Skip to main content

Coding for ‘Dynamic’ Information: Vocal Expression of Emotional Arousal and Valence in Non-human Animals

  • Chapter
  • First Online:
Coding Strategies in Vertebrate Acoustic Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 7))

Abstract

Emotions guide behavioural decisions in response to events or stimuli of importance for the organism, and thus, are an important component of an animal’s life. Communicating emotions to conspecifics allows, in turn, the regulation of social interactions (e.g. approach and avoidance). The existence of common rules governing vocal expression of affective states across species has been proposed as a function of the motivational state (i.e. intention of behaviour) of the emitter (‘motivation-structural rules’) and as a function the two main dimensions of emotions, valence (positive versus negative) and arousal (bodily activation). In this chapter, I review the potential for vocalisations to serve as universal non-invasive indicators of animal emotions, by considering the latest evidence for common rules existing across species according to the two dimensions of emotions (‘emotional-dimension rules’). Vocal indicators of emotional arousal have been relatively well studied. Cross-species comparison shows that, when arousal increases, vocalisations tend to be louder and are produced at faster rates, with higher frequencies (both source- and filter-related) and a more variable fundamental frequency (F0). In contrast, indicators of valence have only been investigated in a few species. The evidence so far indicates that, compared with negative vocalisations, positive vocalisations tend to be shorter, with a lower and less variable F0. Yet, comparison of vocal indicators of valence between closely related species suggests that these indicators are more species specific than indicators of arousal, which have clearly been conserved throughout evolution. To conclude, I further suggest a new set of rules that could explain the acoustic structure of vocalisations across species, which combine features predicted by the motivation-structural rules, the emotional-dimension rules, and characteristics of the social relationship involving the emitter and receiver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson DJ, Adolphs R (2014) A framework for studying emotions across species. Cell 157:187–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • August PV, Anderson JGT (1987) Mammal sounds and motivation–structural rules: a test of the hypothesis. J Mammal 68:1–9

    Article  Google Scholar 

  • Bastian A, Schmidt S (2008) Affect cues in vocalizations of the bat, Megaderma lyra, during agonistic interactions. J Acoust Soc Am 124:598–608

    Article  PubMed  Google Scholar 

  • Blumstein DT, Armitage KB (1997) Alarm calling in yellow-bellied marmots: I. The meaning of situationally variable alarm calls. Anim Behav 53:143–171

    Article  Google Scholar 

  • Blumstein DT, Arnold W (1995) Situational specificity in Alpine-marmot alarm communication. Ethology 100:1–13

    Article  Google Scholar 

  • Blumstein DT, Chi YY (2012) Scared and less noisy: glucocorticoids are associated with alarm call entropy. Biol Lett 8:189–192

    Article  PubMed  Google Scholar 

  • Boissy A, Manteuffel G, Jensen MB et al (2007) Assessment of positive emotions in animals to improve their welfare. Physiol Behav 92:375–397

    Article  CAS  PubMed  Google Scholar 

  • Bradley MM, Lang PJ (2007) The International Affective Picture System (IAPS) in the study of emotion and attention. In: Coan JA, Allen JBB (eds) Handbook of emotion elicitation and assessment. Oxford University Press, New York, pp 29–46

    Google Scholar 

  • Bradley M, Codispoti M, Cuthbert B, Lang P (2001) Emotion and motivation I: defensive and appetitive reactions in picture processing. Emot Wash DC 1:276–298

    CAS  Google Scholar 

  • Briefer EF (2012) Vocal expression of emotions in mammals: mechanisms of production and evidence. J Zool 288:1–20

    Article  Google Scholar 

  • Briefer EF, McElligott AG (2013) Rescued goats at a sanctuary display positive mood after former neglect. Appl Anim Behav Sci 146:45–55

    Article  Google Scholar 

  • Briefer EF, Maigrot A-L, Mandel R et al (2015a) Segregation of information about emotional arousal and valence in horse whinnies. Sci Rep 4:9989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briefer EF, Tettamanti F, McElligott AG (2015b) Emotions in goats: mapping physiological, behavioural and vocal profiles. Anim Behav 99:131–143

    Article  Google Scholar 

  • Briefer EF, Vizier E, Gygax L, Hillmann E (2019) Expression of emotional valence in pig closed-mouth grunts: involvement of both source- and filter-related parameters. J Acoust Soc Am 145:2895

    Article  PubMed  Google Scholar 

  • Briefer Freymond S, Briefer EF, Zollinger A et al (2014) Behaviour of horses in a judgment bias test associated with positive or negative reinforcement. Appl Anim Behav Sci 158:34–45

    Article  Google Scholar 

  • Briefer Freymond S, Bardou D, Briefer EF et al (2015) The physiological consequences of crib-biting in horses in response to an ACTH challenge test. Physiol Behav 151:121–128

    Article  CAS  PubMed  Google Scholar 

  • Brudzynski SM (2007) Ultrasonic calls of rats as indicator variables of negative or positive states: acetylcholine–dopamine interaction and acoustic coding. Behav Brain Res 182:261–273

    Article  CAS  PubMed  Google Scholar 

  • Budka M, Osiejuk TS (2013) Formant frequencies are acoustic cues to caller discrimination and are a weak indicator of the body size of corncrake males. Ethology 119:960–969

    Google Scholar 

  • Burgdorf J, Moskal JR (2009) Frequency modulated 50 kHz ultrasonic vocalizations reflect a positive emotional state in the rat: neural substrates and therapeutic implications. In: Brudzynski SM (ed) Handbook of mammalian vocalization—an integrative neuroscience approach. Academic, London, pp 209–214

    Google Scholar 

  • Burman O, McGowan R, Mendl M et al (2011) Using judgement bias to measure positive affective state in dogs. Appl Anim Behav Sci 132:160–168

    Article  Google Scholar 

  • Caeiro CC, Waller BM, Zimmermann E et al (2013) OrangFACS: a muscle-based facial movement coding system for orangutans (Pongo spp.). Int J Primatol 34:115–129

    Article  Google Scholar 

  • Chan WY (2011) The meaning of barks: vocal communication of fearful and playful affective states in pigs. PhD thesis, Washington State University

    Google Scholar 

  • Cilulko J, Janiszewski P, Bogdaszewski M, Szczygielska E (2013) Infrared thermal imaging in studies of wild animals. Eur J Wildl Res 59:17–23

    Article  Google Scholar 

  • Clay Z, Archbold J, Zuberbühler K (2015) Functional flexibility in wild bonobo vocal behaviour. PeerJ 3:e1124

    Article  PubMed  PubMed Central  Google Scholar 

  • Collias NE (1960) An ecological and functional classification of animals sounds. In: Lanyon WE, Tavolga WN (eds) Animal sounds and communication. American Institute of Biological Science, Washington, DC, pp 368–391

    Google Scholar 

  • Collins KT, McGreevy PD, Wheatley KE, Harcourt RG (2011) The influence of behavioural context on Weddell seal (Leptonychotes weddellii) airborne mother-pup vocalisation. Behav Proc 87:286–290

    Article  Google Scholar 

  • Dalla Costa E, Minero M, Lebelt D et al (2014) Development of the Horse Grimace Scale (HGS) as a pain assessment tool in horses undergoing routine castration. PLoS One 9:e92281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darwin C (1872) The expressions of emotions in man and animals. John Murray, London

    Book  Google Scholar 

  • Dawkins MS (1990) From an animal’s point of view: motivation, fitness, and animal welfare. Behav Brain Sci 13:1–61

    Article  Google Scholar 

  • Désiré L, Boissy A, Veissier I (2002) Emotions in farm animals: a new approach to animal welfare in applied ethology. Behav Proc 60:165–180

    Article  Google Scholar 

  • Dolan RJ (2002) Emotion, cognition, and behavior. Science 298:1191

    Article  CAS  PubMed  Google Scholar 

  • Doyle RE, Hinch GN, Fisher AD et al (2011) Administration of serotonin inhibitor p-Chlorophenylalanine induces pessimistic-like judgement bias in sheep. Psychoneuroendocrinology 36:279–288

    Article  CAS  PubMed  Google Scholar 

  • Dunlop RA (2017) Potential motivational information encoded within humpback whale non-song vocal sounds. J Acoust Soc Am 141:2204–2213

    Article  PubMed  Google Scholar 

  • Ehret G (2006) Common rules of communication sound perception. In: Kanwal J, Ehret G (eds) Behaviour and neurodynamics for auditory communication. Cambridge University Press, Cambridge, pp 85–114

    Google Scholar 

  • Fant G (1960) Acoustic theory of speech production. Mouton, The Hague

    Google Scholar 

  • Faragó T, Pongrácz P, Range F et al (2010) “The bone is mine”: affective and referential aspects of dog growls. Anim Behav 79:917–925

    Article  Google Scholar 

  • Fichtel C, Hammerschmidt K, Jürgens U (2001) On the vocal expression of emotion. A multi-parametric analysis of different states of aversion in the squirrel monkey. Behaviour 138:97–116

    Article  Google Scholar 

  • Fitch WT (1999) Acoustic exaggeration of size in birds via tracheal elongation: comparative and theoretical analyses. J Zool 248:31–48

    Article  Google Scholar 

  • Fitch WT, Kelley JP (2000) Perception of vocal tract resonances by whooping cranes Grus americana. Ethology 106:559–574

    Article  Google Scholar 

  • Fraser D (2009) Animal behaviour, animal welfare and the scientific study of affect. Spec Issue Anim Suff Welf 118:108–117

    Google Scholar 

  • Geberzahn N, Aubin T (2014) How a songbird with a continuous singing style modulates its song when territorially challenged. Behav Ecol Sociobiol 68:1–12

    Article  PubMed  Google Scholar 

  • Gerhardt HC (1998) Acoustic signals of animals: recording, field measurements, analysis and description. In: Hopp SL, Owren MJ, Evans CS (eds) Animal acoustic communication: sound analysis and research methods. Springer, Berlin, pp 1–25

    Google Scholar 

  • Giddens CL, Barron KW, Byrd-Craven J et al (2013) Vocal indices of stress: a review. J Voice 27:390.e21–390.e29

    Article  Google Scholar 

  • Gogoleva S, Svetlana S, Volodin I et al (2010a) Sign and strength of emotional arousal: vocal correlates of positive and negative attitudes to humans in silver foxes (Vulpes vulpes). Behaviour 147:1713–1736

    Article  Google Scholar 

  • Gogoleva S, Volodina E, Volodin I et al (2010b) The gradual vocal responses to human-provoked discomfort in farmed silver foxes. Acta Ethol 13:75–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Goudbeek M, Scherer KR (2010) Beyond arousal: valence and potency/control cues in the vocal expression of emotion. J Acoust Soc Am 128:1322–1336

    Article  PubMed  Google Scholar 

  • Gouzoules H, Gouzoules S (1989) Design features and developmental modification of pigtail macaque, Macaca nemestrina, agonistic screams. Anim Behav 37:383–401

    Article  Google Scholar 

  • Gygax L, Reefmann N, Wolf M, Langbein J (2013) Prefrontal cortex activity, sympatho-vagal reaction and behaviour distinguish between situations of feed reward and frustration in dwarf goats. Behav Brain Res 239:104–114

    Article  PubMed  Google Scholar 

  • Illmann G, Hammerschmidt K, Špinka M, Tallet C (2013) Calling by domestic piglets during simulated crushing and isolation: a signal of need? PLoS One 8:e83529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imfeld-Mueller S, Hillmann E (2012) Anticipation of a food ball increases short-term activity levels in growing pigs. Appl Anim Behav Sci 137:23–29

    Article  Google Scholar 

  • Imfeld-Mueller S, Van Wezemael L, Stauffacher M et al (2011) Do pigs distinguish between situations of different emotional valences during anticipation? Appl Anim Behav Sci 131:86–93

    Article  Google Scholar 

  • Jacobsen NK (1979) Alarm bradycardia in white-tailed deer fawns (Odocoileus virginianus). J Mammal 60:343–349

    Article  Google Scholar 

  • Janik VM, Slater PJB (1997) Vocal learning in mammals. Adv Stud Behav 26:59–99

    Article  Google Scholar 

  • Jovanovic T, Gouzoules H (2001) Effects of nonmaternal restraint on the vocalizations of infant rhesus monkeys (Macaca mulatta). Am J Prim 53:33–45

    Article  CAS  Google Scholar 

  • Jürgens U (1976) Reinforcing concomitants of electrically elicited vocalizations. Exp Brain Res 26:203–214

    Article  PubMed  Google Scholar 

  • Jürgens U (2002) Neural pathways underlying vocal control. Neurosci Biobehav Rev 26:235–258

    Article  PubMed  Google Scholar 

  • Jürgens U (2009) The neural control of vocalization in mammals: a review. J Voice 23:1–10

    Article  PubMed  Google Scholar 

  • Jürgens U, Ploog D (1981) On the neural control of mammalian vocalization. Trends Neurosci 4:135–137

    Article  Google Scholar 

  • Kelly T, Reby D, Levréro F, Keenan S, Gustafson E, Koutseff A, Mathevon N (2017) Adult human perception of distress in the cries of bonobo, chimpanzee, and human infants. Biol J Linn Soc 120:919–930

    Article  Google Scholar 

  • Kirkden RD, Pajor EA (2006) Using preference, motivation and aversion tests to ask scientific questions about animals’ feelings. Appl Anim Behav Sci 100:29–47

    Article  Google Scholar 

  • Klump GM, Shalter MD (1984) Acoustic behaviour of birds and mammals in the predator context; I. Factors affecting the structure of alarm signals. II. The functional significance and evolution of alarm signals. Z Für Tierpsychol 66:189–226

    Article  Google Scholar 

  • Knutson B, Burgdorf J, Panksepp J (2002) Ultrasonic vocalizations as indices of affective states in rats. Psychol Bull 128:961–977

    Article  PubMed  Google Scholar 

  • Kuppens P, Tuerlinckx F, Russell JA, Barrett LF (2013) The relation between valence and arousal in subjective experience. Psychol Bull 139:917–940

    Article  PubMed  Google Scholar 

  • Laukka P, Juslin P, Bresin R (2005) A dimensional approach to vocal expression of emotion. Cogn Emot 19:633–653

    Article  Google Scholar 

  • Lazarus RS (1991) Progress on a cognitive-motivational-relational theory of emotion. Am Psychol 46:819

    Article  CAS  PubMed  Google Scholar 

  • Leliveld LMC, Düpjan S, Tuchscherer A, Puppe B (2016) Behavioural and physiological measures indicate subtle variations in the emotional valence of young pigs. Physiol Behav 157:116–124

    Article  CAS  PubMed  Google Scholar 

  • Lemasson A, Remeuf K, Trabalon M et al (2015) Mares prefer the voices of highly fertile stallions. PLoS One 10:e0118468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linhart P, Ratcliffe VF, Reby D, Špinka M (2015) Expression of emotional arousal in two different piglet call types. PLoS One 10:e0135414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maigrot A, Hillmann E, Callista A, Briefer EF (2017) Vocal expression of emotional valence in Przewalski’s horses. Sci Rep 18:8779

    Article  CAS  Google Scholar 

  • Maigrot AL, Hillmann E, Briefer EF (2018) Encoding of emotional valence in wild boars (Sus scrofa) calls. Animals 8:85

    Article  PubMed Central  Google Scholar 

  • Manser MB (2001) The acoustic structure of suricates’ alarm calls varies with predator type and the level of response urgency. Proc R Soc B 268:2315–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manser MB (2010) The generation of functionally referential and motivational vocal signals in mammals. In: Brudzynski SM (ed) Handbook of mammalian vocalization—an integrative neuroscience approach. Academic, London, pp 477–486

    Chapter  Google Scholar 

  • Manser MB, Seyfarth RM, Cheney DL (2002) Suricate alarm calls signal predator class and urgency. Trends Cogn Sci 6:55–57

    Article  PubMed  Google Scholar 

  • Manteuffel G, Puppe B, Schön P-C (2004) Vocalization of farm animals as a measure of welfare. Appl Anim Behav Sci 88:163–182

    Article  Google Scholar 

  • Marchant JN, Whittaker X, Broom DM (2001) Vocalisations of the adult female domestic pig during a standard human approach test and their relationships with behavioural and heart rate measures. Appl Anim Behav Sci 72:23–39

    Article  PubMed  Google Scholar 

  • Mausbach J, Braga Goncalves I, Heistermann M et al (2017) Meerkat close calling patterns are linked to sex, social category, season and wind, but not fecal glucocorticoid metabolite concentrations. PLoS One 12:e0175371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meise K, Keller C, Cowlishaw G, Fischer J (2011) Sources of acoustic variation: implications for production specificity and call categorization in chacma baboon (Papio ursinus) grunts. J Acoust Soc Am 129:1631–1641

    Article  PubMed  Google Scholar 

  • Mendl M, Burman OHP, Parker RMA, Paul ES (2009) Cognitive bias as an indicator of animal emotion and welfare: emerging evidence and underlying mechanisms. Appl Anim Behav Sci 118:161–181

    Article  Google Scholar 

  • Mendl M, Burman OHP, Paul ES (2010) An integrative and functional framework for the study of animal emotion and mood. Proc R Soc B 277:2895–2904

    Article  PubMed  PubMed Central  Google Scholar 

  • Merlot E, Mounier AM, Prunier A (2011) Endocrine response of gilts to various common stressors: a comparison of indicators and methods of analysis. Physiol Behav 102:259–265

    Article  CAS  PubMed  Google Scholar 

  • Monticelli PF, Tokumaru RS, Ades C (2004) Isolation induced changes in Guinea Pig Cavia porcellus pup distress whistles. Acad Bras Cienc 76:368–372

    Article  Google Scholar 

  • Morton ES (1977) On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. Am Nat 111:855–869

    Article  Google Scholar 

  • Moura DJ, Silva WT, Naas IA et al (2008) Real time computer stress monitoring of piglets using vocalization analysis. Smart Sens Precis Livest Farming 64:11–18

    Google Scholar 

  • Mukudai S, Matsuda KI, Nishio T et al (2015) Differential responses to steroid hormones in fibroblasts from the vocal fold, trachea, and esophagus. Endocrinology 156:1000–1009

    Article  CAS  PubMed  Google Scholar 

  • Nowicki S (1987) Vocal tract resonances in oscine bird sound production: evidence from birdsongs in a helium atmosphere. Nature 325:53–55

    Article  CAS  PubMed  Google Scholar 

  • Orlikoff RF, Baken RJ (1989) The effect of the heartbeat on vocal fundamental frequency perturbation. J Speech Lang Hear Res 32:576–582

    Article  CAS  Google Scholar 

  • Perez EC, Elie JE, Soulage CO et al (2012) The acoustic expression of stress in a songbird: does corticosterone drive isolation-induced modifications of zebra finch calls? Horm Behav 61:573–581

    Article  CAS  PubMed  Google Scholar 

  • Peters G (1984) On the structure of friendly close range vocalizations in terrestrial carnivores (Mammalia: Carnivora: Fissipedia). Z Für Säugetierkd 49:157–182

    Google Scholar 

  • Peters G (2002) Purring and similar vocalizations in mammals. Mammal Rev 32:245–271

    Article  Google Scholar 

  • Pisanski K, Nowak J, Sorokowski P (2016) Individual differences in cortisol stress response predict increases in voice pitch during exam stress. Physiol Behav 163:234–238

    Article  CAS  PubMed  Google Scholar 

  • Porges SW (1995) Orienting in a defensive world: mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology 32:301–318

    Article  CAS  PubMed  Google Scholar 

  • Porges SW (2001) The polyvagal theory: phylogenetic substrates of a social nervous system. Int J Psychophysiol 42:123–146

    Article  CAS  PubMed  Google Scholar 

  • Porges SW, Lewis GF (2010) The polyvagal hypothesis: common mechanisms mediating autonomic regulation, vocalizations and listening. In: Brudzynski SM (ed) Handbook of mammalian vocalization—an integrative neuroscience approach. Academic, London, pp 255–264

    Chapter  Google Scholar 

  • Proctor HS, Carder G (2014) Can ear postures reliably measure the positive emotional state of cows? Appl Anim Behav Sci 161:20–27

    Article  Google Scholar 

  • Proctor HS, Carder G (2015a) Nasal temperatures in dairy cows are influenced by positive emotional state. Physiol Behav 138:340–344

    Article  CAS  PubMed  Google Scholar 

  • Proctor HS, Carder G (2015b) Measuring positive emotions in cows: do visible eye whites tell us anything? Physiol Behav 147:1–6

    Article  CAS  PubMed  Google Scholar 

  • Proctor SH, Carder G, Cornish RA (2013) Searching for animal sentience: a systematic review of the scientific literature. Animals 3:882–906

    Article  PubMed  PubMed Central  Google Scholar 

  • Puppe B, Schön P-C, Tuchscherer A, Manteuffel G (2005) Castration-induced vocalisation in domestic piglets, Sus scrofa: complex and specific alterations of the vocal quality. Appl Anim Behav Sci 95:67–78

    Article  Google Scholar 

  • Puts DA, Gaulin SJC, Verdolini K (2006) Dominance and the evolution of sexual dimorphism in human voice pitch. Evol Hum Behav 27:283–296

    Article  Google Scholar 

  • Reber SA, Nishimura T, Janisch J et al (2015) A Chinese alligator in heliox: formant frequencies in a crocodilian. J Exp Biol 218:2442

    Article  PubMed  PubMed Central  Google Scholar 

  • Reber SA, Janisch J, Torregrosa K et al (2017) Formants provide honest acoustic cues to body size in American alligators. Sci Rep 7:1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reefmann N, Bütikofer Kaszàs F, Wechsler B, Gygax L (2009a) Ear and tail postures as indicators of emotional valence in sheep. Appl Anim Behav Sci 118:199–207

    Article  Google Scholar 

  • Reefmann N, Bütikofer Kaszàs F, Wechsler B, Gygax L (2009b) Physiological expression of emotional reactions in sheep. Physiol Behav 98:235–241

    Article  CAS  PubMed  Google Scholar 

  • Reefmann N, Wechsler B, Gygax L (2009c) Behavioural and physiological assessment of positive and negative emotion in sheep. Anim Behav 78:651–659

    Article  Google Scholar 

  • Reimert I, Bolhuis JE, Rodenburg TB (2013) Indicators of positive and negative emotions and emotional contagion in pigs. Physiol Behav 17:45–50

    Google Scholar 

  • Rendall D (2003) Acoustic correlates of caller identity and affect intensity in the vowel-like grunt vocalizations of baboons. J Acoust Soc Am 113:3390–3402

    Article  PubMed  Google Scholar 

  • Romero LM (2004) Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19:249–255

    Article  PubMed  Google Scholar 

  • Ross MD, Owren MJ, Zimmermann E (2009) Reconstructing the evolution of laughter in great apes and humans. Curr Biol 19:1106–1111

    Article  CAS  Google Scholar 

  • Russell J (1980) A circumplex model of affect. J Pers Soc Psychol 39:1161–1178

    Article  Google Scholar 

  • Scheiner E, Fischer J (2011) Emotion expression—the evolutionary heritage in the human voice. In: Welsch W, Singer W, Wunder A (eds) Interdisciplinary anthropology: the continuing evolution of man. Springer, Heidelberg, pp 105–130

    Chapter  Google Scholar 

  • Scherer KR (1979) Nonlinguistic vocal indicators of emotion and psychopathology. In: Izard CE (ed) Emotions in personality and psychopathology. Plenum, New York, pp 493–529

    Chapter  Google Scholar 

  • Scherer RK (1981) Vocal indicators of stress. In: Darby J (ed) The evaluation of speech in psychiatry. Grune and Stratton, New York, pp 171–187

    Google Scholar 

  • Scherer KR (1984) On the nature and function of emotion: a component process approach. In: Scherer KR, Ekman P (eds) Approaches to emotion. Erlbaum, Hillsdale, NJ, pp 293–317

    Google Scholar 

  • Scherer KR (1986) Vocal affect expression: a review and a model for future research. Psychol Bull 99:143–165

    Article  CAS  PubMed  Google Scholar 

  • Scherer KR (2009) The dynamic architecture of emotion: evidence for the component process model. Cogn Emot 23:1307–1351

    Article  Google Scholar 

  • Scherer KR, Banse R, Wallbott HG (2001) Emotion inferences from vocal expression correlate across languages and cultures. J Cross Cult Psychol 32:76–92

    Article  Google Scholar 

  • Scheumann M, Zimmermann E, Deichsel G (2007) Context-specific calls signal infants’ needs in a strepsirrhine primate, the gray mouse lemur (Microcebus murinus). Dev Psychobiol 49:708–718

    Article  PubMed  Google Scholar 

  • Scheumann M, Roser A-E, Konerding W et al (2012) Vocal correlates of sender-identity and arousal in the isolation calls of domestic kitten (Felis silvestris catus). Front Zool 9:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Schön P-C, Puppe B, Manteuffel G (2004) Automated recording of stress vocalization as a tool to document impaired welfare in pigs. Anim Welf 13:105–110

    Google Scholar 

  • Schrader L, Todt D (1993) Contact call parameters covary with social context in common marmosets, Callithrix j. jacchus. Anim Behav 46:1026–1028

    Article  Google Scholar 

  • Schrader L, Todt D (1998) Vocal quality is correlated with levels of stress hormones in domestic pigs. Ethology 104:859–876

    Article  Google Scholar 

  • Searcy WA, Beecher MD (2009) Song as an aggressive signal in songbirds. Anim Behav 78:1281–1292

    Article  Google Scholar 

  • Seyfarth RM, Cheney DL, Marler P (1980) Vervet monkey alarm calls: semantic communication in a free-ranging primate. Anim Behav 28:1070–1094

    Article  Google Scholar 

  • Siebert ER, Parr LA (2003) A structural and contextual analysis of chimpanzee screams. Ann N Acad Sci 1000:104–109

    Article  Google Scholar 

  • Siebert K, Langbein J, Schön P-C et al (2011) Degree of social isolation affects behavioural and vocal response patterns in dwarf goats (Capra hircus). Appl Anim Behav Sci 131:53–62

    Article  Google Scholar 

  • Soltis J, Blowers TE, Savage A (2011) Measuring positive and negative affect in the voiced sounds of African elephants (Loxodonta africana). J Acoust Soc Am 129:1059–1066

    Article  PubMed  Google Scholar 

  • Sotocinal SG, Sorge RE, Zaloum A et al (2011) The Rat Grimace Scale: a partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol Pain 7:55

    PubMed  PubMed Central  Google Scholar 

  • Stoeger AS, Baotic A, Li D, Charlton BD (2012) Acoustic features indicate arousal in infant giant panda vocalisations. Ethology 118:896–905

    Article  Google Scholar 

  • Tallet C, Linhart P, Policht R et al (2013) Encoding of situations in the vocal repertoire of piglets (Sus scrofa): a comparison of discrete and graded classifications. PLoS One 8:e71841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor AM, Reby D (2010) The contribution of source-filter theory to mammal vocal communication research. J Zool 280:221–236

    Article  Google Scholar 

  • Taylor AM, Reby D, McComb K (2009) Context-related variation in the vocal growling behaviour of the domestic dog (Canis familiaris). Ethology 115:905–915

    Article  Google Scholar 

  • Taylor AM, Charlton BD, Reby D (2016a) Vocal production by terrestrial mammals: source, filter, and function. In: Suthers RA, Fitch WT, Fay RR, Popper AN (eds) Vertebrate sound production and acoustic communication. Springer, Cham, pp 229–259

    Chapter  Google Scholar 

  • Taylor CJ, Freeman L, Olguin Olguin D, Kim T (2016b) Deviation in voice pitch as a measure of physiological stress response to group processes. Adv Group Process 33:211–242

    Article  Google Scholar 

  • Titze IR (1994) Principles of voice production. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Townsend SW, Manser MB (2013) Functionally referential communication in mammals: the past, present and the future. Ethology 119:1–11

    Article  Google Scholar 

  • Vehrencamp SL, Yantachka J, Hall ML, de Kort SR (2013) Trill performance components vary with age, season, and motivation in the banded wren. Behav Ecol Sociobiol 67:409–419

    Article  CAS  PubMed  Google Scholar 

  • Veissier I, Boissy A, Désiré L, Greiveldinger L (2009) Animals’ emotions: studies in sheep using appraisal theories. Anim Welf 18:347–354

    CAS  Google Scholar 

  • Vögeli S, Wolf M, Wechsler B, Gygax L (2015) Housing conditions influence cortical and behavioural reactions of sheep in response to videos showing social interactions of different valence. Behav Brain Res 284:69–76

    Article  PubMed  Google Scholar 

  • Waller BM, Lembeck M, Kuchenbuch P et al (2012) GibbonFACS: a muscle-based facial movement coding system for hylobatids. Int J Primatol 33:809–821

    Article  Google Scholar 

  • Wathan J, Burrows AM, Waller BM, McComb K (2015) EquiFACS: the equine facial action coding system. PLoS One 10:e0131738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts JM, Stookey JM (1999) Effects of restraint and branding on rates and acoustic parameters of vocalization in beef cattle. Appl Anim Behav Sci 62:125–135

    Article  Google Scholar 

  • Weary DM, Braithwaite LA, Fraser D (1998) Vocal response to pain in piglets. Appl Anim Behav Sci 56:161–172

    Article  Google Scholar 

  • Yeon SC, Kim YK, Park SJ et al (2011) Differences between vocalization evoked by social stimuli in feral cats and house cats. Behav Proc 87:183–189

    Article  Google Scholar 

  • Yin S, McCowan B (2004) Barking in domestic dogs: context specificity and individual identification. Anim Behav 68:343–355

    Article  Google Scholar 

  • Zahavi A (1982) The pattern of vocal signals and the information they convey. Behaviour 80:1–8

    Article  Google Scholar 

  • Zimmermann E, Leliveld LMC, Schehka S (2013) Towards the evolutionary roots of affective prosody in human acoustic communication: a comparative approach to mammalian voices. In: Altenmüller E, Schmidt S, Zimmermann E (eds) Evolution of emotional communication: from sounds in nonhuman mammals to speech and music in man. Oxford University Press, Oxford, pp 116–132

    Chapter  Google Scholar 

Download references

Acknowledgements

I thank the Swiss National Science Foundation for funding the project on vocal expression of emotions in domestic and wild ungulates mentioned in this chapter (project no. PZ00P3_148200) and the ETH Zürich for the possibility to spend time on reading for and writing this text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elodie F. Briefer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Briefer, E.F. (2020). Coding for ‘Dynamic’ Information: Vocal Expression of Emotional Arousal and Valence in Non-human Animals. In: Aubin, T., Mathevon, N. (eds) Coding Strategies in Vertebrate Acoustic Communication. Animal Signals and Communication, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-39200-0_6

Download citation

Publish with us

Policies and ethics