Skip to main content

Heparan Sulfate in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Abstract

The biology of tumor cells strictly depends on their microenvironment architecture and composition, which controls the availability of growth factors and signaling molecules. Thus, the network of glycosaminoglycans, proteoglycans, and proteins known as extracellular matrix (ECM) that surrounds the cells plays a central role in the regulation of tumor fate. Heparan sulfate (HS) and heparan sulfate proteoglycans (HSPGs) are highly versatile ECM components that bind and regulate the activity of growth factors, cell membrane receptors, and other ECM molecules. These HS binding partners modulate cell adhesion, motility, and proliferation that are processes altered during tumor progression. Modification in the expression and activity of HS, HSPGs, and the respective metabolic enzymes results unavoidably in alteration of tumor cell microenvironment. In this light, the targeting of HS structure and metabolism is potentially a new tool in the treatment of different cancer types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Theocharis AD, Gialeli C, Bouris P, Giannopoulou E, Skandalis SS, Aletras AJ, Iozzo RV, Karamanos NK (2014) Cell-matrix interactions: focus on proteoglycan-proteinase interplay and pharmacological targeting in cancer. FEBS J 281:5023–5042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Karamanos NK, Theocharis AD, Neill T, Iozzo RV (2019) Matrix modeling and remodeling: a biological interplay regulating tissue homeostasis and diseases. Matrix Biol 75–76:1–11

    Article  PubMed  CAS  Google Scholar 

  3. Pudełko A, Wisowski G, Olczyk K, Koźma EM (2019) The dual role of the glycosaminoglycan chondroitin-6-sulfate in the development, progression and metastasis of cancer. FEBS J 286:1815–1837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Liao WC, Liao CK, Tsai YH, Tseng TJ, Chuang LC, Lan CT, Chang HM, Liu CH (2018) DSE promotes aggressive glioma cell phenotypes by enhancing HB-EGF/ErbB signaling. PLoS One 13:e0198364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lim HC, Multhaupt HA, Couchman JR (2015) Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells. Mol Cancer 14:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thelin MA, Svensson KJ, Shi X, Bagher M, Axelsson J, Isinger-Ekstrand A, van Kuppevelt TH, Johansson J, Nilbert M, Zaia J, Belting M, Maccarana M, Malmström A (2012) Dermatan sulfate is involved in the tumorigenic properties of esophagus squamous cell carcinoma. Cancer Res 72:1943–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karousou E, Misra S, Ghatak S, Dobra K, Götte M, Vigetti D, Passi A, Karamanos NK, Skandalis SS (2017) Roles and targeting of the HAS/hyaluronan/CD44 molecular system in cancer. Matrix Biol 59:3–22

    Article  CAS  PubMed  Google Scholar 

  8. Tavianatou AG, Caon I, Franchi M, Piperigkou Z, Galesso D, Karamanos NK (2019) Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J 286:2883

    Article  CAS  PubMed  Google Scholar 

  9. Gallagher JT, Walker A (1985) Molecular distinctions between heparan sulphate and heparin. Analysis of sulphation patterns indicates that heparan sulphate and heparin are separate families of N-sulphated polysaccharides. Biochem J 230:665–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV (2018) Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics. Chem Rev 118:9152–9232

    Article  CAS  PubMed  Google Scholar 

  11. Li JP, Kusche-Gullberg M (2016) Heparan sulfate: biosynthesis, structure, and function. Int Rev Cell Mol Biol 325:215–273

    Article  CAS  PubMed  Google Scholar 

  12. Presto J, Thuveson M, Carlsson P, Busse M, Wilén M, Eriksson I, Kusche-Gullberg M, Kjellén L (2008) Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation. Proc Natl Acad Sci U S A 105:4751–4756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Viola M, Vigetti D, Karousou E, Bartolini B, Genasetti A, Rizzi M, Clerici M, Pallotti F, De Luca G, Passi A (2008) New electrophoretic and chromatographic techniques for analysis of heparin and heparan sulfate. Electrophoresis 29:3168–3174

    Article  CAS  PubMed  Google Scholar 

  14. Ledin J, Staatz W, Li JP, Götte M, Selleck S, Kjellén L, Spillmann D (2004) Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 279:42732–42741

    Article  CAS  PubMed  Google Scholar 

  15. Holmborn K, Ledin J, Smeds E, Eriksson I, Kusche-Gullberg M, Kjellén L (2004) Heparan sulfate synthesized by mouse embryonic stem cells deficient in NDST1 and NDST2 is 6-O-sulfated but contains no N-sulfate groups. J Biol Chem 279:42355–42358

    Article  CAS  PubMed  Google Scholar 

  16. Li JP, Gong F, Hagner-McWhirter A, Forsberg E, Abrink M, Kisilevsky R, Zhang X, Lindahl U (2003) Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J Biol Chem 278:28363–28366

    Article  CAS  PubMed  Google Scholar 

  17. Bishop JR, Stanford KI, Esko JD (2008) Heparan sulfate proteoglycans and triglyceride-rich lipoprotein metabolism. Curr Opin Lipidol 19:307–313

    Article  CAS  PubMed  Google Scholar 

  18. Viola M, Brüggemann K, Karousou E, Caon I, Caravà E, Vigetti D, Greve B, Stock C, De Luca G, Passi A, Götte M (2017) MDA-MB-231 breast cancer cell viability, motility and matrix adhesion are regulated by a complex interplay of heparan sulfate, chondroitin-/dermatan sulfate and hyaluronan biosynthesis. Glycoconj J 34:411–420

    Article  CAS  PubMed  Google Scholar 

  19. Vlodavsky I, Friedmann Y, Elkin M, Aingorn H, Atzmon R, Ishai-Michaeli R, Bitan M, Pappo O, Peretz T, Michal I, Spector L, Pecker I (1999) Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med 5:793–802

    Article  CAS  PubMed  Google Scholar 

  20. Couchman JR, Gopal S, Lim HC, Nørgaard S, Multhaupt HA (2015) Fell-Muir Lecture: Syndecans: from peripheral coreceptors to mainstream regulators of cell behaviour. Int J Exp Pathol 96:1–10

    Article  CAS  PubMed  Google Scholar 

  21. Fransson LA, Belting M, Cheng F, Jönsson M, Mani K, Sandgren S (2004) Novel aspects of glypican glycobiology. Cell Mol Life Sci 61:1016–1024

    Article  CAS  PubMed  Google Scholar 

  22. Li N, Gao W, Zhang YF, Ho M (2018) Glypicans as cancer therapeutic targets. Trends Cancer 4:741–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baghy K, Tátrai P, Regős E, Kovalszky I (2016) Proteoglycans in liver cancer. World J Gastroenterol 22:379–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ettner N, Göhring W, Sasaki T, Mann K, Timpl R (1998) The N-terminal globular domain of the laminin alpha1 chain binds to alpha1beta1 and alpha2beta1 integrins and to the heparan sulfate-containing domains of perlecan. FEBS Lett 430:217–221

    Article  CAS  PubMed  Google Scholar 

  25. Gubbiotti MA, Neill T, Iozzo RV (2017) A current view of perlecan in physiology and pathology: a mosaic of functions. Matrix Biol 57–58:285–298

    Article  PubMed  CAS  Google Scholar 

  26. Zhou Z, Wang J, Cao R, Morita H, Soininen R, Chan KM, Liu B, Cao Y, Tryggvason K (2004) Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res 64:4699–4702

    Article  CAS  PubMed  Google Scholar 

  27. Kawashima H, Watanabe N, Hirose M, Sun X, Atarashi K, Kimura T, Shikata K, Matsuda M, Ogawa D, Heljasvaara R, Rehn M, Pihlajaniemi T, Miyasaka M (2003) Collagen XVIII, a basement membrane heparan sulfate proteoglycan, interacts with L-selectin and monocyte chemoattractant protein-1. J Biol Chem 278:13069–13076

    Article  CAS  PubMed  Google Scholar 

  28. Didangelos A, Yin X, Mandal K, Baumert M, Jahangiri M, Mayr M (2010) Proteomics characterization of extracellular space components in the human aorta. Mol Cell Proteomics 9:2048–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Casu B, Naggi A, Torri G (2010) Heparin-derived heparan sulfate mimics to modulate heparan sulfate-protein interaction in inflammation and cancer. Matrix Biol 29:442–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Capila I, Linhardt RJ (2002) Heparin-protein interactions. Angew Chem Int Ed Engl 41:391–412

    Article  PubMed  Google Scholar 

  31. Cardin AD, Weintraub HJ (1989) Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9:21–32

    Article  CAS  PubMed  Google Scholar 

  32. Billings PC, Pacifici M (2015) Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries. Connect Tissue Res 56:272–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gallagher JT (2001) Heparan sulfate: growth control with a restricted sequence menu. J Clin Invest 108:357–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kreuger J, Matsumoto T, Vanwildemeersch M, Sasaki T, Timpl R, Claesson-Welsh L, Spillmann D, Lindahl U (2002) Role of heparan sulfate domain organization in endostatin inhibition of endothelial cell function. EMBO J 21:6303–6311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471

    Article  CAS  PubMed  Google Scholar 

  36. Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037

    Article  CAS  PubMed  Google Scholar 

  37. Raman K, Kuberan B (2010) Chemical tumor biology of heparan sulfate proteoglycans. Curr Chem Biol 4:20–31

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777

    Article  CAS  PubMed  Google Scholar 

  39. Sanderson RD, Yang Y (2008) Syndecan-1: a dynamic regulator of the myeloma microenvironment. Clin Exp Metastasis 25:149–159

    Article  CAS  PubMed  Google Scholar 

  40. Szatmári T, Ötvös R, Hjerpe A, Dobra K (2015) Syndecan-1 in cancer: implications for cell signaling, differentiation, and prognostication. Dis Markers 2015:796052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129

    Article  CAS  PubMed  Google Scholar 

  42. Mundhenke C, Meyer K, Drew S, Friedl A (2002) Heparan sulfate proteoglycans as regulators of fibroblast growth factor-2 receptor binding in breast carcinomas. Am J Pathol 160:185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu X, Kan M, Wang F, Jin C, Yu C, McKeehan WL (2001) A rare premalignant prostate tumor epithelial cell syndecan-1 forms a fibroblast growth factor-binding complex with progression-promoting ectopic fibroblast growth factor receptor 1. Cancer Res 61:5295–5302

    CAS  PubMed  Google Scholar 

  44. Seidel C, Sundan A, Hjorth M, Turesson I, Dahl IM, Abildgaard N, Waage A, Borset M (2000) Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood 95:388–392

    Article  CAS  PubMed  Google Scholar 

  45. Khotskaya YB, Dai Y, Ritchie JP, MacLeod V, Yang Y, Zinn K, Sanderson RD (2009) Syndecan-1 is required for robust growth, vascularization, and metastasis of myeloma tumors in vivo. J Biol Chem 284:26085–26095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ortiz MV, Roberts SS, Glade Bender J, Shukla N, Wexler LH (2019) Immunotherapeutic targeting of GPC3 in pediatric solid embryonal tumors. Front Oncol 9:108

    Article  PubMed  PubMed Central  Google Scholar 

  47. Matsuda K, Maruyama H, Guo F, Kleeff J, Itakura J, Matsumoto Y, Lander AD, Korc M (2001) Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res 61:5562–5569

    CAS  PubMed  Google Scholar 

  48. Spivak-Kroizman T, Lemmon MA, Dikic I, Ladbury JE, Pinchasi D, Huang J, Jaye M, Crumley G, Schlessinger J, Lax I (1994) Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell 79:1015–1024

    Article  CAS  PubMed  Google Scholar 

  49. Tanaka M, Ishikawa S, Ushiku T, Morikawa T, Isagawa T, Yamagishi M, Yamamoto H, Katoh H, Takeshita K, Arita J, Sakamoto Y, Hasegawa K, Kokudo N, Fukayama M (2017) EVI1 modulates oncogenic role of GPC1 in pancreatic carcinogenesis. Oncotarget 8:99552–99566

    PubMed  PubMed Central  Google Scholar 

  50. Su G, Meyer K, Nandini CD, Qiao D, Salamat S, Friedl A (2006) Glypican-1 is frequently overexpressed in human gliomas and enhances FGF-2 signaling in glioma cells. Am J Pathol 168:2014–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Feng M, Gao W, Wang R, Chen W, Man YG, Figg WD, Wang XW, Dimitrov DS, Ho M (2013) Therapeutically targeting glypican-3 via a conformation-specific single-domain antibody in hepatocellular carcinoma. Proc Natl Acad Sci U S A 110:E1083–E1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang X, Couchman JR (2003) Perlecan and tumor angiogenesis. J Histochem Cytochem 51:1393–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Walia A, Yang JF, Huang YH, Rosenblatt MI, Chang JH, Azar DT (2015) Endostatin’s emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. Biochim Biophys Acta 1850:2422–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dhar DK, Ono T, Yamanoi A, Soda Y, Yamaguchi E, Rahman MA, Kohno H, Nagasue N (2002) Serum endostatin predicts tumor vascularity in hepatocellular carcinoma. Cancer 95:2188–2195

    Article  CAS  PubMed  Google Scholar 

  55. Musso O, Rehn M, Théret N, Turlin B, Bioulac-Sage P, Lotrian D, Campion JP, Pihlajaniemi T, Clément B (2001) Tumor progression is associated with a significant decrease in the expression of the endostatin precursor collagen XVIII in human hepatocellular carcinomas. Cancer Res 61:45–49

    CAS  PubMed  Google Scholar 

  56. Heljasvaara R, Aikio M, Ruotsalainen H, Pihlajaniemi T (2017) Collagen XVIII in tissue homeostasis and dysregulation – lessons learned from model organisms and human patients. Matrix Biol 57–58:55–75

    Article  PubMed  CAS  Google Scholar 

  57. Chakraborty S, Lakshmanan M, Swa HL, Chen J, Zhang X, Ong YS, Loo LS, Akıncılar SC, Gunaratne J, Tergaonkar V, Hui KM, Hong W (2015) An oncogenic role of Agrin in regulating focal adhesion integrity in hepatocellular carcinoma. Nat Commun 6:6184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Steiner E, Enzmann GU, Lyck R, Lin S, Rüegg MA, Kröger S, Engelhardt B (2014) The heparan sulfate proteoglycan agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions. Cell Tissue Res 358:465–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Koziel L, Kunath M, Kelly OG, Vortkamp A (2004) Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev Cell 6:801–813

    Article  CAS  PubMed  Google Scholar 

  60. Chang SC, Mulloy B, Magee AI, Couchman JR (2011) Two distinct sites in sonic Hedgehog combine for heparan sulfate interactions and cell signaling functions. J Biol Chem 286:44391–44402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Saleh ME, Gadalla R, Hassan H, Afifi A, Götte M, El-Shinawi M, Mohamed MM, Ibrahim SA (2019) The immunomodulatory role of tumor Syndecan-1 (CD138) on ex vivo tumor microenvironmental CD4+ T cell polarization in inflammatory and non-inflammatory breast cancer patients. PLoS One 14:e0217550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ibrahim SA, Gadalla R, El-Ghonaimy EA, Samir O, Mohamed HT, Hassan H, Greve B, El-Shinawi M, Mohamed MM, Götte M (2017) Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, Notch and EGFR signaling pathways. Mol Cancer 16:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Vreys V, Delande N, Zhang Z, Coomans C, Roebroek A, Dürr J, David G (2005) Cellular uptake of mammalian heparanase precursor involves low density lipoprotein receptor-related proteins, mannose 6-phosphate receptors, and heparan sulfate proteoglycans. J Biol Chem 280:33141–33148

    Article  CAS  PubMed  Google Scholar 

  64. Wood RJ, Hulett MD (2008) Cell surface-expressed cation-independent mannose 6-phosphate receptor (CD222) binds enzymatically active heparanase independently of mannose 6-phosphate to promote extracellular matrix degradation. J Biol Chem 283:4165–4176

    Article  CAS  PubMed  Google Scholar 

  65. Barash U, Cohen-Kaplan V, Arvatz G, Gingis-Velitski S, Levy-Adam F, Nativ O, Shemesh R, Ayalon-Sofer M, Ilan N, Vlodavsky I (2010) A novel human heparanase splice variant, T5, endowed with protumorigenic characteristics. FASEB J 24:1239–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ilan N, Elkin M, Vlodavsky I (2006) Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38:2018–2039

    Article  CAS  PubMed  Google Scholar 

  67. Sanderson RD, Iozzo RV (2012) Targeting heparanase for cancer therapy at the tumor-matrix interface. Matrix Biol 31:283–284

    Article  CAS  PubMed  Google Scholar 

  68. Nobuhisa T, Naomoto Y, Ohkawa T, Takaoka M, Ono R, Murata T, Gunduz M, Shirakawa Y, Yamatsuji T, Haisa M, Matsuoka J, Tsujigiwa H, Nagatsuka H, Nakajima M, Tanaka N (2005) Heparanase expression correlates with malignant potential in human colon cancer. J Cancer Res Clin Oncol 131:229–237

    Article  CAS  PubMed  Google Scholar 

  69. Doweck I, Kaplan-Cohen V, Naroditsky I, Sabo E, Ilan N, Vlodavsky I (2006) Heparanase localization and expression by head and neck cancer: correlation with tumor progression and patient survival. Neoplasia 8:1055–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Leiser Y, Abu-El-Naaj I, Sabo E, Akrish S, Ilan N, Ben-Izhak O, Peled M, Vlodavsky I (2011) Prognostic value of heparanase expression and cellular localization in oral cancer. Head Neck 33:871–877

    Article  PubMed  Google Scholar 

  71. Iozzo RV, Sanderson RD (2011) Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J Cell Mol Med 15:1013–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fears CY, Woods A (2006) The role of syndecans in disease and wound healing. Matrix Biol 25:443–456

    Article  CAS  PubMed  Google Scholar 

  73. Piperigkou Z, Mohr B, Karamanos N, Götte M (2016) Shed proteoglycans in tumor stroma. Cell Tissue Res 365:643–655

    Article  CAS  PubMed  Google Scholar 

  74. Akbarshahi H, Axelsson JB, Said K, Malmström A, Fischer H, Andersson R (2011) TLR4 dependent heparan sulphate-induced pancreatic inflammatory response is IRF3-mediated. J Transl Med 9:219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miliotou AN, Papadopoulou LC (2018) CAR T-cell therapy: a new era in cancer immunotherapy. Curr Pharm Biotechnol 19:5–18

    Article  PubMed  CAS  Google Scholar 

  76. Vlodavsky I, Elkin M, Abboud-Jarrous G, Levi-Adam F, Fuks L, Shafat I, Ilan N (2008) Heparanase: one molecule with multiple functions in cancer progression. Connect Tissue Res 49:207–210

    Article  CAS  PubMed  Google Scholar 

  77. Vlodavsky I, Singh P, Boyango I, Gutter-Kapon L, Elkin M, Sanderson RD, Ilan N (2016) Heparanase: from basic research to therapeutic applications in cancer and inflammation. Drug Resist Updat 29:54–75

    Article  PubMed  PubMed Central  Google Scholar 

  78. Vlodavsky I, Ilan N, Naggi A, Casu B (2007) Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Curr Pharm Des 13:2057–2073

    Article  CAS  PubMed  Google Scholar 

  79. Hammond E, Khurana A, Shridhar V, Dredge K (2014) The role of heparanase and sulfatases in the modification of heparan sulfate proteoglycans within the tumor microenvironment and opportunities for novel cancer therapeutics. Front Oncol 4:195

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fux L, Ilan N, Sanderson RD, Vlodavsky I (2009) Heparanase: busy at the cell surface. Trends Biochem Sci 34:511–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu L, Viola CM, Brzozowski AM, Davies GJ (2015) Structural characterization of human heparanase reveals insights into substrate recognition. Nat Struct Mol Biol 22:1016–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Heyman B, Yang Y (2016) Mechanisms of heparanase inhibitors in cancer therapy. Exp Hematol 44:1002–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jia L, Ma S (2016) Recent advances in the discovery of heparanase inhibitors as anti-cancer agents. Eur J Med Chem 121:209–220

    Article  CAS  PubMed  Google Scholar 

  84. Casu B, Vlodavsky I, Sanderson RD (2008) Non-anticoagulant heparins and inhibition of cancer. Pathophysiol Haemost Thromb 36:195–203

    Article  PubMed  CAS  Google Scholar 

  85. Macbeth F, Noble S, Evans J, Ahmed S, Cohen D, Hood K, Knoyle D, Linnane S, Longo M, Moore B, Woll PJ, Appel W, Dickson J, Ferry D, Brammer C, Griffiths G (2016) Randomized phase III trial of standard therapy plus low molecular weight heparin in patients with lung cancer: FRAGMATIC trial. J Clin Oncol 34:488–494

    Article  CAS  PubMed  Google Scholar 

  86. Mohan CD, Hari S, Preetham HD, Rangappa S, Barash U, Ilan N, Nayak SC, Gupta VK, Basappa, Vlodavsky I, Rangappa KS (2019) Targeting heparanase in cancer: inhibition by synthetic, chemically modified, and natural compounds. iScience 15:360–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kisker O, Becker CM, Prox D, Fannon M, D’Amato R, Flynn E, Fogler WE, Sim BK, Allred EN, Pirie-Shepherd SR, Folkman J (2001) Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res 61:7669–7674

    CAS  PubMed  Google Scholar 

  88. Yang H, Sui Y, Guo X, Tan X, Li Y, Wang M (2018) Endostar continuous intravenous infusion combined with S-1 and oxaliplatin chemotherapy could be effective in treating liver metastasis from gastric cancer. J Cancer Res Ther 14:S1148–S1151

    Article  CAS  PubMed  Google Scholar 

  89. Cheng YJ, Meng CT, Ying HY, Zhou JF, Yan XY, Gao X, Zhou N, Bai CM (2018) Effect of Endostar combined with chemotherapy in advanced well-differentiated pancreatic neuroendocrine tumors. Medicine (Baltimore) 97:e12750

    Article  CAS  Google Scholar 

  90. Dogra P, Martin EB, Williams A, Richardson RL, Foster JS, Hackenback N, Kennel SJ, Sparer TE, Wall JS (2015) Novel heparan sulfate-binding peptides for blocking herpesvirus entry. PLoS One 10:e0126239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Vlodavsky I, Gross-Cohen M, Weissmann M, Ilan N, Sanderson RD (2018) Opposing functions of heparanase-1 and heparanase-2 in cancer progression. Trends Biochem Sci 43:18–31

    Article  CAS  PubMed  Google Scholar 

  92. Ma YQ, Geng JG (2000) Heparan sulfate-like proteoglycans mediate adhesion of human malignant melanoma A375 cells to P-selectin under flow. J Immunol 165:558–565

    Article  CAS  PubMed  Google Scholar 

  93. Cole GJ, Loewy A, Glaser L (1986) Neuronal cell-cell adhesion depends on interactions of N-CAM with heparin-like molecules. Nature 320:445–447

    Article  CAS  PubMed  Google Scholar 

  94. Coombe DR, Watt SM, Parish CR (1994) Mac-1 (CD11b/CD18) and CD45 mediate the adhesion of hematopoietic progenitor cells to stromal cell elements via recognition of stromal heparan sulfate. Blood 84:739–752

    Article  CAS  PubMed  Google Scholar 

  95. Powell AK, Yates EA, Fernig DG, Turnbull JE (2004) Interactions of heparin/heparan sulfate with proteins: appraisal of structural factors and experimental approaches. Glycobiology 14:17R–30R

    Article  CAS  PubMed  Google Scholar 

  96. Rohde LH, Janatpore MJ, McMaster MT, Fisher S, Zhou Y, Lim KH, French M, Hoke D, Julian J, Carson DD (1998) Complementary expression of HIP, a cell-surface heparan sulfate binding protein, and perlecan at the human fetal-maternal interface. Biol Reprod 58:1075–1083

    Article  CAS  PubMed  Google Scholar 

  97. Sasisekharan R, Shriver Z, Venkataraman G, Narayanasami U (2002) Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2:521–528

    Article  CAS  PubMed  Google Scholar 

  98. Taylor KR, Gallo RL (2006) Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J 20:9–22

    Article  CAS  PubMed  Google Scholar 

  99. Utani A, Nomizu M, Matsuura H, Kato K, Kobayashi T, Takeda U, Aota S, Nielsen PK, Shinkai H (2001) A unique sequence of the laminin alpha 3 G domain binds to heparin and promotes cell adhesion through syndecan-2 and -4. J Biol Chem 276:28779–28788

    Article  CAS  PubMed  Google Scholar 

  100. Saito Y, Imazeki H, Miura S, Yoshimura T, Okutsu H, Harada Y, Ohwaki T, Nagao O, Kamiya S, Hayashi R, Kodama H, Handa H, Yoshida T, Fukai F (2007) A peptide derived from tenascin-C induces beta1 integrin activation through syndecan-4. J Biol Chem 282:34929–34937

    Article  CAS  PubMed  Google Scholar 

  101. Nunes SS, Outeiro-Bernstein MA, Juliano L, Vardiero F, Nader HB, Woods A, Legrand C, Morandi V (2008) Syndecan-4 contributes to endothelial tubulogenesis through interactions with two motifs inside the pro-angiogenic N-terminal domain of thrombospondin-1. J Cell Physiol 214:828–837

    Article  CAS  PubMed  Google Scholar 

  102. Wilkins-Port CE, McKeown-Longo PJ (1996) Heparan sulfate proteoglycans function in the binding and degradation of vitronectin by fibroblast monolayers. Biochem Cell Biol 74:887–897

    Article  CAS  PubMed  Google Scholar 

  103. Aviezer D, Yayon A (1994) Heparin-dependent binding and autophosphorylation of epidermal growth factor (EGF) receptor by heparin-binding EGF-like growth factor but not by EGF. Proc Natl Acad Sci U S A 91:12173–12177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gambarini AG, Miyamoto CA, Lima GA, Nader HB, Dietrich CP (1993) Mitogenic activity of acidic fibroblast growth factor is enhanced by highly sulfated oligosaccharides derived from heparin and heparan sulfate. Mol Cell Biochem 124:121–129

    Article  CAS  PubMed  Google Scholar 

  105. Iozzo RV, San Antonio JD (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108:349–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dietz F, Franken S, Yoshida K, Nakamura H, Kappler J, Gieselmann V (2002) The family of hepatoma-derived growth factor proteins: characterization of a new member HRP-4 and classification of its subfamilies. Biochem J 366:491–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Athanassiades A, Lala PK (1998) Role of placenta growth factor (PIGF) in human extravillous trophoblast proliferation, migration and invasiveness. Placenta 19:465–473

    Article  CAS  PubMed  Google Scholar 

  108. Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M, Pals ST (2002) Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 99:1405–1410

    Article  CAS  PubMed  Google Scholar 

  109. Häcker U, Nybakken K, Perrimon N (2005) Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 6:530–541

    Article  PubMed  CAS  Google Scholar 

  110. Koopmann W, Ediriwickrema C, Krangel MS (1999) Structure and function of the glycosaminoglycan binding site of chemokine macrophage-inflammatory protein-1 beta. J Immunol 163:2120–2127

    CAS  PubMed  Google Scholar 

  111. Handel TM, Johnson Z, Crown SE, Lau EK, Proudfoot AE (2005) Regulation of protein function by glycosaminoglycans--as exemplified by chemokines. Annu Rev Biochem 74:385–410

    Article  CAS  PubMed  Google Scholar 

  112. Johnson Z, Proudfoot AE, Handel TM (2005) Interaction of chemokines and glycosaminoglycans: a new twist in the regulation of chemokine function with opportunities for therapeutic intervention. Cytokine Growth Factor Rev 16:625–636

    Article  CAS  PubMed  Google Scholar 

  113. Raman R, Sasisekharan V, Sasisekharan R (2005) Structural insights into biological roles of protein-glycosaminoglycan interactions. Chem Biol 12:267–277

    Article  CAS  PubMed  Google Scholar 

  114. Schenauer MR, Yu Y, Sweeney MD, Leary JA (2007) CCR2 chemokines bind selectively to acetylated heparan sulfate octasaccharides. J Biol Chem 282:25182–25188

    Article  CAS  PubMed  Google Scholar 

  115. Vlodavsky I, Goldshmidt O, Zcharia E, Atzmon R, Rangini-Guatta Z, Elkin M, Peretz T, Friedmann Y (2002) Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development. Semin Cancer Biol 12:121–129

    Article  CAS  PubMed  Google Scholar 

  116. Tanino Y, Coombe DR, Gill SE, Kett WC, Kajikawa O, Proudfoot AE, Wells TN, Parks WC, Wight TN, Martin TR, Frevert CW (2010) Kinetics of chemokine-glycosaminoglycan interactions control neutrophil migration into the airspaces of the lungs. J Immunol 184:2677–2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sulpice E, Bryckaert M, Lacour J, Contreres JO, Tobelem G (2002) Platelet factor 4 inhibits FGF2-induced endothelial cell proliferation via the extracellular signal-regulated kinase pathway but not by the phosphatidylinositol 3-kinase pathway. Blood 100:3087–3094

    Article  CAS  PubMed  Google Scholar 

  118. Furukawa K, Bhavanandan VP (1982) Influence of glycosaminoglycans on endogenous DNA synthesis in isolated normal and cancer cell nuclei. Differential effect of heparin. Biochim Biophys Acta 697:344–352

    Article  CAS  PubMed  Google Scholar 

  119. Nozik-Grayck E, Suliman HB, Piantadosi CA (2005) Extracellular superoxide dismutase. Int J Biochem Cell Biol 37:2466–2471

    Article  CAS  PubMed  Google Scholar 

  120. Soncin F, Strydom DJ, Shapiro R (1997) Interaction of heparin with human angiogenin. J Biol Chem 272:9818–9824

    Article  CAS  PubMed  Google Scholar 

  121. Almeida PC, Nantes IL, Chagas JR, Rizzi CC, Faljoni-Alario A, Carmona E, Juliano L, Nader HB, Tersariol IL (2001) Cathepsin B activity regulation. Heparin-like glycosaminogylcans protect human cathepsin B from alkaline pH-induced inactivation. J Biol Chem 276:944–951

    Article  CAS  PubMed  Google Scholar 

  122. Campbell EJ, Owen CA (2007) The sulfate groups of chondroitin sulfate- and heparan sulfate-containing proteoglycans in neutrophil plasma membranes are novel binding sites for human leukocyte elastase and cathepsin G. J Biol Chem 282:14645–14654

    Article  CAS  PubMed  Google Scholar 

  123. Mulloy B, Linhardt RJ (2001) Order out of complexity--protein structures that interact with heparin. Curr Opin Struct Biol 11:623–628

    Article  CAS  PubMed  Google Scholar 

  124. Ben-Zaken O, Tzaban S, Tal Y, Horonchik L, Esko JD, Vlodavsky I, Taraboulos A (2003) Cellular heparan sulfate participates in the metabolism of prions. J Biol Chem 278:40041–40049

    Article  CAS  PubMed  Google Scholar 

  125. Patey SJ, Edwards EA, Yates EA, Turnbull JE (2008) Engineered heparins: novel beta-secretase inhibitors as potential Alzheimer’s disease therapeutics. Neurodegener Dis 5:197–199

    Article  CAS  PubMed  Google Scholar 

  126. Shinjo SK, Tersariol IL, Oliveira V, Nakaie CR, Oshiro ME, Ferreira AT, Santos IA, Dietrich CP, Nader HB (2002) Heparin and heparan sulfate disaccharides bind to the exchanger inhibitor peptide region of Na+/Ca2+ exchanger and reduce the cytosolic calcium of smooth muscle cell lines. Requirement of C4-C5 unsaturation and 1--> 4 glycosidic linkage for activity. J Biol Chem 277:48227–48233

    Article  CAS  PubMed  Google Scholar 

  127. Tersariol IL, Dietrich CP, Nader HB (1992) Interaction of heparin with myosin ATPase: possible involvement with the hemorrhagic activity and a correlation with antithrombin III high affinity-heparin molecules. Thromb Res 68:247–258

    Article  CAS  PubMed  Google Scholar 

  128. Dreyfuss JL, Regatieri CV, Jarrouge TR, Cavalheiro RP, Sampaio LO, Nader HB (2009) Heparan sulfate proteoglycans: structure, protein interactions and cell signaling. An Acad Bras Cienc 81:409–429

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian grant PRIN2017 (prot. 2017T8CMCY, EK); the regional fund “Bando Regione Lombardia R&S per Aggregazioni, ID 147523” (IC and A. Passi); and the PhD course “Life Science and Biotechnology” of the University of Insubria (A. Parnigoni).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manuela Viola or Evgenia Karousou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bartolini, B. et al. (2020). Heparan Sulfate in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1245. Springer, Cham. https://doi.org/10.1007/978-3-030-40146-7_7

Download citation

Publish with us

Policies and ethics