Skip to main content

On Numerical Methods for Hyperbolic PDE with Curl Involutions

  • Chapter
  • First Online:
Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy

Abstract

In this paper, we present three different numerical approaches to account for curl-type involution constraints in hyperbolic partial differential equations for continuum physics. All approaches have a direct analogy to existing and well-known divergence-preserving schemes for the Maxwell and MHD equations. The first method consists in a generalization of the Godunov–Powell terms, which means adding suitable multiples of the involution constraints to the PDE system in order to achieve the symmetric Godunov form. The second method is an extension of the generalized Lagrangian multiplier (GLM) approach of Munz et al., where the numerical errors in the involution constraint are propagated away via an augmented PDE system. The last method is an exactly involution-preserving discretization, similar to the exactly divergence-free schemes for the Maxwell and MHD equations, making use of appropriately staggered meshes. We present some numerical results that allow to compare all three approaches with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alic, D., Bona, C., Bona-Casas, C.: Towards a gauge-polyvalent numerical relativity code. Phys. Rev. D 79(4), 044026 (2009)

    Article  ADS  Google Scholar 

  2. Balsara, D.S.: Divergence-free adaptive mesh refinement for magnetohydrodynamics. J. Comput. Phys. 174(2), 614–648 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  3. Balsara, D.S.: Second-order accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser. 151, 149–184 (2004)

    Article  ADS  Google Scholar 

  4. Balsara, D.S.: Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229, 1970–1993 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. Balsara, D.S.: Three dimensional HLL Riemann solver for conservation laws on structured meshes; application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 295, 1–23 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. Balsara, D.S., Dumbser, M.: Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers. J. Comput. Phys. 299, 687–715 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Balsara, D.S., Spicer, D.: A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149, 270–292 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. Brown, J.D., Diener, P., Field, S.E., Hesthaven, J.S., Herrmann, F., Mroué, A.H., Sarbach, O., Schnetter, E., Tiglio, M., Wagman, M.: Numerical simulations with a first-order BSSN formulation of Einstein’s field equations. Phys. Rev. D 85(8), 084004 (2012)

    Article  ADS  Google Scholar 

  9. Chiocchetti, S., Peshkov, I., Gavrilyuk, S., Dumbser, M.: High order ADER schemes and GLM curl cleaning for a first order hyperbolic formulation of compressible flow with surface tension. J. Comput. Phys. (2020), submitted

    Google Scholar 

  10. Dedner, A., Kemm, F., Kröner, D., Munz, C.D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645–673 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  11. DeVore, C.R.: Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics. J. Comput. Phys. 92, 142–160 (1991)

    Article  ADS  Google Scholar 

  12. Dhaouadi, F., Favrie, N., Gavrilyuk, S.: Extended Lagrangian approach for the defocusing nonlinear Schrödinger equation. Stud. Appl. Math. 1–20 (2018)

    Google Scholar 

  13. Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. J. Comput. Phys. 314, 824–862 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Dumbser, M., Guercilena, F., Köppel, S., Rezzolla, L., Zanotti, O.: Conformal and covariant Z4 formulation of the Einstein equations: strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes. Phys. Rev. D 97, 084053 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. Dumbser, M., Fambri, F., Gaburro, E., Reinarz, A.: On GLM curl cleaning for a first order reduction of the CCZ4 formulation of the Einstein field equations. J. Comput. Phys. 404, 109088 (2020). https://doi.org/10.1016/j.jcp.2019.109088

  16. Gardiner, T.A., Stone, J.M.: An unsplit Godunov method for ideal MHD via constrained transport. J. Comput. Phys. 205, 509–539 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. Godunov, S.K.: An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139(3), 521–523 (1961)

    MathSciNet  MATH  Google Scholar 

  18. Godunov, S.K.: Symmetric form of the magnetohydrodynamic equation. Numer. Methods Mech. Contin. Medium 3(1), 26–34 (1972)

    Google Scholar 

  19. Godunov, S.K., Romenski, E.I.: Nonstationary equations of the nonlinear theory of elasticity in Euler coordinates. J. Appl. Mech. Tech. Phys. 13, 868–885 (1972)

    Article  ADS  Google Scholar 

  20. Godunov, S.K., Romenski, E.I.: Elements of Continuum Mechanics and Conservation Laws. Kluwer Academic/Plenum Publishers, New York (2003)

    Google Scholar 

  21. Hyman, J.M., Shashkov, M.: Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Comput. Math. Appl. 33, 81–104 (1997)

    Article  MathSciNet  Google Scholar 

  22. Jeltsch, R., Torrilhon, M.: On curl-preserving finite volume discretizations for shallow water equations. BIT Numer. Math. 46, S35–S53 (2006)

    Article  MathSciNet  Google Scholar 

  23. Munz, C.D., Omnes, P., Schneider, R., Sonnendrücker, E., Voss, U.: Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys. 161, 484–511 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  24. Peshkov, I., Romenski, E.: A hyperbolic model for viscous Newtonian flows. Contin. Mech. Thermodyn. 28, 85–104 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. Peshkov, I., Pavelka, M., Romenski, E., Grmela, M.: Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations. Contin. Mech. Thermodyn. 30(6), 1343–1378 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Powell, K.G.: An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). Technical Report ICASE-Report 94-24 (NASA CR-194902), NASA Langley Research Center, Hampton, VA (1994)

    Google Scholar 

  27. Romenski, E.I.: Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Math. Comput. Model. 28(10), 115–130 (1998)

    Article  MathSciNet  Google Scholar 

  28. Romenski, E., Resnyansky, A.D., Toro, E.F.: Conservative hyperbolic formulation for compressible two-phase flow with different phase pressures and temperatures. Q. Appl. Math. 65, 259–279 (2007)

    Article  MathSciNet  Google Scholar 

  29. Romenski, E., Drikakis, D., Toro, E.F.: Conservative models and numerical methods for compressible two-phase flow. J. Sci. Comput. 42, 68–95 (2010)

    Article  MathSciNet  Google Scholar 

  30. Schmidmayer, K., Petitpas, F., Daniel, E., Favrie, N., Gavrilyuk, S.: A model and numerical method for compressible flows with capillary effects. J. Comput. Phys. 334, 468–496 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  31. Torrilhon, M., Fey, M.: Constraint-preserving upwind methods for multidimensional advection equations. SIAM J. Numer. Anal. 42, 1694–1728 (2004)

    Article  MathSciNet  Google Scholar 

  32. Yee, K.S.: Numerical solution of initial voundary value problems involving Maxwell equation in isotropic media. IEEE Trans. Antenna Propag. 14, 302–307 (1966)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research presented in this paper has been funded by the European Union’s Horizon 2020 Research and Innovation Programme under the project ExaHyPE, grant no. 671698 and by the Deutsche Forschungsgemeinschaft (DFG) under the project DROPIT, grant no. GRK 2160/1. MD also acknowledges financial support from the Italian Ministry of Education, University and Research (MIUR) via the Departments of Excellence Initiative 2018–2022 attributed to DICAM of the University of Trento (grant L. 232/2016) and via the PRIN 2017 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dumbser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dumbser, M., Chiocchetti, S., Peshkov, I. (2020). On Numerical Methods for Hyperbolic PDE with Curl Involutions. In: Demidenko, G., Romenski, E., Toro, E., Dumbser, M. (eds) Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy. Springer, Cham. https://doi.org/10.1007/978-3-030-38870-6_17

Download citation

Publish with us

Policies and ethics