Skip to main content

An Interpretable Machine Learning Model for Human Fall Detection Systems Using Hybrid Intelligent Models

  • Chapter
  • First Online:
Challenges and Trends in Multimodal Fall Detection for Healthcare

Abstract

This chapter presents an assessment of falls and everyday situations in people by sensors dataset collected in fall simulation. This evaluation was performed through the use of intelligent techniques and models based on feature selection techniques and fuzzy neural networks. Therefore, this work can be seen as an auxiliary approach of presenting a vision of knowledge extraction for the construction of actions, prevention, and training to functional that will work in areas correlated to health impacts of people who may have difficulties or injuries due to the impact suffered in a fall. The results obtained were compared with state of the art for the theme and the version of the hybrid model that acts on the most relevant dataset dimensions identifying falls obtained results that surpassed the other models submitted to the test. They were successful in extracting various information from a highly sophisticated and incredibly dimensional dataset to help professionals from various areas expand their investigations in the field of falling people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Fall detection using data only from wearable IMUs. This experiment was replicated due to the fuzzy neural network constraint working with numerical data only.

  2. 2.

    An extra activity has been labeled “kneeling” (20) when a subject remains on his knees after falling [44].

  3. 3.

    M=3, bt=8, \( \gamma = 70\% \). For a preliminary 10-k-fold test for M = [3, 4, 5], bt = [4, 8, 16] and \( \gamma = [50\%, 60\%, 70\%] \).

  4. 4.

    useKernelEstimator=false, debug=false, displayModelInOldFormat=false, doNotCheckCapabilities=false, useSupervisedDiscretization=false.

  5. 5.

    estimator=SimpleEstimator, debug=false, searchAlgorithm=F2, doNotCheckCapabilities=false, useADTree=false.

  6. 6.

    seed=1, allowUnclassifiedInstances=false, debug=false, minNum=1.0, numFolds=0, doNotCheckCapabilities=false, maxDepth=0, minVarianceProp=0.001, KValue=0.

  7. 7.

    seed=1, unpruned=false, confidenceFactor=0.25, numFolds=3, reducedErrorPruning=false, useLaplace=false, doNotMakeSplitPointActualValue=false, debug=false, subtreeRaising=true, saveInstanceData=false, binarySplits=false, doNotCheckCapabilities=false, minNumObj=2, useMDLcorrection=true.

  8. 8.

    Gaussian Kernel activation Function, 10 hidden neurons.

  9. 9.

    The model will have the same parameter setting used in the FNN.

References

  1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (xai). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  2. Albert, M.V., Kording, K., Herrmann, M., Jayaraman, A.: Fall classification by machine learning using mobile phones. PloS one 7(5), e36556 (2012)

    Article  Google Scholar 

  3. Aldous, D.: The continuum random tree. i. Ann. Probab. 1–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Auvinet, E., Multon, F., Saint-Arnaud, A., Rousseau, J., Meunier, J.: Fall detection with multiple cameras: an occlusion-resistant method based on 3-d silhouette vertical distribution. IEEE Trans. Inf. Technol. Biomed. 15(2), 290–300 (2010)

    Article  Google Scholar 

  5. Bach, F.R.: Bolasso: model consistent lasso estimation through the bootstrap. In: Proceedings of the 25th International Conference on Machine Learning, pp. 33–40. ACM (2008)

    Google Scholar 

  6. Baleanu, D., Jajarmi, A., Bonyah, E., Hajipour, M.: New aspects of poor nutrition in the life cycle within the fractional calculus. Adv. Differ. Equations 2018(1), 230 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bencherif, A., Chouireb, F.: A recurrent tsk interval type-2 fuzzy neural networks control with online structure and parameter learning for mobile robot trajectory tracking. Appl. Intell. 1–13 (2019)

    Google Scholar 

  8. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Noise reduction in speech processing, pp. 1–4. Springer (2009)

    Google Scholar 

  9. Bone, A.E., Gomes, B., Etkind, S.N., Verne, J., Murtagh, F.E., Evans, C.J., Higginson, I.J.: What is the impact of population ageing on the future provision of end-of-life care? population-based projections of place of death. Palliat. Med. 32(2), 329–336 (2018)

    Article  Google Scholar 

  10. Cameron, R., Zuo, Z., Sexton, G., Yang, L.: A fall detection/recognition system and an empirical study of gradient-based feature extraction approaches. In: UK Workshop on Computational Intelligence, pp. 276–289. Springer (2017)

    Google Scholar 

  11. de Campos Souza, P.V., Guimaraes, A.J.: Using fuzzy neural networks for improving the prediction of children with autism through mobile devices. In: 2018 IEEE Symposium on Computers and Communications (ISCC), pp. 01086–01089. IEEE (2018)

    Google Scholar 

  12. de Campos Souza, P.V., Guimaraes, A.J., Araujo, V.S., Rezende, T.S., Araujo, V.J.S.: Using fuzzy neural networks regularized to support software for predicting autism in adolescents on mobile devices, pp. 115–133. Springer Singapore, Singapore (2019). https://doi.org/10.1007/978-981-13-8614-5_7

    Chapter  Google Scholar 

  13. de Campos Souza, P.V., Torres, L.C.B., Guimaraes, A.J., Araujo, V.S., Araujo, V.J.S., Rezende, T.S.: Data density-based clustering for regularized fuzzy neural networks based on nullneurons and robust activation function. Soft Computing 23(23), 12475–12489 (2019). https://doi.org/10.1007/s00500-019-03792-z

    Article  Google Scholar 

  14. Charfi, I., Miteran, J., Dubois, J., Atri, M., Tourki, R.: Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector machine and adaboost-based classification. J. Electron. Imaging 22(4), 041106 (2013)

    Article  Google Scholar 

  15. Core, M.G., Lane, H.C., Van Lent, M., Gomboc, D., Solomon, S., Rosenberg, M.: Building explainable artificial intelligence systems. In: AAAI, pp. 1766–1773 (2006)

    Google Scholar 

  16. de Campos Souza, P.V., Silva, G.R.L., Torres, L.C.B.: Uninorm based regularized fuzzy neural networks. In: 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), pp. 1–8 (2018). https://doi.org/10.1109/EAIS.2018.8397176

  17. Diraco, G., Leone, A., Siciliano, P.: An active vision system for fall detection and posture recognition in elderly healthcare. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 1536–1541. European Design and Automation Association (2010)

    Google Scholar 

  18. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Er, M.J., Gao, Y.: Robust adaptive control of robot manipulators using generalized fuzzy neural networks. IEEE Trans. Ind. Electron. 50(3), 620–628 (2003)

    Article  Google Scholar 

  20. Espinosa, R., Ponce, H., Gutiérrez, S., Martínez-Villaseñor, L., Brieva, J., Moya-Albor, E.: A vision-based approach for fall detection using multiple cameras and convolutional neural networks: a case study using the up-fall detection dataset. Computers in Biology and Medicine p. 103520 (2019)

    Article  Google Scholar 

  21. Feng, Q., Yeung, W.J.J., Wang, Z., Zeng, Y.: Age of retirement and human capital in an aging china, 2015–2050. Eur. J. Popul. 35(1), 29–62 (2019)

    Article  Google Scholar 

  22. Geertsema, E.E., Visser, G.H., Viergever, M.A., Kalitzin, S.N.: Automated remote fall detection using impact features from video and audio. J. Biomech. 88, 25–32 (2019)

    Article  Google Scholar 

  23. Guimarães, A.J., Araujo, V.J.S., Araujo, V.S., Batista, L.O., de Campos Souza, P.V.: A hybrid model based on fuzzy rules to act on the diagnosed of autism in adults. In: J. MacIntyre, I. Maglogiannis, L. Iliadis, E. Pimenidis (eds.) Artificial Intelligence Applications and Innovations, pp. 401–412. Springer International Publishing, Cham (2019)

    Google Scholar 

  24. Guimarães, A.J., Araujo, V.J.S., de Campos Souza, P.V., Araujo, V.S., Rezende, T.S.: Using fuzzy neural networks to the prediction of improvement in expert systems for treatment of immunotherapy. In: Ibero-American Conference on Artificial Intelligence, pp. 229–240. Springer (2018)

    Google Scholar 

  25. Gunning, D.: Explainable artificial intelligence (xai). Defense Advanced Research Projects Agency (DARPA), nd Web 2 (2017)

    Google Scholar 

  26. Gupta, M., Rao, D.: On the principles of fuzzy neural networks. Fuzzy Sets Syst. 61(1), 1–18 (1994)

    Article  MathSciNet  Google Scholar 

  27. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.A.: Feature extraction: foundations and applications, vol. 207. Springer (2008)

    Google Scholar 

  28. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  29. Harrou, F., Zerrouki, N., Sun, Y., Houacine, A.: An integrated vision-based approach for efficient human fall detection in a home environment. IEEE Access 7, 114966–114974 (2019)

    Article  Google Scholar 

  30. Hirota, K., Pedrycz, W.: Or/and neuron in modeling fuzzy set connectives. IEEE Trans. Fuzzy Syst. 2(2), 151–161 (1994)

    Article  Google Scholar 

  31. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst., Man, Cybern., Part B (Cybernetics) 42(2), 513–529 (2011)

    Google Scholar 

  32. Jang, J.S.: Anfis: adaptive-network-based fuzzy inference system. IEEE Trans. Syst., Man, Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  33. Jansen, B., Temmermans, F., Deklerck, R.: 3d human pose recognition for home monitoring of elderly. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4049–4051. IEEE (2007)

    Google Scholar 

  34. John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Proceedings of the Eleventh conference on Uncertainty in artificial intelligence, pp. 338–345. Morgan Kaufmann Publishers Inc. (1995)

    Google Scholar 

  35. Karegowda, A.G., Manjunath, A., Jayaram, M.: Comparative study of attribute selection using gain ratio and correlation based feature selection. Int. J. Inf. Technol. Knowl. Manag. 2(2), 271–277 (2010)

    Google Scholar 

  36. Keyfitz, N., Flieger, W., et al.: World population growth and aging. University of Chicago Press Economics Books (1991)

    Google Scholar 

  37. Kwolek, B., Kepski, M.: Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117(3), 489–501 (2014)

    Article  Google Scholar 

  38. Lemos, A., Caminhas, W., Gomide, F.: New uninorm-based neuron model and fuzzy neural networks. In: 2010 Annual Meeting of the North American Fuzzy Information Processing Society, pp. 1–6 (2010). https://doi.org/10.1109/NAFIPS.2010.5548195

  39. Lemos, A., Kreinovich, V., Caminhas, W., Gomide, F.: Universal approximation with uninorm-based fuzzy neural networks. In: 2011 Annual Meeting of the North American Fuzzy Information Processing Society, pp. 1–6 (2011). https://doi.org/10.1109/NAFIPS.2011.5752000

  40. Ma, X., Wang, H., Xue, B., Zhou, M., Ji, B., Li, Y.: Depth-based human fall detection via shape features and improved extreme learning machine. IEEE J. Biomed. Health Inform. 18(6), 1915–1922 (2014)

    Article  Google Scholar 

  41. Makino, K., Makizako, H., Doi, T., Tsutsumimoto, K., Hotta, R., Nakakubo, S., Suzuki, T., Shimada, H.: Impact of fear of falling and fall history on disability incidence among older adults: P rospective cohort study. Int. J. Geriatr. Psychiatry 33(4), 658–662 (2018)

    Article  Google Scholar 

  42. Maldonado-Bascón, S., Iglesias-Iglesias, C., Martín-Martín, P., Lafuente-Arroyo, S.: Fallen people detection capabilities using assistive robot. Electronics 8(9), 915 (2019)

    Article  Google Scholar 

  43. Martin, K., Thomson, R., Blizzard, L., Wood, A., Garry, M., Srikanth, V.: Visuospatial ability and memory are associated with falls risk in older people. Dement. Geriatr. Cogn. Disord. 27(5), 451–457 (2009)

    Article  Google Scholar 

  44. Martínez-Villaseñor, L., Ponce, H., Brieva, J., Moya-Albor, E., Núñez-Martínez, J., Peñafort-Asturiano, C.: Up-fall detection dataset: a multimodal approach. Sensors 19(9), 1988 (2019)

    Article  Google Scholar 

  45. Parra-Dominguez, G.S., Snoek, J., Taati, B., Mihailidis, A.: Lower body motion analysis to detect falls and near falls on stairs. Biomed. Eng. Lett. 5(2), 98–108 (2015)

    Article  Google Scholar 

  46. Pedrycz, W.: Fuzzy neural networks and neurocomputations. Fuzzy Sets Syst. 56(1), 1–28 (1993)

    Article  Google Scholar 

  47. Peng, Y., Zhang, T., Sun, L., Chen, J.: A novel data mining method on falling detection and daily activities recognition. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 675–681. IEEE (2015)

    Google Scholar 

  48. Perera, S., Mody, S.H., Woodman, R.C., Studenski, S.A.: Meaningful change and responsiveness in common physical performance measures in older adults. J. Am. Geriatr. Soc. 54(5), 743–749 (2006)

    Article  Google Scholar 

  49. Plouffe, L., Kalache, A.: Towards global age-friendly cities: determining urban features that promote active aging. J. Urban Health 87(5), 733–739 (2010)

    Article  Google Scholar 

  50. Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier (2014)

    Google Scholar 

  51. Rasheed, M.B., Javaid, N., Alghamdi, T.A., Mukhtar, S., Qasim, U., Khan, Z.A., Raja, M.H.B.: Evaluation of human activity recognition and fall detection using android phone. In: 2015 IEEE 29th International Conference on Advanced Information Networking and Applications, pp. 163–170. IEEE (2015)

    Google Scholar 

  52. Riquelme, F., Espinoza, C., Rodenas, T., Minonzio, J.G., Taramasco, C.: ehomeseniors dataset: an infrared thermal sensor dataset for automatic fall detection research. Sensors 19(20), 4565 (2019)

    Article  Google Scholar 

  53. Segal, D.L., Qualls, S.H., Smyer, M.A.: Aging and mental health. Wiley (2018)

    Google Scholar 

  54. Söderström, T., Stewart, G.: On the numerical properties of an iterative method for computing the moore-penrose generalized inverse. SIAM J. Numer. Anal. 11(1), 61–74 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  55. Soni, P.K., Choudhary, A.: Automated fall detection from a camera using support vector machine. In: 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP), pp. 1–6. IEEE (2019)

    Google Scholar 

  56. Souza, P.V.C.: Regularized fuzzy neural networks for pattern classification problems. Int. J. Appl. Eng. Res. 13(5), 2985–2991 (2018)

    Google Scholar 

  57. Souza, P.V.C., dos Reis, A.G., Marques, G.R.R., Guimaraes, A.J., Araujo, V.J.S., Araujo, V.S., Rezende, T.S., Batista, L.O., da Silva, G.A.: Using hybrid systems in the construction of expert systems in the identification of cognitive and motor problems in children and young people. In: 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6 (2019). https://doi.org/10.1109/FUZZ-IEEE.2019.8858906

  58. Thepade, S.D., Kalbhor, M.M.: Extended performance appraise of bayes, function, lazy, rule, tree data mining classifier in novel transformed fractional content based image classification. In: 2015 International Conference on Pervasive Computing (ICPC), pp. 1–6. IEEE (2015)

    Google Scholar 

  59. Tilling, L.M., Darawil, K., Britton, M.: Falls as a complication of diabetes mellitus in older people. J. Diabetes Its Complicat. 20(3), 158–162 (2006)

    Article  Google Scholar 

  60. Wickramasinghe, A., Torres, R.L.S., Ranasinghe, D.C.: Recognition of falls using dense sensing in an ambient assisted living environment. Pervasive Mob. Comput. 34, 14–24 (2017)

    Article  Google Scholar 

  61. Yager, R.R.: Uninorms in fuzzy systems modeling. Fuzzy Sets Syst. 122(1), 167–175 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  62. Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80(1), 111–120 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  63. Zigel, Y., Litvak, D., Gannot, I.: A method for automatic fall detection of elderly people using floor vibrations and sound–proof of concept on human mimicking doll falls. IEEE Trans. Biomed. Eng. 56(12), 2858–2867 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The acknowledgments of this work go to Faculdade Una de Betim, the Federal Center for Technological Education of Minas Gerais and Professor Hiram Ponce, who trusted our work and invited us to contribute his book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Vitor C. Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Souza, P.V.C., Guimaraes, A.J., Araujo, V.S., Batista, L.O., Rezende, T.S. (2020). An Interpretable Machine Learning Model for Human Fall Detection Systems Using Hybrid Intelligent Models. In: Ponce, H., Martínez-Villaseñor, L., Brieva, J., Moya-Albor, E. (eds) Challenges and Trends in Multimodal Fall Detection for Healthcare. Studies in Systems, Decision and Control, vol 273. Springer, Cham. https://doi.org/10.1007/978-3-030-38748-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38748-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38747-1

  • Online ISBN: 978-3-030-38748-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics