Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12009))

Abstract

Deep learning based registration methods have emerged as alternatives to traditional registration methods, with competitive accuracy and significantly less runtime. Two different strategies have been proposed to train such deep learning registration networks: supervised training strategy where the model is trained to regress to generated ground truth deformation; and unsupervised training strategy where the model directly optimises the similarity between the registered images. In this work, we directly compare the performance of these two training strategies for cardiac motion estimation on cardiac cine MR sequences. Testing on real cardiac MRI data shows that while the supervised training yields more regular deformation, the unsupervised more accurately captures the deformation of anatomical structures in cardiac motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    UK Biobank Imaging Study. http://imaging.ukbiobank.ac.uk.

  2. 2.

    https://mirtk.github.io/.

References

  1. Balakrishnan, G., Zhao, A., Sabuncu, M.R., et al.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38, 1788–1800 (2019)

    Article  Google Scholar 

  2. Cao, X., et al.: Deformable image registration based on similarity-steered CNN regression. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 300–308. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_35

    Chapter  Google Scholar 

  3. Eppenhof, K.A., Lafarge, M.W., Moeskops, P., et al.: Deformable image registration using convolutional neural networks. In: Medical Imaging 2018: Image Processing, vol. 10574, p. 105740S (2018)

    Google Scholar 

  4. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  5. Krebs, J., e Delingette, H., Mailhé, B., et al.: Learning a probabilistic model for diffeomorphic registration. IEEE Trans. Med. Imaging 38, 2165–2176 (2019)

    Article  Google Scholar 

  6. Qin, C., et al.: Joint learning of motion estimation and segmentation for cardiac MR image sequences. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 472–480. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_53

    Chapter  Google Scholar 

  7. Rueckert, D., Sonoda, L.I., Hayes, C., et al.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  8. Shen, D., Sundar, H., Xue, Z., Fan, Y., Litt, H.: Consistent estimation of cardiac motions by 4D image registration. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 902–910. Springer, Heidelberg (2005). https://doi.org/10.1007/11566489_111

    Chapter  Google Scholar 

  9. Shi, W., Zhuang, X., Wang, H., et al.: A comprehensive cardiac motion estimation framework using both untagged and 3-d tagged mr images based on nonrigid registration. IEEE Trans. Med. Imaging 31(6), 1263–1275 (2012)

    Article  Google Scholar 

  10. Sokooti, H., de Vos, B., Berendsen, F., Lelieveldt, B.P.F., Išgum, I., Staring, M.: Nonrigid image registration using multi-scale 3D convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 232–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_27

    Chapter  Google Scholar 

  11. de Vos, B.D., Berendsen, F.F., Viergever, M.A., et al.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)

    Article  Google Scholar 

  12. Yang, X., Kwitt, R., Styner, M., Niethammer, M.: Quicksilver: fast predictive image registration-a deep learning approach. NeuroImage 158, 378–396 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the EPSRC Programme Grant EP/P001009/1 and EP/R005982/1. The cardiac image dataset has been provided under UK Biobank Access Application 40119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaqi Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiu, H., Qin, C., Le Folgoc, L., Hou, B., Schlemper, J., Rueckert, D. (2020). Deep Learning for Cardiac Motion Estimation: Supervised vs. Unsupervised Training. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges. STACOM 2019. Lecture Notes in Computer Science(), vol 12009. Springer, Cham. https://doi.org/10.1007/978-3-030-39074-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39074-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39073-0

  • Online ISBN: 978-3-030-39074-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics