    Google Scholar 

  • Sood S, Khulbe RK, Saini N, Gupta A, Agrawal PK (2014) Interspecific hybrid between Echinochloa esculenta (Japanese barnyard millet) and E. frumentacea (Indian barnyard millet) – a new avenue for genetic enhancement of barnyard millet. Electronic J Plant Breed 5:248–253

    Google Scholar 

  • Surekha N (2004) Fabrication of barnyard millet health mix: clinical and shelf life evaluation. MHSc Thesis, University of Agricultural Sciences, Dharward

    Google Scholar 

  • Talwar M, Rashid A (1989) Somatic embryo formation from unemerged inflorescences and immature embryos of a graminaceous crop Echinochloa. Ann Bot 64:195

    Article  Google Scholar 

  • Tyagi AK, Bharal S, Rashid A, Maheshwari N (1985) Plant regeneration from tissue cultures initiated from immature inflorescences of a grass Echinochloa colona (L.) link. Plant Cell Rep 4:115–117

    Article  CAS  PubMed  Google Scholar 

  • Ugare R, Chimmad B, Naik R, Bharati P, Itagi S (2011) Glycemic index and significance of barnyard millet (Echinochloafrumentacae) in type II diabetics. J Food Sci Technol 51:392. https://doi.org/10.1007/s13197-011-0516-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Singh SK, Singh S, Vetriventhan M, Sharma S (2014) Forming core collections in barnyard, kodo, and little millets using morphoagronomic descriptors. Crop Sci 54:1–10

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780

    Article  Google Scholar 

  • Upadhyaya HD, Vetriventhan M, Dwivedi SL, Pattanashetti SK, Singh SK (2016) Proso, barnyard, little, and kodo millets. In: Singh M, Upadhyaya HD (eds) Genetic and genomic resources for grain cereals improvement. Academic, Cambridge, MA, pp 321–343

    Chapter  Google Scholar 

  • Veena S, Bharati VC, Rama KN, Shanthakumar G (2005) Physico-chemical and nutritional studies in barnyard millet. Karnataka J Agric Sci 18:101–105

    Google Scholar 

  • Velu G, Crossa J, Singh RP, Hao Y, Dreisigacker S, Perez-Rodriguez P, Joshi AK, Chatrath R, Gupta V, Balasubramaniam A, Tiwari C, Mishra VK, Singh Sohu V, Singh Mavi G (2016) Genomic prediction for grain zinc and iron concentrations in spring wheat. Theor Appl Genet 129:1595–1605

    Article  CAS  PubMed  Google Scholar 

  • Wallace JG, Upadhyaya HD, Vetriventhan M, Buckler ES, Tom Hash C, Ramu P (2015) The genetic makeup of a global barnyard millet germplasm collection. Plant Genome 8. https://doi.org/10.3835/plantgenome2014.10.0067

    Article  CAS  Google Scholar 

  • Wang J, Li R (2008) Integration of C4-specific ppdk gene of Echinochloa to C3 upland rice and its photosynthesis characteristics analysis. African J Biotechnol 7:783–787

    CAS  Google Scholar 

  • Watanabe N (1970) A spodographic analysis of millet from prehistoric Japan. J Fac Sci Univ Tokyo Sect 3:357–379

    Google Scholar 

  • Watanabe M (1999) Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains. J Agric Food Chem 47:4500–4505

    Article  CAS  PubMed  Google Scholar 

  • Xing Q, Zhao B, Xu K, Yang H, Liu X, Wang S, Jin D, Yuan L, Wang B (2004) Test of agronomic characteristics and amplified fragment length polymorphism analysis of new rice germplasm developed from transformation of genomic DNA of distant relatives. Plant Mol Biol Rep 22:155–164

    Article  CAS  Google Scholar 

  • Yabuno T (1987) Japanese barnyard millet (Echinochloa utilis, Poaceae) in Japan. Econ Bot 41(4):484–493

    Article  Google Scholar 

  • Yabuno T (1962) Cytotaxonomic studies on the two cultivated species and the wild relatives in the genus Echinochloa. Cytologia 27:296–305

    Article  Google Scholar 

  • Yabuno T (1966) Biosystematic study of the genus Echinochloa. J Jap Bot 19:277–323

    Google Scholar 

  • Yadav CB, Muthamilarasan M, Pandey G, Khan Y, Prasad M (2014) Development of novel micro-RNA-based genetic markers in foxtail millet for genotyping applications in related grass species. Mol Breeding 34:2219–2214

    Article  CAS  Google Scholar 

  • Yang X, Yu X, Li Y-F (2013) De novo assembly and characterization of the barnyard grass (Echinochloa crus-galli) transcriptome using next-generation pyrosequencing. PLoS One 8:e69168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Jia J, Yang H, Li C, Zhan Q, Wang B, Zhou K, Yuan L (2000) RAPD analysis of new rice strains developed through the method of spike-stalk-injection DNA from wild relative. Acta Agron Sin 26:424–430

    Google Scholar 

  • Zhao C, Zhao B, Ren Y, Tong W, Wang J, Zhao K, Shu S, Xu N, Liu S (2007) Seeking transformation markers: an analysis of differential tissue proteomes on the Rice germplasm generated from transformation of Echinochloa crusgalli genomic DNA. J Proteome Res 6:1354–1363

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sood, S., Joshi, D.C., Pattanayak, A. (2020). Breeding Advancements in Barnyard Millet. In: Gosal, S., Wani, S. (eds) Accelerated Plant Breeding, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-41866-3_15

Download citation

Publish with us

Policies and ethics