Skip to main content

Nano-agrochemicals: Economic Potential and Future Trends

  • Chapter
  • First Online:
Nanobiotechnology in Agriculture

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nano-agrochemical is an amalgamation of nanotechnology and agrochemicals, which has resulted in the production of nano-fertilizers, nano-herbicides, nano-fungicides, nano-pesticides, and nano-insecticides. Nowadays, these nano-agrochemicals have gained popularity due to their greater effectiveness compared to conventional agrochemicals thereby making them economically viable and eco-friendly. Besides, nano-agrochemicals owing to their enormous benefits in agriculture have helped the farmers economically by increasing the yield of crops both qualitatively and quantitatively, thereby substituting synthetic fertilizers and pesticides in order to maximize the output and conserve the input which leads to economic prosperity. Thus, it can be inferred that this technology will be leading in principal markets with escalated investments and innovation. However, nano-agrochemicals are still in their infancy and are facing obstruction to reach the farmers and the possible reasons being greater production cost, lack of awareness among farmers, impact on environment, humans, and so on. In near future, novel agro-formulations like organic based nano-materials with greater benefits are believed to transform and upgrade agriculture to a greater extent across the world. In this chapter the authors will discuss about the economic importance and future trends of the nano-agrochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfadul SM, Altahir OS, Khan M (2017) Application of nanotechnology in the field of food production. Acad J Sci Res 5(7):143–154

    Google Scholar 

  • Bass RJ, Koch RC, Richards HC, Thorpe JE (1981) Tricyclic amides: a new class of systemic fungicides active against rice blast disease. J Agric Food Chem 29(3):576–579

    Article  CAS  Google Scholar 

  • Berekaa MM (2015) Nanotechnology in food industry; advances in food processing, packaging and food safety. Int J Curr Microbiol App Sci 4(5):345–357

    CAS  Google Scholar 

  • Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nanoparticles-a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493

    CAS  Google Scholar 

  • Bhupinder SS (2014) Nanotechnology in Agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Google Scholar 

  • Brock DA, Douglas TE, Queller DC, Strassmann JE (2011) Primitive agriculture in a social amoeba. Nature 469:393–396

    Article  CAS  PubMed  Google Scholar 

  • Capinera JL, Dickens K (2016) Some effects of copper-based fungicides on plant feeding terrestrial molluscs: a role for repellents in mollusc management. Crop Prot 83:76–82

    Article  CAS  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594

    Article  CAS  Google Scholar 

  • Chinnamuttu CR, Kokiladevi E (2007) Weed management through nanoherbicides. In: Application of nanotechnology in agriculture, vol 10. Tamil Nadu Agricultural University, Coimbatore, pp 978–981

    Google Scholar 

  • Claudia P, Mauro V, Emilio RC (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127

    Article  CAS  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 14:826–833

    Article  Google Scholar 

  • FAO/WHO (2013) Food and Agriculture Organization of the United Nations and World Health Organization. State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors, in FAO/WHO Technical Paper. Available online at http://www.fao.org/docrep/018/i3281e/i3281e.pdf

  • Francisco JFA, MaríaCarbú CG, Inmaculada V, Jesús MC (2007) Proteomic advances in phytopathogenic Fungi. Curr Proteomics 4(2):79–88

    Article  Google Scholar 

  • Ghaly AE (2009) The black cutworm as a potential human food. Am J Biochem Biotechnol 5(4):210–220

    Article  CAS  Google Scholar 

  • Giraud T, Gladieux P, Gavrilets S (2010) Linking the emergence of fungal plant diseases with ecological speciation. Trends Ecol Evol 25(7):387–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutierrez FM, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, Ruiz F, Bach H, Gay YA (2010) Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine 6:681–688

    Article  CAS  Google Scholar 

  • Hamid RB (2012) Study effects of nitrogen fertilizer management under nano iron chelate foliar spraying on yield and yield components of eggplant (Solanum melongena L.). ARPN J Agric Biol Sci 7(4):233–237

    Google Scholar 

  • Hatschek E (1931) Inventor, Electro Chem. Processes, Ltd, assignee. British patent no 392, 556. Nov 17, 1931. Brouisol

    Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215

    Article  CAS  PubMed  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu KA, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109(1):185–194

    Article  PubMed  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate and exposure modelling. Crit Rev Environ Sci Technol 43:1823–1867

    Article  CAS  Google Scholar 

  • Kamel AAE, Mousa AA (2015) Nanobiofungicides: is it the next-generation of fungicides. J Nanotechnol Mater Sci 2:1–3

    Google Scholar 

  • Kanhed P, Birla S, Gaikwad S, Gade A, Amedea BS, Rubilar O (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17

    Article  CAS  Google Scholar 

  • Klabunde KJ (2002) Nanoscale materials in chemistry. Wiley, New York, p 1

    Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nano-pesticides: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Liscano JF, Wilson CE, Norman RJ, Slaton NA (2000) Zinc availability to rice from seven granular fertilizers. AAES Res Bulletin 963:1–31

    Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  PubMed  Google Scholar 

  • Liu XM, Zhang FD, Zhang SQ, He XS, Fang R, Feng Z (2005) Effects of Nano-ferric oxide on the growth and nutrients absorption of peanut. Plant Nutr Fert Sci 11:14–18

    Google Scholar 

  • Lundqvist J, Hellman B, Oskarsson A (2016) Fungicide prochloraz induces oxidative stress and DNA damage in vitro. Food Chem Toxicol 91:36–41

    Article  CAS  PubMed  Google Scholar 

  • Meena DS, Gautam C, Patidar OP, Meena HM, Prakasha G, Vishwajith M (2017) Nano-fertilizers is a new way to increase nutrients use efficiency in crop production. Int J Agric Sci 9(7):75–91

    Google Scholar 

  • Mura S, Seddaiu G, Bacchini F, Roggero PP, Greppi GF (2013) Advances of nanotechnology in agro-environmental studies. Ital J Agron 8(3):18

    Article  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Mohammad MR, Yanju L, Ravi N (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64(7):1447–1483

    Article  CAS  PubMed  Google Scholar 

  • Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340

    Article  CAS  PubMed  Google Scholar 

  • Parul S, Adikshita S, Monica S, Nikhil B, Pedro E, Aditya J, Preeti T, Atul T (2017) Nanomaterial fungicides: in vitro and in vivo antimycotic activity of cobalt and nickel nanoferrites on phytopathogenic fungi. Global Chall 1(9):1–7

    Google Scholar 

  • Phogat N, Khan SA, Shankar S, Ansary AA, Uddin I (2016) Fate of inorganic nanoparticles in agriculture. Adv Mater Lett 7(1):03–12

    Article  CAS  Google Scholar 

  • Pimentel D (2009) Pesticide and pest control. In: Peshin P, Dhawan AK (eds) Integrated pest management: innovation-development process. Springer, Dordrecht, pp 83–87

    Chapter  Google Scholar 

  • Pirozzi AV, Stellavato A, La Gatta A, Lamberti M, Schiraldi C (2016) Mancozeb, a fungicide routinely used in agriculture, worsens nonalcoholic fatty liver disease in the human HepG2 cell mode. Toxicol Lett 249:1–4

    Article  CAS  PubMed  Google Scholar 

  • Qureshi A, Singh DK, Dwivedi S (2018) Nano-fertilizers: a novel way for enhancing nutrient use efficiency and crop productivity. Int J Curr Microbiol App Sci 7(2):3325–3335

    Article  CAS  Google Scholar 

  • Ragsdale NN, Sisler HD (1994) Social and political implications of managing plant diseases with decreased availability of fungicides in the United States. Annu Rev Phytopathol 32:545–557

    Article  CAS  PubMed  Google Scholar 

  • Rajemahadik VA, Chavan SA, More VG, Chavan VG, Chavan AP, Shetye VN (2018) Nanotechnology: innovative approach in crop nutrition management. Int J Agric Sci 10(8):0975–9107

    Google Scholar 

  • Scott N, Chen H (2002) Nanoscale science and engineering for agriculture and food systems. In: Report Submitted to Cooperative State Research, Education and Extension Service of the US Department of Agriculture. Available online at http://www.nseafs.cornell.edu/web.roadmap.pdf

  • Sekhon BS (2014) Nanotechnology in Agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Shalini S (2006) Nanotechnology: basic science to emerging technology. APH Publishing, New Delhi, p 121

    Google Scholar 

  • Shukla Y, Arora A (2001) Transplacental carcinogenic potential of the carbamate fungicide mancozeb. J Environ Pathol Toxicol Oncol 20(2):127–131

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar JC, Agarwal A, Raliya R, Kumar P, Burman U, Kaul RK (2012) ZnO nanoparticles induced synthesis of polysaccharides and phosphatases by Aspergillus Fungi. Adv Sci Eng Med 4:1–5

    Article  CAS  Google Scholar 

  • van Bruggen AH, Finckh MR (2016) Plant diseases and management approaches in organic farming systems. Annu Rev Phytopathol 4:25–54

    Article  CAS  Google Scholar 

  • Vidyalakshmi R, Bhakyaraj R, Subhasree RS (2009) Encapsulation “the future of probiotics” – a review. Adv Biol Res 3(3–4):96–103

    Google Scholar 

  • Vinutha JS, Bhagat D, Bakthavatsalam N (2013) Nanotechnology in the management of polyphagous pest Helicoverpa armigera. J Acad Indus Res 1(10):606–608

    Google Scholar 

  • Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharma Sci 02(03):40–44

    Google Scholar 

  • Watson SB, Gergely A, Janus ER (2011) Where is “Agronanotechnology” heading in the United States and European Union. Nat Resour Environ 26:8–12

    Google Scholar 

  • Wiesner-Hanks T, Nelson R (2016) Multiple disease resistance in plants. Annu Rev Phytopathol 54:229–252

    Article  CAS  PubMed  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum Herbst. (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qazi, G., Dar, F.A. (2020). Nano-agrochemicals: Economic Potential and Future Trends. In: Hakeem, K., Pirzadah, T. (eds) Nanobiotechnology in Agriculture. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-39978-8_11

Download citation

Publish with us

Policies and ethics