Skip to main content

Influence of Milk Fat on Foam Formation, Foam Stability and Functionality of Aerated Dairy Products

  • Chapter
  • First Online:
Dairy Fat Products and Functionality

Abstract

In dairy industry, foaming of milk can be undesirable in many processes (e.g. bottle filling, milk transportation in the pipe systems or reconstitution of milk powders) or desirable for many products (e.g. cappuccino-style drinks, milkshake, ice cream or whipped cream). For foam-based products, the quality of foam imparts the body, smoothness and lightness to the products, and constitutes to the main sensory appeal to the consumers. Depending on the continuous phase in which air bubbles are dispersed, the foam-based products can be categorized into liquid or solid foams in which the continuous phase exists as liquid phase or transforms to (semi-) solid phase, respectively. The formation and stability of milk foam are determined by many factors including properties of milk (origin, age, composition, protein/solid concentration, presence of surfactants, fat content, etc.), processing conditions (foaming method, heating treatment, homogenization, or temperature and/or pH at which foam is created), even seasonality or added substances. Among these factors, milk fat has both detrimental and beneficial effects on the development of foam and its stability depending on its physical state and type of foam (liquid or solid foam). In this chapter, together with description of importance of foam or foaming in the manufacture of aerated dairy products and mechanism of the foaming process, a particular emphasis is placed on the impact of the milk fat on the foaming behavior of both liquid and solid foams, aiming to provide an insight on the foaming process, by which the foaming of milk can be controlled on demand for a particular application. Effects of the other factors on the foaming process are not in the scope of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aime, D., Arntfield, S., Malcolmson, L., & Ryland, D. (2001). Textural analysis of fat reduced vanilla ice cream products. Food Research International, 34, 237–246.

    Article  Google Scholar 

  • Anderson, M., & Brooker, B. E. (1988). Dairy foams. In E. Dickinson & G. Stainsby (Eds.), Advances in food emulsions and foams (pp. 221–225). London, UK: Elsevier Applied Science Publisher.

    Google Scholar 

  • Barford, N. M., Krog, N., Larsen, G., & Buchheim, W. (1991). Effects of emulsifiers on protein-fat interaction in ice cream mix during ageing. I: Quantitative analyses. Lipids, 93, 24–29.

    Article  Google Scholar 

  • Berk, Z. (2008). Food process engineering and technology. Oxford, UK: Academic Press.

    Google Scholar 

  • Biasutti, M., Venir, E., Marino, M., Maifreni, M., & Innocente, N. (2013). Effects of high pressure homogenisation of ice cream mix on the physical and structural properties of ice cream. International Dairy Journal, 32, 40–45.

    Article  CAS  Google Scholar 

  • Blecker, C., Paquot, M., Lamberti, I., Sensidoni, A., Lognay, G., & Deroanne, C. (1997). Improved emulsifying and foaming of whey proteins after enzymic fat hydrolysis. Journal of Food Science, 62, 48.

    Article  CAS  Google Scholar 

  • NIIR Board. (2013). Modern technology of milk processing & dairy products (4th ed.). Delhi, India: NIIR Project Consultancy Services.

    Google Scholar 

  • Bogdan, Z., & Chandrapala, J. (2015). High power ultrasound processing in milk and dairy products. In N. Datta & P. M. Tomasula (Eds.), Emerging dairy processing technologies: Opportunities for the dairy industry (pp. 149–180). Chichester, UK: John Wiley & Sons.

    Google Scholar 

  • Borcherding, K., Hoffmann, W., Lorenzen, P. C., & Schrader, K. (2008). Effect of milk homogenisation and foaming temperature on properties and microstructure of foams from pasteurised whole milk. LWT - Food Science and Technology, 41, 2036–2043.

    Article  CAS  Google Scholar 

  • Buchanan, R. (1965). Lipolysis and the frothing of milk. Australian Journal of Dairy Technology, 20, 62–66.

    CAS  Google Scholar 

  • Campbell, G. M., & Mougeot, E. (1999). Creation and characterisation of aerated food products. Trends in Food Science & Technology, 10, 283–296.

    Article  CAS  Google Scholar 

  • Chandan, R. C., Kilara, A., & Shah, N. P. (2009). Dairy processing and quality assurance (2nd ed.). Chichester, UK: John Wiley & Sons.

    Google Scholar 

  • Chee, C. H., & Chow, M. C. (2006). Edible emulsions. In P. Somasundaran (Ed.), Encyclopedia of surface and colloid science (Vol. 3, pp. 1846–1856). Boca Raton, FL: Taylor & Francis.

    Google Scholar 

  • Clarke, C. (2006). The science of ice cream. Cambridge, UK: RSC Publishing, The Royal Chemistry Society.

    Google Scholar 

  • Day, E. A. (1966). Role of milk lipids in flavors of dairy products (Advances in chemistry series) (p. 94). Washington, DC: American Chemical Society.

    Google Scholar 

  • Deeth, H., & Smith, R. (1983). Lipolysis and other factors affecting the steam frothing capacity of milk. Australian Journal of Dairy Technology, 38, 14.

    CAS  Google Scholar 

  • Deeth, H. C. (2006). Lipoprotein lipase and lipolysis in milk. International Dairy Journal, 16, 555–562.

    Article  CAS  Google Scholar 

  • Drewnowski, A. (1997). Why do we like fat? Journal of the American Dietetic Association, 97, S58–S62.

    Article  CAS  PubMed  Google Scholar 

  • Euston, S. R. (1997). Emulsifiers in dairy products and dairy substitutes. In G. L. Hasenhuettl & R. W. Hartel (Eds.), Food emulsifiers and their applications (pp. 173–210). Boston, MA: Springer US.

    Chapter  Google Scholar 

  • Euston, S. R. (2008). Emulsifiers in dairy products and dairy substitutes. In G. L. Hasenhuettl & R. W. Hartel (Eds.), Food emulsifiers and their applications (2nd ed., pp. 195–232). New York, NY: Springer.

    Chapter  Google Scholar 

  • Gamboa, G. V., & Barraquio, V. L. (2013). Foaming properties at different fat levels and age of milk. The Philippine Agricultural Scientist, 95, 416–421.

    Google Scholar 

  • Gantner, V., Mijić, P., Baban, M., Å krtić, Z., & Turalija, A. (2015). The overall and fat composition of milk of various species. Mljekarstvo/Dairy, 65, 223–231.

    Article  CAS  Google Scholar 

  • Goff, H. D. (1997). Colloidal aspects of ice cream - A review. International Dairy Journal, 7, 363–373.

    Article  CAS  Google Scholar 

  • Goff, H. D., & Hartel, R. W. (2013a). Ice cream structure. In Ice cream (pp. 313–352). New York, NY: Springer.

    Chapter  Google Scholar 

  • Goff, H. D., & Hartel, R. W. (2013b). Mix processing and properties. In Ice cream (pp. 121–154). New York, NY: Springer.

    Chapter  Google Scholar 

  • Goh, J., Kravchuk, O., & Deeth, H. (2009). Comparison of mechanical agitation, steam injection and air bubbling for foaming milk of different types. Milchwissenschaft, 64, 121–124.

    CAS  Google Scholar 

  • Golding, M., & Pelan, E. (2008). Application of emulsifiers to reduce fat and enhance nutritional quality. In G. L. Hasenhuettl & R. W. Hartel (Eds.), Food emulsifiers and their applications (2nd ed., pp. 327–348). New York, NY: Springer.

    Chapter  Google Scholar 

  • Gordon, M. H. (2013). Milk lipids. In Y. W. Park & G. F. W. Haenlein (Eds.), Milk and dairy products in human nutrition: Production, composition and health (pp. 65–79). Oxford, UK: John Wiley & Sons.

    Chapter  Google Scholar 

  • Granger, C., Leger, A., Barey, P., Langendorff, V., & Cansell, M. (2005). Influence of formulation on the structural networks in ice cream. International Dairy Journal, 15, 255–262.

    Article  CAS  Google Scholar 

  • Gray, I. (1973). Seasonal variations in the composition and thermal properties of New Zealand milk fat: I. Fatty-acid composition. Journal of Dairy Research, 40, 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Grummer, R. R. (1991). Effect of feed on the composition of milk fat. Journal of Dairy Science, 74, 3244–3257.

    Article  CAS  PubMed  Google Scholar 

  • Hayes, M. G., Lefrancois, A. C., Waldron, D. S., Goff, H. D., & Kelly, A. L. (2003). Influence of high pressure homogenisation on some characteristics of ice cream. Milchwissenschaft-Milk Science International, 58, 519–523.

    Google Scholar 

  • Hidden, F., Boomsma, J., Schins, A., & Van den Berg, E. (2012). Cappuccino and specific heat versus heat of vaporization. The Physics Teacher, 50, 103–104.

    Article  Google Scholar 

  • Huppertz, T. (2010). Foaming properties of milk: A review of the influence of composition and processing. International Journal of Dairy Technology, 63, 477–488.

    Article  Google Scholar 

  • Huppertz, T., Smiddy, M. A., Goff, H. D., & Kelly, A. L. (2011). Effects of high pressure treatment of mix on ice cream manufacture. International Dairy Journal, 21, 718–726.

    Article  Google Scholar 

  • Innocente, N., Biasutti, M., Venir, E., Spaziani, M., & Marchesini, G. (2009). Effect of high-pressure homogenization on droplet size distribution and rheological properties of ice cream mixes. Journal of Dairy Science, 92, 1864–1875.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, R. G. (2002). The composition of bovine milk lipids: January 1995 to December 2000. Journal of Dairy Science, 85, 295–350.

    Article  CAS  PubMed  Google Scholar 

  • Kamath, S., Huppertz, T., Houlihan, A. V., & Deeth, H. C. (2008). The influence of temperature on the foaming of milk. International Dairy Journal, 18, 994–1002.

    Article  CAS  Google Scholar 

  • Kamath, S., Wulandewi, A., & Deeth, H. (2008). Relationship between surface tension, free fatty acid concentration and foaming properties of milk. Food Research International, 41, 623–629.

    Article  CAS  Google Scholar 

  • Karleskind, D., Laye, I., Mei, F. I., & Morr, C. V. (1995). Foaming properties of lipid-reduced and calcium-reduced whey-protein concentrates. Journal of Food Science, 60, 738–741.

    Article  CAS  Google Scholar 

  • Khezri, M., Shahriari, S., & Shahsavani, L. (2017). The effect of xanthan gum and temperature on foam stability of milk-based espresso coffees. Journal of Food Biosciences and Technology, 7, 15–22.

    Google Scholar 

  • Kim, S. H., Morr, C. V., Seo, A., & Surak, J. G. (1989). Effect of whey pretreatment on composition and functional-properties of whey-protein concentrate. Journal of Food Science, 54, 25–29.

    Article  Google Scholar 

  • Kitchen, B., & Cranston, K. (1969). Lipase activation in farm milk supplies. Australian Journal of Dairy Technology, 24, 107–112.

    CAS  Google Scholar 

  • Koeferli, C. R. S., Piccinali, P., & Sigrist, S. (1996). The influence of fat, sugar and non-fat milk solids on selected taste, flavor and texture parameters of a vanilla ice-cream. Food Quality and Preference, 7, 69–79.

    Article  Google Scholar 

  • Kontkanen, H., Rokka, S., Kemppinen, A., Miettinen, H., Hellstrom, J., Kruus, K., et al. (2011). Enzymatic and physical modification of milk fat: A review. International Dairy Journal, 21, 3–13.

    Article  CAS  Google Scholar 

  • Koxholt, M. M. R., Eisenmann, B., & Hinrichs, J. (2001). Effect of the fat globule sizes on the meltdown of ice cream. Journal of Dairy Science, 84, 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Marshall, R., Heymann, H., & Fernando, L. (1997). Effect of milk fat content on flavor perception of vanilla ice cream. Journal of Dairy Science, 80, 3133–3141.

    Article  CAS  PubMed  Google Scholar 

  • Lilbaek, H. M., Fatum, T. M., Ipsen, R., & Sorensen, N. K. (2007). Modification of milk and whey surface properties by enzymatic hydrolysis of milk phospholipids. Journal of Agricultural and Food Chemistry, 55, 2970–2978.

    Article  PubMed  CAS  Google Scholar 

  • Long, Z., Zhao, M. M., Zhao, Q. Z., Yang, B., & Liu, L. Y. (2012). Effect of homogenisation and storage time on surface and rheology properties of whipping cream. Food Chemistry, 131, 748–753.

    Article  CAS  Google Scholar 

  • MacGibbon, A. K. H., & Taylor, M. W. (2006). Composition and structure of bovine milk lipids. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry volume 2: Lipids (pp. 1–42). Boston, MA: Springer.

    Google Scholar 

  • Madden, J. (1989). Ice cream. In A. Wilson (Ed.), Foams: Physics, chemistry and structure (pp. 185–196). London, UK: Springer.

    Chapter  Google Scholar 

  • Marshall, R. T., & Arbuckle, W. S. (1996). Ice cream. New York, NY: International Thomson Publishing.

    Book  Google Scholar 

  • Norris, G. E., Gray, I., & Dolby, R. (1973). Seasonal variations in the composition and thermal properties of New Zealand milk fat: II. Thermal properties of milk fat and their relation to composition. Journal of Dairy Research, 40, 311–321.

    Article  CAS  Google Scholar 

  • Nylander, T., Arnebrant, T., Bos, M., & Wilde, P. (2008). Protein/emulsifier interactions. In G. L. Hasenhuettl & R. W. Hartel (Eds.), Food emulsifiers and their applications (2nd ed., pp. 89–171). New York, NY: Springer.

    Chapter  Google Scholar 

  • Olson, D. W., White, C. H., & Watson, C. E. (2003). Properties of frozen dairy desserts processed by microfluidization of their mixes. Journal of Dairy Science, 86, 1157–1162.

    Article  CAS  PubMed  Google Scholar 

  • Palmquist, D., Beaulieu, A. D., & Barbano, D. (1993). Feed and animal factors influencing milk fat composition. Journal of Dairy Science, 76, 1753–1771.

    Article  CAS  PubMed  Google Scholar 

  • Patel, M. T., & Kilara, A. (1990). Studies on whey protein concentrates. 2. Foaming and emulsifying properties and their relationships with physicochemical properties. Journal of Dairy Science, 73, 2731–2740.

    Article  CAS  Google Scholar 

  • Pei, Z., & Schmidt, K. (2010). Ice cream: Foam formation and stabilization - a review. Food Reviews International, 26, 122–137.

    Article  CAS  Google Scholar 

  • Peltonen-Shalaby, R., & Mangino, M. (1986). Compositional factors that affect the emulsifying and foaming properties of whey protein concentrates. Journal of Food Science, 51, 91–95.

    Article  CAS  Google Scholar 

  • Pilhofer, G. M., Lee, H.-C., McCarthy, M. J., Tong, P. S., & Bruce German, J. (1994). Functionality of milk fat in foam formation and stability. Journal of Dairy Science, 77, 55–63.

    Article  CAS  Google Scholar 

  • Prindiville, E., Marshall, R., & Heymann, H. (1999). Effect of milk fat on the sensory properties of chocolate ice cream. Journal of Dairy Science, 82, 1425–1432.

    Article  CAS  Google Scholar 

  • Ranjith, P. H. M., & Wijewardene, U. (2006). Lipid emulsifiers and surfactants in dairy and bakery products. In F. D. Gunstone (Ed.), Modifying lipids for use in food (pp. 393–428). Cambridge, UK: Woodhead Publishing.

