Skip to main content

Application of Supervised Learning Approach for Target Localization in Wireless Sensor Network

  • Chapter
  • First Online:
Handbook of Wireless Sensor Networks: Issues and Challenges in Current Scenario's

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1132))

Abstract

In the context of indoor environments, the Received Signal Strength Indicator (RSSI) measurements are generally coupled with noise uncertainty due to signal propagation issues such as multipath propagation, Non-Line of Sight (NLOS), reflection. In order to deal with this problem, the localization algorithm is required to be efficient in terms of Localization Accuracy and Execution Speed. The Artificial Neural Network (ANN) does not need prior knowledge of noise statistics during its operations. This paper evaluates the comparison of localization performance of various supervised learning architectures such as Generalized Regression Neural Network (GRNN), Multilayer Perceptron (MLP), Radial Basis Function Network (RBFN), and Feed Forward Neural Network (FFNT) for the Wireless Sensor Network (WSN) based indoor localization problem. The comparison of localization accuracy under the simulated static indoor environment of 100 × 100 m2 with 15 anchor nodes advocate the suitability of the application of supervised learning approach for the indoor localization problems over the traditional trilateration-based approach. The proposed supervised learning implementations are tested and compared with the traditional trilateration-based localization technique by varying the variance of RSSI measurement noise from 0 dBm to 5 dBm in the steps of 1 dBm. Out of all the proposed supervised learning architectures, the GRNN based implementation shows higher localization accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  2. Singh, P., Paprzycki, M., Bhargava, B., Chhabra, J., Kaushal, N., Kumar, Y. (eds.): FTNCT 2018. Communications in Computer and Information Science, vol. 958. Springer, Singapore (2018)

    Google Scholar 

  3. Khan, M.S., Capobianco, A.-D., Asif, S.M., Anagnostou, D.E., Shubair, R.M., Braaten, B.D.: A compact CSRR-enabled UWB diversity antenna. IEEE Antennas Wirel. Propag. Lett. 16, 808–812 (2016)

    Article  Google Scholar 

  4. Hero, A.O., Moses, R.L., Patwari, N., Ash, J.N., Kyperountas, S., Correal, N.S.: Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal Process. Mag. 22(4), 54–69 (2005)

    Article  Google Scholar 

  5. Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: Global Positioning System: Theory and Practice (2001)

    Book  Google Scholar 

  6. Shubair, R., Merri, A.: Convergence of adaptive beamforming algorithms for wireless communications. In: Proceedings of the IEEE and IFIP International Conference on Wireless and Optical Communications Networks, pp. 6–8 (2005)

    Google Scholar 

  7. Tariq, Z.B., Cheema, D.M., Kamran, M.Z., Naqvi, I.H.: Non-GPS positioning systems: a survey. ACM Comput. Surv. (CSUR) 50(4), 57 (2017)

    Article  Google Scholar 

  8. Wagner, B., Timmermann, D., Ruscher, G., Kirste, T.: Device-free user localization utilizing artificial neural networks and passive RFID. In: 2012 Ubiquitous Positioning, Indoor Navigation, and Location Based Service, UPINLBS 2012 (2012)

    Google Scholar 

  9. Zhang, Y., Li, X., Amin, M.: Principles and techniques of RFID positioning. In: RFID Systems: Research Trends and Challenges (2010)

    Chapter  Google Scholar 

  10. Soltani, M.M., Motamedi, A., Hammad, A.: Enhancing cluster-based RFID tag localization using artificial neural networks and virtual reference tags. Autom. Constr. 54, 93–105 (2015)

    Article  Google Scholar 

  11. Zafari, F., Papapanagiotou, I., Devetsikiotis, M., Hacker, T.J.: Enhancing the accuracy of iBeacons for indoor proximity-based services. In: IEEE International Conference on Communications (2017)

    Google Scholar 

  12. Thaljaoui, A., Val, T., Nasri, N., Brulin, D.: BLE localization using RSSI measurements and iRingLA. In: Proceedings of the IEEE International Conference on Industrial Technology (2015)

    Google Scholar 

  13. Zhuang, Y., Li, Y., Qi, L., Lan, H., Yang, J., El-Sheimy, N.: A two-filter integration of MEMS sensors and WiFi fingerprinting for indoor positioning. IEEE Sens. J. 16(13), 5125–5126 (2016)

    Article  Google Scholar 

  14. Chen, Z., Zou, H., Jiang, H., Zhu, Q., Soh, Y.C., Xie, L.: Fusion of WiFi, smartphone sensors and landmarks using the Kalman filter for indoor localization. Sensors 15(1), 715–732 (2015)

    Article  Google Scholar 

  15. Blumrosen, G., Anker, T., Hod, B., Dolev, D., Rubinsky, B.: Enhancing RSSI-based tracking accuracy in wireless sensor networks. ACM Trans. Sens. Netw. 9(3), 29 (2013)

    Article  Google Scholar 

  16. Paul, A.S., Wan, E.A.: RSSI-based indoor localization and tracking using sigma-point Kalman smoothers. IEEE J. Sel. Top. Signal Process. 3(5), 860–873 (2009)

    Article  Google Scholar 

  17. Dong, Q., Dargie, W.: Evaluation of the reliability of RSSI for indoor localization. In: 2012 International Conference on Wireless Communications in Underground and Confined Areas, ICWCUCA 2012 (2012)

    Google Scholar 

  18. Abouzar, P., Michelson, D.G., Hamdi, M.: RSSI-based distributed self-localization for wireless sensor networks used in precision agriculture. IEEE Trans. Wirel. Commun. 15(10), 6638–6650 (2016)

    Article  Google Scholar 

  19. Wu, H., Zhang, L., Miao, Y.: The propagation characteristics of radio frequency signals for wireless sensor networks in large-scale farmland. Wirel. Pers. Commun. 95(4), 3653–3670 (2017)

    Article  Google Scholar 

  20. Sarkar, T.K., Ji, Z., Kim, K., Medouri, A., Salazar-Palma, M.: A survey of various propagation models for mobile communication. IEEE Antennas Propag. Mag. 45(3), 51–82 (2003)

    Article  Google Scholar 

  21. Gharghan, S.K., Nordin, R., Ismail, M., Ali, J.A.: Accurate wireless sensor localization technique based on hybrid PSO-ANN algorithm for indoor and outdoor track cycling. IEEE Sens. J. 16(2), 529–541 (2016)

    Article  Google Scholar 

  22. Viani, F., Rocca, P., Oliveri, G., Trinchero, D., Massa, A.: Localization, tracking, and imaging of targets in wireless sensor networks: an invited review. Radio Sci. 46(05), 1–12 (2011)

    Article  Google Scholar 

  23. Coluccia, A., Ricciato, F.: RSS-based localization via bayesian ranging and iterative least squares positioning. IEEE Commun. Lett. 18(5), 873–876 (2014)

    Article  Google Scholar 

  24. Dai, H., Zhu, Z.M., Gu, X.F.: Multi-target indoor localization and tracking on video monitoring system in a wireless sensor network. J. Netw. Comput. Appl. 36(1), 228–234 (2013)

    Article  Google Scholar 

  25. Patwari, N., Hero, A.O., Perkins, M., Correal, N.S., O’Dea, R.J.: Relative location estimation in wireless sensor networks. IEEE Trans. Signal Process. 51(8), 2137–2148 (2003)

    Article  Google Scholar 

  26. Fang, S.H., Lin, T.N., Lee, K.C.: A novel algorithm for multipath fingerprinting in indoor WLAN environments. IEEE Trans. Wirel. Commun. 7(9), 3579–3588 (2008)

    Article  Google Scholar 

  27. Faragher, R., Harle, R.: Location fingerprinting with bluetooth low energy beacons. IEEE J. Sel. Areas Commun. 33(11), 2418–2428 (2015)

    Article  Google Scholar 

  28. Zheng, X., Liu, H., Yang, J., Chen, Y., Martin, R.P., Li, X.: A study of localization accuracy using multiple frequencies and powers. IEEE Trans. Parallel Distrib. Syst. 25(8), 1955–1965 (2014)

    Article  Google Scholar 

  29. Yoo, J., Kim, H.J.: Target localization in wireless sensor networks using online semi-supervised support vector regression. Sensors 15(6), 12539–12559 (2015)

    Article  Google Scholar 

  30. Jiao, J., Li, F., Deng, Z., Ma, W.: A smartphone camera-based indoor positioning algorithm of crowded scenarios with the assistance of deep CNN. Sensors 17(4), 704 (2017)

    Article  Google Scholar 

  31. AlHajri, M.I., Ali, N.T., Shubair, R.M.: Classification of indoor environments for IoT applications: a machine learning approach. IEEE Antennas Wirel. Propag. Lett. 17(12), 2164–2168 (2018)

    Article  Google Scholar 

  32. AlHajri, M.I., Ali, N.T., Shubair, R.M.: Indoor localization for IoT using adaptive feature selection: a cascaded machine learning approach. IEEE Antennas Wirel. Propag. Lett. (2019)

    Google Scholar 

  33. Dai, H., Ying, W.-H., Xu, J.: Multi-layer neural network for received signal strength-based indoor localisation. IET Commun. 10(6), 717–723 (2016)

    Article  Google Scholar 

  34. Gogolak, L., Pletl, S., Kukolj, D.: Neural network-based indoor localization in WSN environments. Acta Polytech. Hungarica 10(6), 221–235 (2013)

    Google Scholar 

  35. Mahfouz, S., Mourad-Chehade, F., Honeine, P., Farah, J., Snoussi, H.: Target tracking using machine learning and Kalman filter in wireless sensor networks. IEEE Sens. J. 14(10), 3715–3725 (2014)

    Article  Google Scholar 

  36. Jondhale, S.R., Deshpande, R.S.: Kalman filtering framework-based real time target tracking in wireless sensor networks using generalized regression neural networks. IEEE Sens. J. 19(1), 224–233 (2019)

    Article  Google Scholar 

  37. Jondhale, S.R., Deshpande, R.S.: GRNN and KF framework based real time target tracking using PSOC BLE and smartphone. Ad Hoc Netw. 84, 19–28 (2019)

    Article  Google Scholar 

  38. Kaplan, G.B., Lana, A.: Comparison of Proposed Target Tracking Algorithm, GRNN α, to Kalman Filter in 3D Environment (2013)

    Google Scholar 

  39. Kişi, Ö.: Generalized regression neural networks for evapotranspiration modelling, vol. 6667 (2010)

    Google Scholar 

  40. Zhong, M., et al.: Gap-based estimation: choosing the smoothing parameters for probabilistic and general regression neural networks. Neural Comput. 19(10), 2840–2864 (2007)

    Article  Google Scholar 

  41. Jondhale, S.R., Deshpande, R.S.: Kalman filtering framework based real time target tracking in wireless sensor networks using generalized regression neural networks. IEEE Sens. J. 19(1), 224–233 (2018)

    Article  Google Scholar 

  42. Rahman, M.S., Park, Y., Kim, K.D.: RSS-based indoor localization algorithm for wireless sensor network using generalized regression neural network. Arab. J. Sci. Eng. 37(4), 1043–1053 (2012)

    Article  Google Scholar 

  43. Jondhale, S.R., Deshpande, R.S.: Modified Kalman filtering framework based real time target tracking against environmental dynamicity in wireless sensor networks. Ad-Hoc Sens. Wirel. Netw. (2018)

    Google Scholar 

  44. Yang, Z., Liu, Y., Li, X.Y.: Beyond trilateration: on the localizability of wireless ad hoc networks. IEEE/ACM Trans. Netw. (2010)

    Google Scholar 

  45. Uren, J., Price, W.F.: Triangulation and trilateration. In: Surveying for Engineers (2015)

    Google Scholar 

  46. Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2(6), 568–576 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish R. Jondhale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jondhale, S.R., Shubair, R., Labade, R.P., Lloret, J., Gunjal, P.R. (2020). Application of Supervised Learning Approach for Target Localization in Wireless Sensor Network. In: Singh, P., Bhargava, B., Paprzycki, M., Kaushal, N., Hong, WC. (eds) Handbook of Wireless Sensor Networks: Issues and Challenges in Current Scenario's. Advances in Intelligent Systems and Computing, vol 1132. Springer, Cham. https://doi.org/10.1007/978-3-030-40305-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40305-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40304-1

  • Online ISBN: 978-3-030-40305-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics