Skip to main content

Development of Plastic Composite Using Waste Sawdust, Rice Husk and Bamboo in the Polystyrene-Based Resin (PBR) Matrix at Ambient Conditions

  • Chapter
  • First Online:
Valorization of Biomass to Value-Added Commodities

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The use of Ppolystyrene-Bbased Rresin (PBR) synthesised from waste polystyrene in the valorisation of biomass like sawdust, rice husk and bamboo for the production of plastic composites at ambient conditions was the focus of this investigation. This chapter explores the preparation and properties of plastic composites produced from biomass wastes and PBR synthesised from waste. The preparations were made at varying percentage of waste biomass (between 0% and 40%). PBR was synthesised via solvolysis of waste polystyrene in a chosen solvent, and properly mixed with recycled biomass by simple mechanical stirring, using hand lay-up process in cold pressing to obtain the desired shapes. ASTM D-1037 standard was used to evaluate the physical and mechanical properties of the manufactured particleboards. Moisture content (MC), water absorption (WA), thickness swelling (TS) and mechanical properties, that is modulus of elasticity (MOE) and modulus of rupture (MOR), were suitably comparable to ANSI A208.1 standard. PBR synthesised at room temperature is confirmed as a good matrix for biomass fillers like sawdust, rice husk and bamboo in the production of plastic composite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.U. Abass, Mechanical behavior of natural material (orange peel) reinforced polyester composite. Int. J. Eng. Sci. Res. Technol. 4(1), 166–172 (2015)

    Google Scholar 

  2. S. Abdulkareem, A. Adeniyi, Production of particle boards using polystyreneand bamboo wastes. Niger. J. Technol. 36(3), 788–793 (2017a)

    Google Scholar 

  3. S. Abdulkareem, M.K. Amosa, A. Adeniyi, Synthesis and structural analysis of Aluminium-filled polystyrene composites from recycled wastes. Environ. Res. Eng. Manag. 74(2), 58–66 (2018)

    Google Scholar 

  4. S. Abdulkareem, S. Raji, A. Adeniyi, Development of particleboard from waste styrofoam and sawdust. Niger. J. Technol. Dev. 14(1), 18–22 (2017)

    Article  Google Scholar 

  5. S.A. Abdulkareem, A.G. Adeniyi, Tensile and water absorbing properties of natural fibre reinforced plastic composites from waste polystyrene and rice husk. Niger. J. Technol. Dev. 14(1), 18–22 (2017b)

    Article  Google Scholar 

  6. Agency, USEP, Municipal solid waste generation, recycling and disposal in the United States; Facts and figures for 2012 (2012)

    Google Scholar 

  7. H.M. Akil, M.F. Omar, A.A.M. Mazuki, S. Safiee, Z.A.M. Ishak, B.A. Abu, Kenaf fiber reinforced composites: a review. Mater. Des., 4107–4121 (2011). https://doi.org/10.1016/j.matdes.2011.04.008

  8. G. Arpitha, B. Yogesha, An overview on mechanical property evaluation of natural fiber reinforced polymers. Mater. Today: Proc. 4(2), 2755–2760 (2017)

    Google Scholar 

  9. N. Balaji, S. Jayabal, Artificial neural network modeling of mechanical behaviors of zea fiber–polyester composites. Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng. 230(1), 45–55 (2016)

    Article  Google Scholar 

  10. A. Bharadwaj, Y. Wang, S. Sridhar, V. Arunachalam, Pyrolysis of rice husk. Curr. Sci. 87(7), 981–986 (2004)

    Google Scholar 

  11. R. Bhoopathi, M. Ramesh, R. Rajaprasanna, G. Sasikala, C. Deepa, Physical properties of glass-hemp-banana hybrid fiber reinforced polymer composites. Indian J. Sci. Technol. 10(7), 1–7 (2017)

    Article  Google Scholar 

  12. Y. Cao, S. Shibata, I. Fukumoto, Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos. Part A: Appl. Sci. Manuf. 37(3), 423–429 (2006)

    Article  Google Scholar 

  13. D. Chandramohan, K. Marimuthu, A review on natural fibers. Int. J. Res. Rev. Appl. Sci. 8(2), 194–206 (2011)

    Google Scholar 

  14. A. Espert, F. Vilaplana, S. Karlsson, Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos. Part A: Appl. Sci. Manuf. 35(11), 1267–1276 (2004)

    Article  Google Scholar 

  15. A. Ganesh, P.D. Grover, Combustion and gasification characteristics of rice husk. Fuel 71(8), 889–894 (1992)

    Article  Google Scholar 

  16. M.M. Guarav, K.N. Arunkumar, N.S. LinegeGaws, Conversion of LDPE plastic waste into liquid fuel by thermal degradation. Int. J. Mech. Prod. Eng. 2(4), 104–107 (2014)

    Google Scholar 

  17. R. Hemachandran, M. Pugazhvadivu, S. Jayabal, Optimization of tensile and impact behaviours of randomly oriented short sisal fiber reinforced epoxy composites using response surface methodology. Int. J. ChemTech. Res. 9(7), 660 (2016)

    Google Scholar 

  18. D. Hoornweg, P. Bhada-Tata, What a Waste: A Global Review of Solid Waste Management, vol 15 (World Bank, Washington, DC, 2012)

    Google Scholar 

  19. S. Jain, R. Kumar, U. Jindal, Mechanical behaviour of bamboo and bamboo composite. J. Mater. Sci. 27(17), 4598–4604 (1992)

    Article  Google Scholar 

  20. M. Johnson, S. Derrick, Pyrolysis. A method for Mixed Polymer Recycling. Micighan, Western Micighan University. pp 4–18 (2013)

    Google Scholar 

  21. S. Joseph, M. Sreekala, Z. Oommen, P. Koshy, S. Thomas, A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos. Sci. Technol. 62(14), 1857–1868 (2002)

    Article  Google Scholar 

  22. H.A. Khalil, I. Bhat, M. Jawaid, A. Zaidon, D. Hermawan, Y. Hadi, Bamboo fibre reinforced biocomposites: a review. Mater. Des. 42, 353–368 (2012)

    Article  Google Scholar 

  23. U.K. Komal, V. Verma, T. Aswani, N. Verma, I. Singh, Effect of chemical treatment on mechanical behavior of banana fiber reinforced polymer composites. Mater. Today: Proc. 5(9), 16983–16989 (2018)

    Google Scholar 

  24. F. La Mantia, M. Morreale, Green composites: a brief review. Compos. Part A: Appl. Sci. Manuf. 42(6), 579–588 (2011)

    Article  Google Scholar 

  25. K.S. Lin, H.P. Wang, C.-J. Lin, C.-I. Juch, A process development for gasification of rice husk. Fuel Process. Technol. 55(3), 185–192 (1998)

    Article  Google Scholar 

  26. F.S.d. Luz, L. Junior, E. Pereira, L.H.L. Louro, S.N. Monteiro, Ballistic test of multilayered armor with intermediate epoxy composite reinforced with jute fabric. Mater. Res. 18, 170–177 (2015)

    Article  Google Scholar 

  27. N. Lyn, Effect of the chemical treatment on the inorganic content of Kenaf fibers and on the performance of Kenaf-polypropylene composites (University of Waterloo, Waterloo, 2018)

    Google Scholar 

  28. R. Mangalaraja, T.M. Raj, D.R. Prabha, Statistical features of epoxy resin based hybrid composites reinforced with jute, banana and flax natural fibers. J. Chem. Technol. Metall. 54(1), 35–47 (2019)

    Google Scholar 

  29. K. Mansaray, A. Ghaly, Physical and thermochemical properties of rice husk. Energy Sources 19(9), 989–1004 (1997). https://doi.org/10.1080/00908319708908904

    Article  Google Scholar 

  30. S. Nagrale, H. Hajare, P.R. Modak, Utilization of rice husk ash. Carbon 2(6), 42 (2012)

    Google Scholar 

  31. N.A.S. Priya, P.V. Raju, P. Naveen, Experimental testing of polymer reinforced with coconut coir fiber composites. Int. J. Emerg. Technol. Adv. Eng. 4(12), 453–460 (2014)

    Google Scholar 

  32. D.N. Saheb, J.P. Jog, Natural fiber polymer composites: a review. Adv. Pol. Technol.: J. Pol. Proc. Inst. 18(4), 351–363 (1999)

    Article  Google Scholar 

  33. V.P. Sathiyamoorthy, K.G. Aravind, P.K.C. Durai, Review on interface optimization and mechanical behaviour of natural fibre composite. Int. Res. J. Eng. Technol. 04(10), 221–227 (2017)

    Google Scholar 

  34. C.H. Shen, G.S. Springer, Moisture absorption and desorption of composite materials. J. Compos. Mater. 10, 1–20 (1976)

    Article  Google Scholar 

  35. J.I.P. Singh, V. Dhawan, S. Singh, K. Jangid, Study of effect of surface treatment on mechanical properties of natural fiber reinforced composites. Mater. Today: Proc. 4(2), 2793–2799 (2017)

    Google Scholar 

  36. W. Wang, M. Sain, P. Cooper, Study of moisture absorption in natural fiber plastic composites. Compos. Sci. Technol. 66(3–4), 379–386 (2006)

    Article  Google Scholar 

  37. L. Yan, N. Chouw, Behavior and analytical modeling of natural flax fibre-reinforced polymer tube confined plain concrete and coir fibre-reinforced concrete. J. Compos. Mater. 47(17), 2133–2148 (2013)

    Article  Google Scholar 

  38. American Society for Testing and Materials (ASTM). Evaluating properties of wood-based fiber and particle panel materials. ASTM D 1037–99. Vol. 04.10. ASTM, Philadelphia, PA. pp. 141–170 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Adeniyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdulkareem, S.A., Adeniyi, A.G., Amosa, M.K., Raji, S.A. (2020). Development of Plastic Composite Using Waste Sawdust, Rice Husk and Bamboo in the Polystyrene-Based Resin (PBR) Matrix at Ambient Conditions. In: Daramola, M., Ayeni, A. (eds) Valorization of Biomass to Value-Added Commodities. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-38032-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38032-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38031-1

  • Online ISBN: 978-3-030-38032-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics