Skip to main content

NAC Transcription Factors in Drought and Salinity Tolerance

  • Chapter
  • First Online:
Salt and Drought Stress Tolerance in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Water deficit and salinity are known as the top serious abiotic stresses affecting quality and productivity of many crop plants. Expanding knowledge in plant science and advances in plant biotechnology have brought more practical opportunities to improve plant tolerance capacity toward drought and/or salinity conditions in a number of major crops. Compared with manipulating a functional gene, manipulation of a regulatory gene like transcription factor-encoding gene could alter more plant characteristics, and these changes together can protect plants against either single or multiple stresses. The purpose of this chapter is to update the readers with the latest reports on the involvement of NAC (NAM, ATAF1/2, and CUC2) transcription factors in drought- and salinity-responsive regulation. Although most studies have focused on laboratory-scale experiments, the present findings are expected to provide an overview about the progress on our understanding of NAC transcription factors-associated mechanisms underlying plant responses to drought and salinity, as well as to evaluate the potential applications of the recently characterized NAC transcription factors in development of transgenic plants with improved tolerance to water scarcity and/or salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ARF:

Auxin response factor

AP2/ERF:

APETALA2/ethylene-responsive element binding factor

bZIP:

Basic leucine zipper

LEA:

Late embryogenesis abundant proteins

MDA:

Malondialdehyde

MeJA:

Methyl jasmonate

MYB:

Myeloblastosis

NAC:

NAM, ATAF1/2, and CUC2

NACBS:

NAC binding site

NACRS:

NAC recognition sequence

ROS:

Reactive oxygen species

RT-qPCR:

Reverse transcription-quantitative polymerase chain reaction

TF:

Transcription factor

References

  • Ahmad M, Yan X, Li J, Yang Q, Jamil W, Teng Y, Bai S (2018) Genome wide identification and predicted functional analyses of NAC transcription factors in Asian pears. BMC Plant Biol 18:214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An X, Liao Y, Zhang J, Dai L, Zhang N, Wang B, Liu L, Peng D (2015) Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance. Plant Growth Regul 76:211–223

    Article  CAS  Google Scholar 

  • Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agri Res 6:2026–2032

    Google Scholar 

  • Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Köhler B, Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62:250–264

    Article  CAS  PubMed  Google Scholar 

  • Bollhöner B, Prestele J, Tuominen H (2012) Xylem cell death: emerging understanding of regulation and function. J Exp Bot 63:1081–1094

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Wang L, Nawaz MA, Niu M, Sun J, Xie J, Kong Q, Huang Y, Cheng F, Bie Z (2017) Ectopic expression of pumpkin NAC transcription factor CmNAC1 improves multiple abiotic stress tolerance in Arabidopsis. Front Plant Sci 8:2052

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung PJ, Jung H, Choi YD, Kim JK (2018) Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance. BMC Genomics 19:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Oliveira AB, Alencar NLM, Gomes-Filho E (2013) Comparison between the water and salt stress effects on plant growth and development. In: Akinci S (ed) Responses of organisms to water stress. InTech, pp 67–94

    Google Scholar 

  • Evans O, Dou L, Guo Y, Pang C, Wei H, Song M, Fan S, Yu S (2016) GhNAC18, a novel cotton (Gossypium hirsutum L.) NAC gene, is involved in leaf senescence and diverse stress responses. Afr J Biotechnol 15:1233–1245

    Article  CAS  Google Scholar 

  • Fang Y, Liao K, Du H, Xu Y, Song H, Li X, Xiong L (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66:6803–6817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book 11:e0166

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. Plant Res 124:509–525

    Article  CAS  Google Scholar 

  • Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383–1391

    Article  CAS  PubMed  Google Scholar 

  • Ha CV, Esfahani MN, Watanabe Y, Tran UT, Sulieman S, Mochida K, Nguyen DV, Tran L-SP (2014) Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development, dehydration and ABA treatments. PLoS ONE 9:e114107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916

    Article  CAS  PubMed  Google Scholar 

  • He K, Zhao X, Chi X, Wang Y, Jia C, Zhang H, Zhou G, Hu R (2019) A novel Miscanthus NAC transcription factor MlNAC10 enhances drought and salinity tolerance in transgenic Arabidopsis. Plant Physiol 233:84–93

    Article  CAS  Google Scholar 

  • Hoang XLT, Thu NBA, Thao NP, Tran L-SP (2014) Transcription factors in abiotic stress responses: their potentials in crop improvement. In: Ahmad P, Wani MR, Azooz MM, Tran L-SP (eds) Improvement of crops in the era of climatic changes. Springer, New York, pp 337–366

    Google Scholar 

  • Hoang XLT, Nhi DNH, Thu NBA, Thao NP, Tran L-SP (2017) Transcription factors and their roles in signal transduction in plants under abiotic stresses. Curr Genomics 18:483–497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussey SG, Mizrachi E, Creux NM, Myburg AA (2013) Navigating the transcriptional roadmap regulating plant secondary cell wall deposition. Front Plant Sci 4:325

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do CY, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karanja BK, Xu L, Wang Y, Muleke EMM, Jabir BM, Xie Y, Zhu X, Cheng W, Liu L (2017) Genome-wide characterization and expression profiling of NAC transcription factor genes under abiotic stresses in radish (Raphanus sativus L.). Peer J 5:e4172

    Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DK, Chung PJ, Jeong JS, Jang G, Bang SW, Jung H, Kim YS, Ha SH, Choi YD, Kim JK (2017) The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J 15:754–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin KM, Lin F, Wang Y, Sun G, Zhou T, Zhu T, Li J, Jin S, Guo S, Zhang R (2016) GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci Rep 6:35040

    Google Scholar 

  • Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS ONE 9:e86895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Z-J, Li F, Wang L-G, Liu R-Z, Ma J-J, Fu M-C (2018) Molecular characterization of a stress-induced NAC gene, GhSNAC3, from Gossypium hirsutum. J Genet 97:539–548

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Zhang X, Duan H, Lian C, Liu C, Yin W, Xia X (2018) The stress-responsive NAC transcription factors from Populus euphratica differentially regulate salt and drought tolerance in transgenic plants. Physiol Plant 162:73–97

    Article  CAS  PubMed  Google Scholar 

  • Mahmood K, El-Kereamy A, Kim SH, Nambara E, Rothstein SJ (2016) ANAC032 positively regulates age-dependent and stress-induced senescence in Arabidopsis thaliana. Plant Cell Physiol 57:2029–2046

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Chen S, Li A, Zhai C, Jing R (2014) Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS ONE 9:e84359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mao H, Yu L, Han R, Li Z, Liu H (2016) ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis. Plant Physiol Biochem 105:55–66

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Moyano E, Martínez-Rivas FJ, Blanco-Portales R, Molina-Hidalgo FJ, Ric-Varas P, Matas-Arroyo AJ, Caballero JL, Muñoz-Blanco J, Rodríguez-Franco A (2018) Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria× ananassa fruits. PLoS ONE 13:e0196953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:97–103

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KH, Mostofa MG, Li W, Van Ha C, Watanabe Y, Le DT, Nguyen PT, Tran LSP (2018a) The soybean transcription factor GmNAC085 enhances drought tolerance in Arabidopsis. Environ Exp Bot 151:12–20

    Article  CAS  Google Scholar 

  • Nguyen KH, Mostofa MG, Watanabe Y, Tran CD, Rahman MM, Tran LSP (2018b) Overexpression of GmNAC085 enhances drought tolerance in Arabidopsis by regulating glutathione biosynthesis, redox balance and glutathione-dependent detoxification of reactive oxygen species and methylglyoxal. Environ Exp Bot 161:242–254

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Olins JR, Lin L, Lee SJ, Trabucco GM, MacKinnon KJ-M, Hazen SP (2018) Secondary wall regulating NACs differentially bind at the promoter at a cellulose synthase A4 cis-eQTL. Front Plant Sci 9:1895

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil M, Ramu SV, Jathish P, Sreevathsa R, Reddy PC, Prasad TG, Udayakumar M (2014) Overexpression of AtNAC2 (ANAC092) in groundnut (Arachis hypogaea L.) improves abiotic stress tolerance. Plant Biotechnol Rep 8:161–169

    Article  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381

    Article  CAS  PubMed  Google Scholar 

  • Rahman H, Ramanathan V, Nallathambi J, Duraialagaraja S, Muthurajan R (2016) Overexpression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol 16:35

    Google Scholar 

  • Redillas MC, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, Ha S-W, Reuzeau C, Kim JK (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10:792–805

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006

    Article  CAS  PubMed  Google Scholar 

  • Saad ASI, Li X, Li HP, Huang T, Gao CS, Guo MW, Cheng W, Zhao GY, Liao YC (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci 203:33–40

    Article  PubMed  CAS  Google Scholar 

  • Saidi MN, Mergby D, Brini F (2017) Identification and expression analysis of the NAC transcription factor family in durum wheat (Triticum turgidum L. ssp. durum). Plant Physiol Biochem 112:117–128

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Munns R (2012) Salinity stress: physiological constraints and adaptive mechanisms. In: Shabala S (ed) Plant stress physiology. CABI, pp 59–93

    Google Scholar 

  • Shao H, Wang H, Tang X (2015) NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci 6:902

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen J, Lv B, Luo L, He J, Mao C, Xi D, Ming F (2017) The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci Rep 7:40641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinde H, Dudhate A, Tsugama D, Gupta SK, Liu S, Takano T (2019) Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis. Plant Physiol Biochem 135:546–553

    Article  CAS  PubMed  Google Scholar 

  • Suchithra B, Devaraj VR, Babu RN (2018) Genome wide analysis of NAC transcription factors and their expression pattern during high temperature and drought stress in groundnut. Afr Crop Sci J 26:327–348

    Article  Google Scholar 

  • Sun H, Huang X, Xu X, Lan H, Huang J, Zhang H-S (2012) ENAC1, a NAC transcription factor, is an early and transient response regulator induced by abiotic stress in rice. Mol Biotechnol 52:101–110

    Article  CAS  PubMed  Google Scholar 

  • Tak H, Negi S, Ganapathi TR (2017) Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance. Protoplasma 254:803–816

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  Google Scholar 

  • Thao NP, Thu NBA, Hoang XLT, Ha CV, Tran L-SP (2013) Differential expression analysis of a subset of drought-responsive GmNAC genes in two soybean cultivars differing in drought tolerance. Int J Mol Sci 14:23828–23841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thirumalaikumar VP, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller-Roeber B, Balazadeh S (2018) NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnol J 16:354–366

    Article  CAS  PubMed  Google Scholar 

  • Thu NBA, Hoang XLT, Doan H, Nguyen TH, Bui D, Thao NP, Tran L-SP (2014) Differential expression analysis of a subset of GmNAC genes in shoots of two contrasting drought-responsive soybean cultivars DT51 and MTD720 under normal and drought conditions. Mol Biol Rep 41:5563–5569

    Article  PubMed  CAS  Google Scholar 

  • Tran L-SP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran LS, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2010) Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1:32–39

    Article  PubMed  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 20:161

    Google Scholar 

  • Wang G, Zhang S, Ma X, Wang Y, Kong F, Meng Q (2016a) A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiol Plant 158:45–64

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-X, Liu Z-W, Wu Z-J, Li H, Zhuang J (2016b) Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L.) O. Kuntze]. PLoS ONE 11:e0166727

    Google Scholar 

  • Wang L, Hu Z, Zhu M, Zhu Z, Hu J, Qanmber G, Chen G (2017) The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Plant Cell Tiss Organ Cult 129:161–174

    Article  CAS  Google Scholar 

  • Wu H, Fu B, Sun P, Xiao C, Liu J-H (2016) A NAC transcription factor represses putrescine biosynthesis and affects drought tolerance. Plant Physiol 172:1532–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Sun Y, Wang H, Shi H, Su M, Shan H, Li T, Li Q (2018) The SlNAC8 gene of the halophyte Suaeda liaotungensis enhances drought and salt stress tolerance in transgenic Arabidopsis thaliana. Gene 662:10–20

    Article  CAS  PubMed  Google Scholar 

  • Xie L-n, Chen M, Min D-h, Feng L, Xu Z-s, Zhou Y-b, Xu D-b, Li L-c, Ma Y-z, Zhang X-h (2017) The NAC-like transcription factor SiNAC110 in foxtail millet (Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway. J Integr Agr 16:559–571

    Article  CAS  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Liu Y, Wang S, Tao Y, Wang Z, Shu Y, Peng H, Mijiti A, Wang Z, Zhang H, Ma H (2016) CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis. Plant Cell Rep 35:613–627

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Wang H, Cai J, Bi Y, Li D, Song F (2019) Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biol 19:278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang XM, Yu HJ, Sun C, Deng J, Zhang X, Liu P, Li YY, Li Q, Jiang WJ (2017) Genome-wide characterization and expression profiling of the NAC genes under abiotic stresses in Cucumis sativus. Plant Physiol Biochem 113:98–109

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li D, Wang Y, Zhou R, Wang L, Zhang Y, Yu J, Gong H, You J, Zhang X (2018) Genome-wide identification and comprehensive analysis of the NAC transcription factor family in Sesamum indicum. PLoS ONE 13:e0199262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao X, Yang X, Pei S, He G, Wang X, Tang Q, Jia C, Lu Y, Hu R, Zhou G (2016) The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis. Gene 586:158–169

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Lee C, Ye ZH (2010) Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends Plant Sci 15:625–632

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number C2018-28-04 and Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 106-NN.02-2015.85.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Lan Thi Hoang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoang, X.L.T., Nguyen, YN.H., Thao, N.P., Tran, LS.P. (2020). NAC Transcription Factors in Drought and Salinity Tolerance. In: Hasanuzzaman, M., Tanveer, M. (eds) Salt and Drought Stress Tolerance in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-40277-8_14

Download citation

Publish with us

Policies and ethics