    Chapter  Google Scholar 

  • Rego, O. A., Cabrita, A. R., Rosa, H. J., Alves, S. P., Duarte, V., Fonseca, A. J., et al. (2016). Changes in milk production and milk fatty acid composition of cows switched from pasture to a total mixed ration diet and back to pasture. Italian Journal of Animal Science, 15, 76–86.

    Article  CAS  Google Scholar 

  • Rinn, J.-C., Morr, C., Seo, A., & Surak, J. (1990). Evaluation of nine semi-pilot scale whey pretreatment modifications for producing whey protein concentrate. Journal of Food Science, 55, 510–515.

    Article  CAS  Google Scholar 

  • Roland, A. M., Phillips, L. G., & Boor, K. J. (1999). Effects of fat content on the sensory properties, melting, color, and hardness of ice cream. Journal of Dairy Science, 82, 32–38.

    Article  CAS  Google Scholar 

  • Samkova, E., Spicka, J., Pesek, M., Pelikanova, T., & Hanus, O. (2012). Animal factors affecting fatty acid composition of cow milk fat: A review. South African Journal of Animal Science, 42, 83–100.

    CAS  Google Scholar 

  • Truong, T., Bansal, N., & Bhandari, B. (2014). Effect of emulsion droplet size on foaming properties of milk fat emulsions. Food and Bioprocess Technology, 7, 3416–3428.

    Article  CAS  Google Scholar 

  • Truong, T., Palmer, M., Bansal, N., & Bhandari, B. (2016). Methodologies to vary milk fat globule size. In Effect of milk fat globule size on the physical functionality of dairy products (pp. 15–30). New York, NY: Springer International Publishing.

    Chapter  Google Scholar 

  • Vaghela, M. N., & Kilara, A. (1996). Foaming and emulsifying properties of whey protein concentrates as affected by lipid composition. Journal of Food Science, 61, 275–280.

    Article  CAS  Google Scholar 

  • Venkatachalam, S., John, S. G., & Kuppuswamy, K. (2015). Foam mat drying of food materials: A review. Journal of Food Processing and Preservation, 39, 3165–3174.

    Article  CAS  Google Scholar 

  • Walker, G. P., Wijesundera, C., Dunshea, F. R., & Doyle, P. T. (2013). Seasonal and stage of lactation effects on milk fat composition in northern Victoria. Animal Production Science, 53, 560–572.

    Article  CAS  Google Scholar 

  • Walstra, P. (1989). Principles of foam formation and stability. In A. Wilson (Ed.), Foams: Physics, chemistry and structure (pp. 1–15). London, UK: Springer.

    Google Scholar 

  • Walstra, P., Geurts, T. J., Noomen, A., Jellema, A., & vanBoekel, M. A. J. S. (1999). Dairy technology: Principles of milk properties and processes. New York, NY: Marcel Dekker, Inc..

    Book  Google Scholar 

  • Wright, A. J., & Marangoni, A. G. (2006). Crystallization and rheological properties of milk fat. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry volume 2: Lipids (pp. 245–291). Boston, MA: Springer.

    Chapter  Google Scholar 

  • Zayas, J. F. (1997). Foaming properties of proteins. In Functionality of proteins in food (pp. 260–309). New York, NY: Springer.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was funded through Australian Research Council’s Industrial Transformation Research Hub (ARC-ITRH) grant with Lion Dairy and Drinks as an industry partner. The ARC Dairy Innovation Hub is a collaboration between The University of Melbourne, The University of Queensland and Dairy Innovation Australia Ltd. The authors acknowledge the facilities, and the scientific and technical assistance, of the School of Agriculture and Food Sciences at The University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Bansal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ho, T.M., Bhandari, B., Bansal, N. (2020). Influence of Milk Fat on Foam Formation, Foam Stability and Functionality of Aerated Dairy Products. In: Truong, T., Lopez, C., Bhandari, B., Prakash, S. (eds) Dairy Fat Products and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-41661-4_24

Download citation

Publish with us

Policies and ethics