Skip to main content

Ignition of Wood Dust of African Padauk (Pterocarpus Soyauxii)

  • Conference paper
  • First Online:
Wood & Fire Safety (WFS 2020)

Abstract

The article deals with wood dust of African Padauk (Pterocarpus soyauxii). The wood dust was prepared by Makita 9556CR 1400 W and the K36 sandpaper for various fractions (<63; 63; 71; 100; 200; 315; 500 μm) of the wood dust. The aim of the article is granulometric analysis of the wood dust of African Padauk (Pterocarpus soyauxii), to identify its morphological structure and to assess the effect of particle size of airborne dust on minimum ignition temperatures. The most frequent dust particle size was represented by 100 μm fraction (42.14 ± 1.049%). The minimum ignition temperature of airborne dust was 370 °C the 71 μm fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. CARO DREVA (2019) Domáce drevo alebo exotika? Dostupné z: https://carodreva.sk/drevo-v-kocke/domace-drevo-alebo-exotika. Accessed 13 June 2019

  2. Van Gemerden B, Shu GN, Olff H (2003) Recovery of conservation values in Central African rain forest after logging and shifting cultivation. Biodivers Conserv 12:1553. https://doi.org/10.1023/A:1023603813163

    Article  Google Scholar 

  3. Fan MZ, Ndikontar MK, Zhou XM, Ngamveng JN (2012) Cement-bonded composites made from tropical woods: compatibility of wood and cement. Constr Build Mater 36:135–140

    Article  Google Scholar 

  4. Jankowska A (2018) Assessment of sorptive properties of selected tropical wood species. Drvna Ind 69(1):35–42. https://doi.org/10.5552/drind.2018.1733

    Article  Google Scholar 

  5. Vigué J (2006) Dřevo od A do Z. 1. vydanie. Čestlice: Rebo Productions CZ, spol. s r. o. ISBN: 80-734-531-1

    Google Scholar 

  6. Reinprecht L, Kmeťová L, Iždinský J (2012) Fungal decay and bending properties of beech plywood overlaid with tropical veneers. J Trop For Sci 24(4):490–497

    Google Scholar 

  7. Tchinda JBS, Petrissans A, Molina S, Ndikontar MK, Mounguengui S, Dumarcay S, Gerardin P (2014) Study of the feasibility of a natural dye on cellulosic textile supports by red padouk (Pterocarpus soyauxii) and yellow movingui (Distemonanthus benthamianus) extracts. Ind Crops Prod 60:291–297. https://doi.org/10.1016/j.indcrop.2014.06.029

    Article  Google Scholar 

  8. Brémaud I, Nadine A, Minato K, Gril J, Thibaut B (2011) Effect of extractives on vibrational properties of African Padauk (Pterocarpus soyauxii Taub.) August 2011. Wood Sci Technol 45(3):461–472. https://doi.org/10.1007/s00226-010-0337-3

    Article  Google Scholar 

  9. Straze A, Mitkovski B, Tippner J, Cufar K, Gorisek Z (2015) Structural and acoustic properties of African padouk (Pterocarpus soyauxii) wood for xylophones. Eur J Wood Wood Prod 73(2):235–243

    Article  Google Scholar 

  10. Bernard O, Rostand MP, Evelyne T, Michel G (2018) Experimental investigation of mixed mode fracture of tropical wood material. In: Sedmak A, Radakovic Z, Rakin M (eds) Book series: procedia structural integrity, vol 13, pp 347–352. https://doi.org/10.1016/j.prostr.2018.12.058

  11. Marková I, Mračková E, Očkajová A, Ladomerský J (2016) Granulomerty of selectes wood dust species of duat from orbital sanders. Wood Res 61(6):983–992

    Google Scholar 

  12. Dzurenda L, Orlowski KA, Grzeskiewicz M (2010) Effect of thermal modification of oak wood on sawdust granularity. Drvna Ind 61(2):89–94

    Google Scholar 

  13. Dzurenda L, Orlowski KA (2011) The effect of thermal modification of ash wood on granularity and homogeneity of sawdust in the sawing process on a sash gang saw prw 15-M in view of its technological usefulness. Drewno 54(186):27–37

    Google Scholar 

  14. Eckhoff RK (2003) Dust explosions in the process industries. Gulf Professional Publishing, Boston, 719 s. ISBN 978-0750676021

    Google Scholar 

  15. Očkajová A, Kučerka M, Krišťák Ľ, Igaz R (2018) Granulometric analysis of sanding dust from selected wood species. BioResources 13(4):7481–7495

    Article  Google Scholar 

  16. Mračková E, Krišták Ľ, Kučera M, Gaff M, Gajtanská M (2016) Creation of wood dust during wood processing: size analysis, dust separation, and occupational health. BioResources 11(1):209–222

    Google Scholar 

  17. Rohr AC, Campleman SL, Long CM, PetersonN MK, Weatherstone S, Quick W, Lewis A (2015) Potential occupational exposures and health risks associated with biomass-based power generation. Int J Environ Res Public Health 12(7):8542–8605. https://doi.org/10.3390/ijerph120708542

    Article  Google Scholar 

  18. Kovshov S, Nikulin A, Kovshov V, Mračková E (2015) Application of equipment for aerological researching of characteristics of wood dust. Acta Fac Xylol Zvolen 57(1):111–118

    Google Scholar 

  19. Amyotte P (2013) An introduction to dust explosions: understanding the myths and realities of dust explosions for a safer workplace. In: An introduction to dust explosions: understanding the myths and realities of dust explosions for a safer workplace. Elsevier Inc. http://www.scopus.com/inward/record.url?eid=2-s2.0-84899749632-&partnerID=tZOtx3y1

  20. Amyotte PR, Eckhoff RK (2010) Dust explosion causation, prevention and mitigation: an overview. J Chem Health Saf 17(1):15–28. https://doi.org/10.1016/j.jchas.2009.05.002

    Article  Google Scholar 

  21. Žigo J, Rantuch P, Balog K (2014) Experimental analysis of minimum ignition temperature of dust cloud obtained from thermally modified spruce wood. Adv Mater Res 919-921, 2057–2060. http://doi.org/10.4028/www.scientific.net-/AMR.919-921.2057

  22. Krentowski J (2015) Disaster of an industrial hall caused by an explosion of wood dust and fire. Eng Failure Anal 56:403–411. https://doi.org/10.1016/j.engfailanal.2014.12.015

    Article  Google Scholar 

  23. Marková I, Ladomerský J, Hroncová E, Mračková E (2018) Thermal parameters of beech wood dust. BioResources 13(2):3098–3109

    Article  Google Scholar 

  24. Top Y, Adanur H, Öz M (2016) Comparison of practices related to occupational health and safety in microscale wood-product enterprises. Saf Sci 82:374–381. https://doi.org/10.1016/j.ssci.2015.10.014

    Article  Google Scholar 

  25. EN 50281-2-1 (2002) Electrical apparatus for use in the presence of combustible dust. Part 2-1: test methods. Methods for determining the minimum ignition temperatures of dust. European Committee for Standardization, Brussels, Belgium

    Google Scholar 

  26. Marková I, Hroncová E, Tomaškin J, Tureková E (2018) Thermal ananlysis of granulometry selected wood dust. BioResources 13(4):8041–8060

    Article  Google Scholar 

  27. Misse SE, Brillard A, Brilhac J-F, Obonou M, Ayina LM, Schönnenbeck C, Caillat S (2018) Thermogravimetric analyses and kinetic modeling of three Cameroonian biomass. J Ther Anal Calorimetry 132(3):1979–1994. https://doi.org/10.1007/s10973-018-7108-z

    Article  Google Scholar 

  28. Mračková E, Milanko V (2016) Characteristics of wood particulates as a function of safety parameters. CRC Press, Balkema, pp 487–490

    Google Scholar 

  29. IAWA list of microscopic features for hardwood identification with an Appendix on non-anatomical information IAWA Committee (1989) IAWA Bulletin n. s. vol 10, no 3, pp 219–332. www.iawa-website.org/uploads/soft/Abstracts/IAWA%20list%20of%20microscopic%20features%20for%20hardwood%20identification.pdf

  30. Wang Y, Su M, Sun H, Ren H (2018) Comparative studies on microstructures and chemical compositions of cell walls of two solid wood floorings. J Wood Sci. https://doi.org/10.1007/s10086-018-1743-7

  31. Tureková I (2008) Riziká priemyselných drevných prachov. In: Rusko M (ed) Zborník z XII. Konferencie so zahraničnou účasťou, 5–6 December 2008, Bratislava. Strix et VeV. Prvé vydanie, Žilina, pp 167–175. ISBN 978-80-89281-34-3

    Google Scholar 

  32. STN ISO 871 (1999) Plastics. Determination of ignition temperature using a hot-air furnace

    Google Scholar 

  33. Martinka J, Rantuch P (2013) Posúdenie vplyvu veľkosti častíc dubového dreva na teplotu vznietennia rozvíreného prachu. Acta Fac Tech XVIII 2013(2):75–82

    Google Scholar 

  34. Kasalová I, Balog K (2010) Minimum ignition temperatures of wood dust clouds determi -ned by planed experiment. In: Fire engineering, Zvolen, 5th–6th October 2010. Bratia Sabovci, Zvolen, pp 119–126. ISBN 978-80-89241-38-8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iveta Marková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vandličková, M., Marková, I. (2020). Ignition of Wood Dust of African Padauk (Pterocarpus Soyauxii). In: Makovicka Osvaldova, L., Markert, F., Zelinka, S. (eds) Wood & Fire Safety. WFS 2020. Springer, Cham. https://doi.org/10.1007/978-3-030-41235-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41235-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41234-0

  • Online ISBN: 978-3-030-41235-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics