Skip to main content

Adipocytes in the Tumour Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1234))

Abstract

Adipose tissue contribution to body mass ranges from 6% in male athletes to over 25% in obese men and over 30% in obese women. Crosstalk between adipocytes and cancer cells that exist in close proximity can lead to changes in the function and phenotype of both cell types. These interactions actively alter the tumour microenvironment (TME). Obesity is one of the major risk factors for multiple types of cancer, including breast cancer. In obesity, the increase in both size and number of adipocytes leads to instability of the TME, as well as increased hypoxia within the TME, which further enhances tumour invasion and metastasis. In this chapter, we will discuss the diverse aspects of adipocytes and adipocyte-derived factors that affect the TME as well as tumour progression and metastasis. In addition, we discuss how obesity affects the TME. We focus primarily on breast cancer but discuss what is known in other cancer types when relevant. We finish by discussing the studies needed to further understand these complex interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Place AE, Jin Huh S, Polyak K (2011) The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Res 13:227. https://doi.org/10.1186/bcr2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sundaram S, Johnson AR, Makowski L (2013) Obesity, metabolism and the microenvironment: links to cancer. J Carcinog 12:19. https://doi.org/10.4103/1477-3163.119606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331:1559–1564. https://doi.org/10.1126/science.1203543

    Article  CAS  PubMed  Google Scholar 

  4. Wu Y, Sarkissyan M, Vadgama J (2016) Epithelial-mesenchymal transition and breast cancer. J Clin Med 5:13. https://doi.org/10.3390/jcm5020013

    Article  CAS  PubMed Central  Google Scholar 

  5. Lee Y, Jung WH, Koo JS (2015) Adipocytes can induce epithelial-mesenchymal transition in breast cancer cells. Breast Cancer Res Treat 153:323–335. https://doi.org/10.1007/s10549-015-3550-9

    Article  CAS  PubMed  Google Scholar 

  6. Ritter A, Friemel A, Fornoff F et al (2015) Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells. Oncotarget 6:34475–34493. https://doi.org/10.18632/oncotarget.5922

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ogunwobi OO, Liu C (2011) Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways. Clin Exp Metastasis 28:721–731. https://doi.org/10.1007/s10585-011-9404-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19:156–172. https://doi.org/10.1038/cr.2009.5

    Article  CAS  PubMed  Google Scholar 

  9. Moreno-Bueno G, Portillo F, Cano A (2008) Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 27:6958–6969. https://doi.org/10.1038/onc.2008.346

    Article  CAS  PubMed  Google Scholar 

  10. Thiery JP, Lim CT (2013) Tumor dissemination: an EMT affair. Cancer Cell 23:272–273. https://doi.org/10.1016/j.ccr.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  11. Battula VL, Evans KW, Hollier BG et al (2010) Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells 28:1435–1445. https://doi.org/10.1002/stem.467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mani SA, Guo W, Liao M-JJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715. https://doi.org/10.1016/j.cell.2008.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ota I, Li X-Y, Hu Y, Weiss SJ (2009) Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc Natl Acad Sci 106:20318–20323. https://doi.org/10.1073/pnas.0910962106

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chavey C, Mari B, Monthouel M-N et al (2003) Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J Biol Chem 278:11888–11896. https://doi.org/10.1074/jbc.M209196200

    Article  CAS  PubMed  Google Scholar 

  15. Tsai JH, Yang J (2013) Epithelial – mesenchymal plasticity in carcinoma metastasis. Genes Dev 27:2192–2206. https://doi.org/10.1101/gad.225334.113.2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Drake JM, Strohbehn G, Bair TB et al (2009) ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol Biol Cell 20:2207–2217. https://doi.org/10.1091/mbc.E08-10-1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gupta GP, Nguyen DX, Chiang AC et al (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446:765–770. https://doi.org/10.1038/nature05760

    Article  CAS  PubMed  Google Scholar 

  19. Yu M, Bardia A, Wittner BS et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584. https://doi.org/10.1126/science.1228522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hüsemann Y, Geigl JB, Schubert F et al (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13:58–68. https://doi.org/10.1016/j.ccr.2007.12.003

    Article  CAS  PubMed  Google Scholar 

  21. Yao D, Dai C, Peng S (2011) Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res 9:1608–1620. https://doi.org/10.1158/1541-7786.MCR-10-0568

    Article  CAS  PubMed  Google Scholar 

  22. Xie H, Liao N, Lan F et al (2017) 3D-cultured adipose tissue-derived stem cells inhibit liver cancer cell migration and invasion through suppressing epithelial-mesenchymal transition. Int J Mol Med 41:1385–1396. https://doi.org/10.3892/ijmm.2017.3336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jie X-X, Zhang X-Y, Xu C-J et al (2017) Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: mechanisms and clinical applications. Oncotarget 8:81558–81571. https://doi.org/10.18632/oncotarget.18277

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhou XD, Agazie YM (2008) Inhibition of SHP2 leads to mesenchymal to epithelial transition in breast cancer cells. Cell Death Differ 15:988–996. https://doi.org/10.1038/cdd.2008.54

    Article  CAS  PubMed  Google Scholar 

  25. Chao YL, Shepard CR, Wells A (2010) Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer 9:179. https://doi.org/10.1186/1476-4598-9-179

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tsuji T, Ibaragi S, Hu GF (2009) Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res 69:7135–7139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wells A, Yates C, Shepard CR (2008) E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clin Exp Metastasis 25:621–628. https://doi.org/10.1007/s10585-008-9167-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guaita-Esteruelas S, Gumà J, Masana L, Borràs J (2018) The peritumoural adipose tissue microenvironment and cancer. The roles of fatty acid binding protein 4 and fatty acid binding protein 5. Mol Cell Endocrinol 462:107–118. https://doi.org/10.1016/J.MCE.2017.02.002

    Article  CAS  PubMed  Google Scholar 

  29. Vandeweyer E, Hertens D (2002) Quantification of glands and fat in breast tissue: an experimental determination. Ann Anat 184:181–184. https://doi.org/10.1016/S0940-9602(02)80016-4

    Article  PubMed  Google Scholar 

  30. Duong MN, Geneste A, Fallone F et al (2017) The fat and the bad: Mature adipocytes, key actors in tumor progression and resistance. Oncotarget 8:57622–57641. https://doi.org/10.18632/oncotarget.18038

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nieman KM, Romero IL, Van Houten B, Lengyel E (2013) Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta Mol Cell Biol Lipids 1831:1533–1541. https://doi.org/10.1016/j.bbalip.2013.02.010

    Article  CAS  Google Scholar 

  32. Divella R, De Luca R, Abbate I et al (2016) Obesity and cancer: the role of adipose tissue and adipo-cytokines-induced chronic inflammation. J Cancer 7:2346–2359. https://doi.org/10.7150/jca.16884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ribeiro RJT, Monteiro CPD, Cunha VFPM et al (2012) Tumor cell-educated periprostatic adipose tissue acquires an aggressive cancer-promoting secretory profile. Cell Physiol Biochem 29:233–240. https://doi.org/10.1159/000337604

    Article  CAS  PubMed  Google Scholar 

  34. Nieman KM, Kenny HA, Penicka CV et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17:1498–1503. https://doi.org/10.1038/nm.2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abramczyk H, Surmacki J, Kopeć M et al (2015) The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst 140:2224–2235. https://doi.org/10.1039/c4an01875c

    Article  CAS  PubMed  Google Scholar 

  36. Zoico E, Darra E, Rizzatti V et al (2018) Role of adipose tissue in melanoma cancer microenvironment and progression. Int J Obes 42:344–352. https://doi.org/10.1038/ijo.2017.218

    Article  CAS  Google Scholar 

  37. Berry DC, Stenesen D, Zeve D, Graff JM (2013) The developmental origins of adipose tissue. Development 140:3939–3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peinado JR, Pardo M, de la Rosa O, Malagón MM (2012) Proteomic characterization of adipose tissue constituents, a necessary step for understanding adipose tissue complexity. Proteomics 12:607–620. https://doi.org/10.1002/pmic.201100355

    Article  CAS  PubMed  Google Scholar 

  39. Morton GJ, Cummings DE, Baskin DG et al (2006) Central nervous system control of food intake and body weight. Nature 443:289–295. https://doi.org/10.1038/nature05026

    Article  CAS  PubMed  Google Scholar 

  40. Guyenet SJ, Schwartz MW (2012) Regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity. J Clin Endocrinol Metab 97:745–755. https://doi.org/10.1210/jc.2011-2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iikuni N, Lam QLK, Lu L et al (2008) Leptin and inflammation. Curr Immunol Rev 4:70–79. https://doi.org/10.2174/157339508784325046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ray A, Nkhata KJ, Cleary MP (2007) Effects of leptin on human breast cancer cell lines in relationship to estrogen receptor and HER2 status. Int J Oncol 30:1499–1509

    CAS  PubMed  Google Scholar 

  43. Jardé T, Caldefie-Chézet F, Damez M et al (2008) Leptin and leptin receptor involvement in cancer development: a study on human primary breast carcinoma. Oncol Rep 19:905–911

    PubMed  Google Scholar 

  44. Mullen M, Gonzalez-Perez RR (2016) Leptin-induced JAK/STAT signaling and cancer growth. Vaccine 4:26. https://doi.org/10.3390/vaccines4030026

    Article  CAS  Google Scholar 

  45. Nepal S, Kim MJ, Hong JT et al (2015) Autophagy induction by leptin contributes to suppression of apoptosis in cancer cells and xenograft model: involvement of p53/FoxO3A axis. Oncotarget 6:7166–7181. https://doi.org/10.18632/oncotarget.3347

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zheng Q, Banaszak L, Fracci S et al (2013) Leptin receptor maintains cancer stem-like properties in triple negative breast cancer cells. Endocr Relat Cancer 20:797–808. https://doi.org/10.1530/ERC-13-0329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stern JH, Rutkowski JM, Scherer PE (2016) Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab 23:770–784. https://doi.org/10.1016/j.cmet.2016.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kwon H, Pessin JE (2013) Adipokines mediate inflammation and insulin resistance. Front Endocrinol (Lausanne) 4:71. https://doi.org/10.3389/fendo.2013.00071

    Article  Google Scholar 

  49. Shehzad A, Iqbal W, Shehzad O, Lee YS (2012) Adiponectin: regulation of its production and its role in human diseases. Hormones (Athens) 11:8–20

    Article  Google Scholar 

  50. Kimlin LC, Casagrande G, Virador VM (2013) In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog 52:167–182. https://doi.org/10.1002/mc.21844

    Article  CAS  PubMed  Google Scholar 

  51. Sultana R, Kataki AC, Borthakur BB et al (2017) Imbalance in leptin-adiponectin levels and leptin receptor expression as chief contributors to triple negative breast cancer progression in Northeast India. Gene 621:51–58. https://doi.org/10.1016/j.gene.2017.04.021

    Article  CAS  PubMed  Google Scholar 

  52. Gyamfi J, Eom M, Koo J-S, Choi J (2018) Multifaceted roles of Interleukin-6 in adipocyte–breast cancer cell interaction. Transl Oncol 11:275–285. https://doi.org/10.1016/J.TRANON.2017.12.009

    Article  PubMed  PubMed Central  Google Scholar 

  53. Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI et al (2015) The role of cytokines in breast cancer development and progression. J Interf Cytokine Res 35:1–16. https://doi.org/10.1089/jir.2014.0026

    Article  CAS  Google Scholar 

  54. Iyengar NM, Gucalp A, Dannenberg AJ, Hudis CA (2016) Obesity and cancer mechanisms: tumor microenvironment and inflammation. J Clin Oncol 34:4270. https://doi.org/10.1200/JCO.2016.67.4283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pileczki V, Braicu C, Gherman C, Berindan-Neagoe I (2012) TNF-α gene knockout in triple negative breast cancer cell line induces apoptosis. Int J Mol Sci 14:411–420. https://doi.org/10.3390/ijms14010411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li J, Han X (2018) Adipocytokines and breast cancer. Curr Probl Cancer 42(2):208–214. https://doi.org/10.1016/j.currproblcancer.2018.01.004

    Article  PubMed  Google Scholar 

  57. Dusaulcy R, Rancoule C, Grès S et al (2011) Adipose-specific disruption of autotaxin enhances nutritional fattening and reduces plasma lysophosphatidic acid. J Lipid Res 52:1247–1255. https://doi.org/10.1194/jlr.M014985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Choi J, Cha YJ, Koo JS (2018) Adipocyte biology in breast cancer: from silent bystander to active facilitator. Prog Lipid Res 69:11–20

    Article  CAS  PubMed  Google Scholar 

  59. Christopoulos PF, Msaouel P, Koutsilieris M et al (2015) The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer 14:43. https://doi.org/10.1186/s12943-015-0291-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Creighton CJ, Casa A, Lazard Z et al (2008) Insulin-like growth factor-I activates gene transcription programs strongly associated with poor breast Cancer prognosis. J Clin Oncol 26:4078–4085. https://doi.org/10.1200/JCO.2007.13.4429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928. https://doi.org/10.1038/nrc2536

    Article  CAS  PubMed  Google Scholar 

  62. Edakuni G, Sasatomi E, Satoh T et al (2001) Expression of the hepatocyte growth factor/c-Met pathway is increased at the cancer front in breast carcinoma. Pathol Int 51:172–178

    Article  CAS  PubMed  Google Scholar 

  63. Bell LN, Ward JL, Degawa-Yamauchi M et al (2006) Adipose tissue production of hepatocyte growth factor contributes to elevated serum HGF in obesity. Am J Physiol Metab 291:E843–E848. https://doi.org/10.1152/ajpendo.00174.2006

    Article  CAS  Google Scholar 

  64. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–308. https://doi.org/10.1016/j.ccr.2012.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Beloribi-Djefaflia S, Vasseur S, Guillaumond F (2016) Lipid metabolic reprogramming in cancer cells. Oncogene 5:e189. https://doi.org/10.1038/oncsis.2015.49

    Article  CAS  Google Scholar 

  66. Vander Heiden M, Cantley L, Thompson C (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. https://doi.org/10.1126/science.1160809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pavlides S, Whitaker-Menezes D, Castello-Cros R et al (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001. https://doi.org/10.4161/cc.8.23.10238

    Article  CAS  PubMed  Google Scholar 

  68. Martinez-Outschoorn UE, Pestell RG, Howell A et al (2011) Energy transfer in “parasitic” cancer metabolism: mitochondria are the powerhouse and Achilles’ heel of tumor cells. Cell Cycle 10:4208–4216. https://doi.org/10.4161/cc.10.24.18487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fadaka A, Ajiboye B, Ojo O et al (2017) Biology of glucose metabolization in cancer cells. J Oncol Sci 3:45–51. https://doi.org/10.1016/J.JONS.2017.06.002

    Article  Google Scholar 

  70. Gupta S, Roy A, Dwarakanath BS (2017) Metabolic cooperation and competition in the tumor microenvironment: implications for therapy. Front Oncol 7:68. https://doi.org/10.3389/fonc.2017.00068

    Article  PubMed  PubMed Central  Google Scholar 

  71. Balaban S, Shearer RF, Lee LS et al (2017) Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab 5:1. https://doi.org/10.1186/s40170-016-0163-7

    Article  PubMed  PubMed Central  Google Scholar 

  72. Santos CR, Schulze A (2012) Lipid metabolism in cancer. FEBS J 279:2610–2623. https://doi.org/10.1111/j.1742-4658.2012.08644.x

    Article  CAS  PubMed  Google Scholar 

  73. Fagone P, Jackowski S (2009) Membrane phospholipid synthesis and endoplasmic reticulum function. J Lipid Res 50(Suppl):S311–S316. https://doi.org/10.1194/jlr.R800049-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pascual G, Avgustinova A, Mejetta S et al (2017) Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541:41–45. https://doi.org/10.1038/nature20791

    Article  CAS  PubMed  Google Scholar 

  75. Lazar I, Clement E, Dauvillier S et al (2016) Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer. Cancer Res 76:4051–4057. https://doi.org/10.1158/0008-5472.CAN-16-0651

    Article  CAS  PubMed  Google Scholar 

  76. Ojima K, Oe M, Nakajima I et al (2016) Dynamics of protein secretion during adipocyte differentiation. FEBS Open Bio 6(8):816–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sun K, Tordjman J, Clément K, Scherer PE (2013) Fibrosis and adipose tissue dysfunction. Cell Metab 18:470–477. https://doi.org/10.1016/j.cmet.2013.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mariman EC, Wang P (2010) Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell Mol Life Sci 67:1277–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Iyengar P, Espina V, Williams TW et al (2005) Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest 115:1163–1176. https://doi.org/10.1172/JCI23424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Park J, Scherer PE (2012) Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest 122:4243–4256. https://doi.org/10.1172/JCI63930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jia L, Wang S, Cao J et al (2007) siRNA targeted against matrix metalloproteinase 11 inhibits the metastatic capability of murine hepatocarcinoma cell Hca-F to lymph nodes. Int J Biochem Cell Biol 39:2049–2062. https://doi.org/10.1016/j.biocel.2007.05.023

    Article  CAS  PubMed  Google Scholar 

  82. WHO (2016) Obesity and overweight. World Health Organization Fact sheet

    Google Scholar 

  83. Finkelstein EA, Khavjou OA, Thompson H et al (2012) Obesity and severe obesity forecasts through 2030. Am J Prev Med 42:563–570. https://doi.org/10.1016/j.amepre.2011.10.026

    Article  PubMed  Google Scholar 

  84. Smith KB, Smith MS (2016) Obesity statistics. Prim Care 43:121–135

    Article  PubMed  Google Scholar 

  85. Ramos Chaves M, Boléo-Tomé C, Monteiro-Grillo I et al (2010) The diversity of nutritional status in cancer: new insights. Oncologist 15:523–530. https://doi.org/10.1634/theoncologist.2009-0283

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gioulbasanis I, Martin L, Baracos VE et al (2015) Nutritional assessment in overweight and obese patients with metastatic cancer: does it make sense? Ann Oncol 26:217–221. https://doi.org/10.1093/annonc/mdu501

    Article  PubMed  Google Scholar 

  87. Protani M, Coory M, Martin JH (2010) Effect of obesity on survival of women with breast cancer: systematic review and meta-analysis. Breast Cancer Res Treat 123:627–635. https://doi.org/10.1007/s10549-010-0990-0

    Article  PubMed  Google Scholar 

  88. Chan DS, Norat T (2015) Obesity and breast cancer: not only a risk factor of the disease. Curr Treat Options in Oncol 16:22. https://doi.org/10.1007/s11864-015-0341-9

    Article  Google Scholar 

  89. Ewertz M, Jensen M-B, Gunnarsdóttir KÁ et al (2011) Effect of obesity on prognosis after early-stage breast cancer. J Clin Oncol 29:25–31. https://doi.org/10.1200/JCO.2010.29.7614

    Article  PubMed  Google Scholar 

  90. Pierobon M, Frankenfeld CL (2013) Obesity as a risk factor for triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res Treat 137:307–314. https://doi.org/10.1007/s10549-012-2339-3

    Article  PubMed  Google Scholar 

  91. James FR, Wootton S, Jackson A et al (2015) Obesity in breast cancer--what is the risk factor? Eur J Cancer 51:705–720. https://doi.org/10.1016/j.ejca.2015.01.057

    Article  CAS  PubMed  Google Scholar 

  92. Donohoe CL, Doyle SL, Reynolds JV (2011) Visceral adiposity, insulin resistance and cancer risk. Diabetol Metab Syndr 3:12

    Article  PubMed  PubMed Central  Google Scholar 

  93. Schapira DV, Clark RA, Wolff PA et al (1994) Visceral obesity and breast cancer risk. Cancer 74:632–639. https://doi.org/10.1002/1097-0142(19940715)74:2<632::AID-CNCR2820740215>3.0.CO;2-T

    Article  CAS  PubMed  Google Scholar 

  94. Osman M, Hennessy B (2015) Obesity correlation with metastases development and response to first-line metastatic chemotherapy in breast cancer. Clin Med Insights Oncol 9:105–112. https://doi.org/10.4137/CMO.S32812

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tseng LM, Hsui CN, Chen SC et al (2013) Distant metastasis in triple-negative breast cancer. Neoplasma 60:290–294. https://doi.org/10.4149/neo_2013_038

    Article  CAS  PubMed  Google Scholar 

  96. Morris EV, Edwards CM (2016) The role of bone marrow adipocytes in bone metastasis. J Bone Oncol 5:121–123. https://doi.org/10.1016/j.jbo.2016.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  97. Chkourko Gusky H, Diedrich J, MacDougald OA, Podgorski I (2016) Omentum and bone marrow: how adipocyte-rich organs create tumour microenvironments conducive for metastatic progression. Obes Rev 17:1015–1029. https://doi.org/10.1111/obr.12450

    Article  CAS  PubMed  Google Scholar 

  98. Rausch LK, Netzer NC, Hoegel J, Pramsohler S (2017) The linkage between breast cancer, hypoxia, and adipose tissue. Front Oncol 7:211. https://doi.org/10.3389/fonc.2017.00211

    Article  PubMed  PubMed Central  Google Scholar 

  99. Seo BR, Bhardwaj P, Choi S et al (2015) Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci Transl Med 7:301ra130. https://doi.org/10.1126/scitranslmed.3010467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Templeton ZS, Lie W-RR, Wang W et al (2015) Breast cancer cell colonization of the human bone marrow adipose tissue niche. Neoplasia 17:849–861. https://doi.org/10.1016/j.neo.2015.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Maller O, Martinson H, Schedin P (2010) Extracellular Matrix Composition Reveals Complex and Dynamic Stromal-Epithelial Interactions in the Mammary Gland. J Mammary Gland Biol Neoplasia 15:301–18. https://doi.org/10.1007/s10911-010-9189-6

    Article  PubMed  Google Scholar 

  102. Duval K, Grover H, Han L-H et al (2017) Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda) 32:266–277. https://doi.org/10.1152/physiol.00036.2016

    Article  CAS  Google Scholar 

  103. Kenny PA, Lee GY, Myers CA et al (2007) The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 1:84–96. https://doi.org/10.1016/j.molonc.2007.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ravi M, Paramesh V, Kaviya SR et al (2015) 3D cell culture systems: advantages and applications. J Cell Physiol 230:16–26. https://doi.org/10.1002/jcp.24683

    Article  CAS  PubMed  Google Scholar 

  105. Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125:3015–3024. https://doi.org/10.1242/jcs.079509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Luca AC, Mersch S, Deenen R et al (2013) Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One 8:e59689. https://doi.org/10.1371/journal.pone.0059689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Aljitawi OS, Li D, Xiao Y et al (2014) A novel three-dimensional stromal-based model for in vitro chemotherapy sensitivity testing of leukemia cells. Leuk Lymphoma 55:378–391. https://doi.org/10.3109/10428194.2013.793323

    Article  CAS  PubMed  Google Scholar 

  108. Fang Y, Eglen RM (2017) Three-dimensional cell cultures in drug discovery and development. SLAS Discov 22:456–472. https://doi.org/10.1177/1087057117696795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pallegar NK, Garland CJ, Mahendralingam M et al (2018) A novel 3-dimensional co-culture method reveals a partial mesenchymal to epithelial transition in breast cancer cells induced by adipocytes. J Mammary Gland Biol Neoplasia 24(1):85–97. https://doi.org/10.1007/s10911-018-9420-4

    Article  PubMed  Google Scholar 

  110. Bidarra SJ, Oliveira P, Rocha S et al (2016) A 3D in vitro model to explore the inter-conversion between epithelial and mesenchymal states during EMT and its reversion. Sci Rep 6:27072. https://doi.org/10.1038/srep27072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Seyfried TN, Huysentruyt LC (2013) On the origin of cancer metastasis. Crit Rev Oncog 18:43–73

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherri L. Christian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pallegar, N.K., Christian, S.L. (2020). Adipocytes in the Tumour Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1234. Springer, Cham. https://doi.org/10.1007/978-3-030-37184-5_1

Download citation

Publish with us

Policies and ethics