Skip to main content

Sustainable Conversion of Coconut Wastes into Useful Adsorbents

  • Reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Coconut (Cocos nuciferas L.) is one of the most widely planted tree species and known as the most versatile natural product. The great versatility of its parts was widely applied in many domestic, commercial, and industrial uses. Currently, a large amount of coconut processing wastes is generated, becoming an environmental problem. So far, the coconut wastes have been used for fertilizer, building materials, and automotive components or left to decompose on the fields. Thus, the development of high value-added product (i.e., adsorbent) from coconut wastes is essential to solve their disposal problems. Besides, it helps in improving the environment quality and sustainability. In recent years, the use of coconut wastes has been extensively studied in adsorbent preparation for specific industrial applications. Studies on coconut waste, such as coconut fiber, coconut shell, desiccated coconut meat waste, coconut tree sawdust, and coconut pith, and their modifications have proved that coconut wastes are potential and beneficial for treating heavy metal pollution in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  Google Scholar 

  2. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418

    Article  CAS  Google Scholar 

  3. Bradl HB (2005) Sources and origins of heavy metals. Interface Sci Technol 6(C):1–27

    CAS  Google Scholar 

  4. Kobielska PA, Howarth AJ, Farha OK, Nayak S (2018) Metal–organic frameworks for heavy metal removal from water. Coord Chem Rev 358:92–107

    Article  CAS  Google Scholar 

  5. Xu J et al (2018) A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere 195:351–364

    Article  CAS  Google Scholar 

  6. Lakherwal D (2014) Adsorption of heavy metals: a review. Int J Environ Res Dev 4(1):41–48

    Google Scholar 

  7. Anis M, Haydar S, Bari AJ (2018) Adsorption of lead and copper from aqueous solution using unmodified wheat straw. Environ Eng Manag J 12(11):2117–2124

    Article  Google Scholar 

  8. Yargiç AS, Yarbay Şahin RZ, Özbay N, Önal E (2015) Assessment of toxic copper(II) biosorption from aqueous solution by chemically-treated tomato waste. J Clean Prod 88:152–159

    Article  CAS  Google Scholar 

  9. Rajeswari T, Sailaja N (2014) Impact of heavy metals on environmental pollution. J Chem Pharm Sci 94(1–3):247

    Google Scholar 

  10. Nancharaiah YV, Venkata Mohan S, Lens PNL (2015) Metals removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 195:102–114

    Article  CAS  Google Scholar 

  11. Malik N, Biswas AK, Qureshi TA, Borana K, Virha R (2010) Bioaccumulation of heavy metals in fish tissues of a freshwater lake of Bhopal. Environ Monit Assess 160(1–4):267–276

    Article  CAS  Google Scholar 

  12. Mondal P, Majumder CB, Mohanty B (2008) Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+impregnated activated carbon. J Hazard Mater 150(3):695–702

    Article  CAS  Google Scholar 

  13. Inyang M et al (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56

    Article  CAS  Google Scholar 

  14. De Andrade JR, Oliveira MF, Da Silva MGC, Vieira MGA (2018) Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review. Ind Eng Chem Res 57(9):3103–3127

    Article  CAS  Google Scholar 

  15. Ahmed MJ (2017) Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: review. Environ Toxicol Pharmacol 50:1–10

    Article  CAS  Google Scholar 

  16. Gupta VK, Rastogi A (2008) Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J Hazard Mater 152(1):407–414

    Article  CAS  Google Scholar 

  17. Kazemipour M, Ansari M, Tajrobehkar S, Majdzadeh M, Kermani HR (2008) Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone. J Hazard Mater 150(2):322–327

    Article  CAS  Google Scholar 

  18. Depci T, Kul AR, Önal Y (2012) Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: study in single- and multi-solute systems. Chem Eng J 200–202:224–236

    Article  CAS  Google Scholar 

  19. Šoštarić TD et al (2018) Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment. J Mol Liq 259:340–349

    Article  CAS  Google Scholar 

  20. Mouni L, Merabet D, Bouzaza A, Belkhiri L (2011) Adsorption of Pb(II) from aqueous solutions using activated carbon developed from Apricot stone. Desalination 276(1–3):148–153

    Article  CAS  Google Scholar 

  21. Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96(13):1518–1521

    Article  CAS  Google Scholar 

  22. Abbas M, Kaddour S, Trari M (2014) Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J Ind Eng Chem 20(3):745–751

    Article  CAS  Google Scholar 

  23. Song T et al (2017) Biosorption of cadmium ions from aqueous solution by modified Auricularia Auricular matrix waste. J Mol Liq 241:1023–1031

    Article  CAS  Google Scholar 

  24. Yousaf MM, Sajjad (2015) Application of thermally and chemically modified banana peels waste as adsorbents for the removal of iron from aqueous system. J Environ Anal Chem 2(3)

    Google Scholar 

  25. Moreno-Piraján JC, Giraldo L (2010) Adsorption of copper from aqueous solution by activated carbons obtained by pyrolysis of cassava peel. J Anal Appl Pyrolysis 87(2):188–193

    Article  CAS  Google Scholar 

  26. Özçimen D, Ersoy-Meriçboyu A (2009) Removal of copper from aqueous solutions by adsorption onto chestnut shell and grapeseed activated carbons. J Hazard Mater 168(2–3):1118–1125

    Article  CAS  Google Scholar 

  27. Azouaou N, Sadaoui Z, Djaafri A, Mokaddem H (2010) Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics. J Hazard Mater 184(1–3):126–134

    Article  CAS  Google Scholar 

  28. Boudrahem F, Aissani-Benissad F, Aït-Amar H (2009) Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. J Environ Manag 90(10):3031–3039

    Article  CAS  Google Scholar 

  29. Li K, Wang X (2009) Adsorptive removal of Pb(II) by activated carbon prepared from Spartina alterniflora: equilibrium, kinetics and thermodynamics. Bioresour Technol 100(11):2810–2815

    Article  CAS  Google Scholar 

  30. Petrović M et al (2016) Removal of Pb2+ ions by raw corn silk (Zea mays L.) as a novel biosorbent. J Taiwan Inst Chem Eng 58:407–416

    Article  CAS  Google Scholar 

  31. Cechinel MAP, Ulson De Souza SMAG, Ulson De Souza AA (2014) Study of lead(II) adsorption onto activated carbon originating from cow bone. J Clean Prod 65:342–349

    Article  CAS  Google Scholar 

  32. Basu M, Guha AK, Ray L (2017) Adsorption of lead on cucumber peel. J Clean Prod 151:603–615

    Article  CAS  Google Scholar 

  33. Gerçel Ö, Gerçel HF (2007) Adsorption of lead(II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida. Chem Eng J 132(1–3):289–297

    Article  CAS  Google Scholar 

  34. Nagy B, Mânzatu C, Mǎicǎneanu A, Indolean C, Silaghi-Dumitrescu L, Majdik C (2014) Effect of alkaline and oxidative treatment on sawdust capacity to remove Cd(II) from aqueous solutions: FTIR and AFM study. J Wood Chem Technol 34(4):301–311

    Article  CAS  Google Scholar 

  35. Das D, Das N, Mathew L (2010) Kinetics, equilibrium and thermodynamic studies on biosorption of Ag(I) from aqueous solution by macrofungus Pleurotus platypus. J Hazard Mater 184(1–3):765–774

    Article  CAS  Google Scholar 

  36. Shroff KA, Vaidya VK (2011) Kinetics and equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis. Chem Eng J 171(3):1234–1245

    Article  CAS  Google Scholar 

  37. Demiral H, Güngör C (2016) Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. J Clean Prod 124:103–113

    Article  CAS  Google Scholar 

  38. Torab-Mostaedi M, Asadollahzadeh M, Hemmati A, Khosravi A (2013) Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel. J Taiwan Inst Chem Eng 44(2):295–302

    Article  CAS  Google Scholar 

  39. Sabela MI et al (2016) Removal of copper (II) from wastewater using green vegetable waste derived activated carbon: an approach to equilibrium and kinetic study. Arab J Chem 12(8):4331–4339

    Google Scholar 

  40. Imamoglu M, Tekir O (2008) Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination 228(1–3):108–113

    Article  CAS  Google Scholar 

  41. Ding Z, Hu X, Wan Y, Wang S, Gao B (2016) Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar : batch and column tests. J Ind Eng Chem 33:239–245

    Article  CAS  Google Scholar 

  42. Zhu J, Baig SA, Sheng T, Lou Z, Wang Z, Xu X (2015) Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions. J Hazard Mater 286:220–228

    Article  CAS  Google Scholar 

  43. Basu M, Guha AK, Ray L (2015) Biosorptive removal of lead by lentil husk. J Environ Chem Eng 3(2):1088–1095

    Article  CAS  Google Scholar 

  44. García-Rosales G, Colín-Cruz A (2010) Biosorption of lead by maize (Zea mays) stalk sponge. J Environ Manag 91(11):2079–2086

    Article  CAS  Google Scholar 

  45. Paul DJM, Jimmy J, Therattil JM, Regi L, Shahana S (2017) Removal of heavy metals using low cost adsorbents. IOSR J Mech Civ Eng 14(03):48–50

    Article  Google Scholar 

  46. Vimala R, Das N (2009) Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study. J Hazard Mater 168(1):376–382

    Article  CAS  Google Scholar 

  47. Kariuki Z, Kiptoo J, Onyancha D (2017) Biosorption studies of lead and copper using rogers mushroom biomass ‘Lepiota hystrix. S Afr J Chem Eng 23:62–70

    Google Scholar 

  48. Jing X, Cao Y, Zhang X, Wang D, Wu X, Xu H (2011) Biosorption of Cr(VI) from simulated wastewater using a cationic surfactant modified spent mushroom. Desalination 269(1–3):120–127

    Article  CAS  Google Scholar 

  49. Takdastan A, Samarbaf S, Tahmasebi Y, Alavi N, Babaei AA (2019) Alkali modified oak waste residues as a cost-effective adsorbent for enhanced removal of cadmium from water: isotherm, kinetic, thermodynamic and artificial neural network modeling. J Ind Eng Chem 78:352–363

    Article  CAS  Google Scholar 

  50. Martín-Lara MA, Blázquez G, Ronda A, Pérez A, Calero M (2013) Development and characterization of biosorbents to remove heavy metals from aqueous solutions by chemical treatment of olive stone. Ind Eng Chem Res 52(31):10809–10819

    Article  CAS  Google Scholar 

  51. Bohli T, Ouederni A, Fiol N, Villaescusa I (2015) Evaluation of an activated carbon from olive stones used as an adsorbent for heavy metal removal from aqueous phases. Comptes Rendus Chim 18(1):88–99

    Article  CAS  Google Scholar 

  52. Aziz A, Ouali MS, Elandaloussi EH, De Menorval LC, Lindheimer M (2009) Chemically modified olive stone: a low-cost sorbent for heavy metals and basic dyes removal from aqueous solutions. J Hazard Mater 163(1):441–447

    Article  CAS  Google Scholar 

  53. Blázquez G, Martín-Lara MA, Tenorio G, Calero M (2011) Batch biosorption of lead(II) from aqueous solutions by olive tree pruning waste: equilibrium, kinetics and thermodynamic study. Chem Eng J 168(1):170–177

    Article  CAS  Google Scholar 

  54. Baccar R, Bouzid J, Feki M, Montiel A (2009) Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions. J Hazard Mater 162(2–3):1522–1529

    Article  CAS  Google Scholar 

  55. Lu D, Cao Q, Li X, Cao X, Luo F, Shao W (2009) Kinetics and equilibrium of Cu(II) adsorption onto chemically modified orange peel cellulose biosorbents. Hydrometallurgy 95(1–2):145–152

    Article  CAS  Google Scholar 

  56. Issabayeva G, Aroua MK, Sulaiman NM (2010) Study on palm shell activated carbon adsorption capacity to remove copper ions from aqueous solutions. Desalination 262(1–3):94–98

    Article  CAS  Google Scholar 

  57. Liang S, Guo XY, Feng NC, Tian QH (2010) Effective removal of heavy metals from aqueous solutions by orange peel xanthate. Trans Nonferrous Met Soc China (English Ed) 20(Suppl.1):s187–s191

    Article  CAS  Google Scholar 

  58. Feng N, Guo X, Liang S, Zhu Y, Liu J (2011) Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J Hazard Mater 185(1):49–54

    Article  CAS  Google Scholar 

  59. Adebisi GA, Chowdhury ZZ, Alaba PA (2017) Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. J Clean Prod 148:958–968

    Article  CAS  Google Scholar 

  60. Hossain MA, Ngo HH, Guo WS, Nguyen TV (2012) Palm oil fruit shells as biosorbent for copper removal from water and wastewater: experiments and sorption models. Bioresour Technol 113:97–101

    Article  CAS  Google Scholar 

  61. Issabayeva G, Aroua MK, Sulaiman NMN (2006) Removal of lead from aqueous solutions on palm shell activated carbon. Bioresour Technol 97(18):2350–2355

    Article  CAS  Google Scholar 

  62. Saeed A, Akhter MW, Iqbal M (2005) Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Sep Purif Technol 45(1):25–31

    Article  CAS  Google Scholar 

  63. Witek-Krowiak A (2012) Analysis of temperature-dependent biosorption of Cu2+ ions on sunflower hulls: kinetics, equilibrium and mechanism of the process. Chem Eng J 192:13–20

    Article  CAS  Google Scholar 

  64. Liu Y, Sun X, Li B (2010) Adsorption of Hg2+ and Cd2+ by ethylenediamine modified peanut shells. Carbohydr Polym 81(2):335–339

    Article  CAS  Google Scholar 

  65. Taşar Ş, Kaya F, Özer A (2014) Biosorption of lead(II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies. J Environ Chem Eng 2(2):1018–1026

    Article  CAS  Google Scholar 

  66. Wang G et al (2018) Removal of Pb(II) from aqueous solutions by Phytolacca americana L. biomass as a low cost biosorbent. Arab J Chem 11(1):99–110

    Article  CAS  Google Scholar 

  67. Schwantes D et al (2016) Chemical modifications of cassava peel as adsorbent material for metals ions from wastewater. J Chemother 2016:1–15

    Google Scholar 

  68. Argun ME, Dursun S, Karatas M (2009) Removal of Cd(II), Pb(II), Cu(II) and Ni(II) from water using modified pine bark. Desalination 249(2):519–527

    Article  CAS  Google Scholar 

  69. Momčilović M, Purenović M, Bojić A, Zarubica A, Randelovid M (2011) Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276(1–3):53–59

    Article  CAS  Google Scholar 

  70. Huong PT, Lee BK, Kim J, Lee CH, Chong MN (2016) Acid activation pine cone waste at differences temperature and selective removal of Pb2+ ions in water. Process Saf Environ Prot 100:80–90

    Article  CAS  Google Scholar 

  71. Malaysia’s booming coconut products industry. China Go Abroad. (2020). [Online]. Available: http://www.chinagoabroad.com/en/article/malaysia-s-booming-coconut-products-industry. Accessed 10 Jan 2020

  72. Sivapragasam A (2014) Coconut in Malaysia – current developments and potential for re-vitalization. 2nd International Plantation Industry Conference and Exhibition (IPICEX), Shah Alam, Malaysia, 2008. 

    Google Scholar 

  73. Lee TZE, Sim SF (2019) Application of coconut copra as biosorbent for removal of heavy metals. Key Eng Mater 797:3–12

    Article  Google Scholar 

  74. Saleem M, Wongsrisujarit N, Boonyarattanakalin S (2016) Removal of nickel (II) ion by adsorption on coconut copra meal biosorbent. Desalin Water Treat 57(12):5623–5635

    Article  CAS  Google Scholar 

  75. Ho YS, Ofomaja AE (2006) Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent. Biochem Eng J 30(2):117–123

    Article  CAS  Google Scholar 

  76. Song C, Wu S, Cheng M, Tao P, Shao M, Gao G (2014) Adsorption studies of coconut shell carbons prepared by KOH activation for removal of lead(ii) from aqueous solutions. Sustainability 6(1):86–98

    Article  CAS  Google Scholar 

  77. Yap MW, Mubarak NM, Sahu JN, Abdullah EC (2017) Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater. J Ind Eng Chem 45:287–295

    Article  CAS  Google Scholar 

  78. Okafor PC, Okon PU, Daniel EF, Ebenso EE (2012) Adsorption capacity of coconut (Cocos nucifera L.) shell for lead, copper, cadmium and arsenic from aqueous solutions. Int J Electrochem Sci 7(12):12354–12369

    CAS  Google Scholar 

  79. Jahangard A, Sohrabi M, Beigmohammadi Z (2018) Sorption of lead (II) ions on activated coconut husk. Iran J Toxicol 10(6):23–29

    Google Scholar 

  80. Ahmad R, Hasany SM, Chaudhary MH (2005) Adsorption characteristics of Cr(III) ions onto coconut husk from aqueous solution. Adsorpt Sci Technol 23(6):467–478

    Article  CAS  Google Scholar 

  81. Chwastowski J, Staroń P, Kołoczek H, Banach M (2017) Adsorption of hexavalent chromium from aqueous solutions using Canadian peat and coconut fiber. J Mol Liq 248:981–989

    Article  CAS  Google Scholar 

  82. Shrestha S, Son G, Lee SH, Lee TG (2013) Isotherm and thermodynamic studies of Zn (II) adsorption on lignite and coconut shell-based activated carbon fiber. Chemosphere 92(8):1053–1061

    Article  CAS  Google Scholar 

  83. Johari K, Saman N, Song ST, Chin CS, Kong H, Mat H (2016) Adsorption enhancement of elemental mercury by various surface modified coconut husk as eco-friendly low-cost adsorbents. Int Biodeterior Biodegrad 109:45–52

    Article  CAS  Google Scholar 

  84. Swarnalatha K, Ayoob S (2016) Adsorption studies on coir pith for heavy metal removal. Int J Sustain Eng 9(4):259–265

    Article  Google Scholar 

  85. Selvi K, Pattabhi S, Kadirvelu K (2001) Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon. Bioresour Technol 80(1):87–89

    Article  CAS  Google Scholar 

  86. Johari K, Saman N, Song ST, Mat H, Stuckey DC (2013) Utilization of coconut milk processing waste as a low-cost mercury sorbent. Ind Eng Chem Res 52(44):15648–15657

    Article  CAS  Google Scholar 

  87. Rahim ARA, Ekmi N, Johari K (2019) Removal of lead (II) ions from aqueous solution using desiccated coconut waste as low-cost adsorbent. Chem Eng Trans 72:169–174

    Google Scholar 

  88. Gonzalez MH et al (2008) Coconut coir as biosorbent for Cr(VI) removal from laboratory wastewater. J Hazard Mater 159(2–3):252–256

    Article  CAS  Google Scholar 

  89. Shen YS, Wang SL, Huang ST, Tzou YM, Huang JH (2010) Biosorption of Cr(VI) by coconut coir: spectroscopic investigation on the reaction mechanism of Cr(VI) with lignocellulosic material. J Hazard Mater 179(1–3):160–165

    Article  CAS  Google Scholar 

  90. Chaudhuri M, Saminal SNB (2011) Coconut coir activated carbon: an adsorbent for removal of lead from aqueous solution. WIT Trans Ecol Environ 148:95–104

    Article  CAS  Google Scholar 

  91. Quek SY, Al-Duri B, Wase DAJ, Forster CF (1998) Coir as a biosorbent of copper and lead. Process Saf Environ Prot 76(1):50–54

    Article  CAS  Google Scholar 

  92. Ahmed N, Islam M, Hossain M, Rahman A, Sultana A (2019) Modified coconut coir to remove hexavalent chromium from aqueous solution. Bangladesh J Sci Ind Res 54(1):89–98

    Article  CAS  Google Scholar 

  93. Conrad K, Bruun Hansen HC (2007) Sorption of zinc and lead on coir. Bioresour Technol 98(1):89–97

    Article  CAS  Google Scholar 

  94. Namasivayam C, Sangeetha D (2006) Removal of molybdate from water by adsorption onto ZnCl2 activated coir pith carbon. Bioresour Technol 97(10):1194–1200

    Article  CAS  Google Scholar 

  95. Namasivayam C, Sureshkumar MV (2008) Removal of chromium(VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent. Bioresour Technol 99(7):2218–2225

    Article  CAS  Google Scholar 

  96. Ewecharoen A, Thiravetyan P, Nakbanpote W (2008) Comparison of nickel adsorption from electroplating rinse water by coir pith and modified coir pith. Chem Eng J 137(2):181–188

    Article  CAS  Google Scholar 

  97. Parab H, Joshi S, Shenoy N, Lali A, Sarma US, Sudersanan M (2008) Esterified coir pith as an adsorbent for the removal of Co(II) from aqueous solution. Bioresour Technol 99(6):2083–2086

    Article  CAS  Google Scholar 

  98. Anirudhan TS, Divya L, Ramachandran M (2008) Mercury(II) removal from aqueous solutions and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery. J Hazard Mater 157(2–3):620–627

    Article  CAS  Google Scholar 

  99. Suksabye P, Thiravetyan P, Nakbanpote W, Chayabutra S (2007) Chromium removal from electroplating wastewater by coir pith. J Hazard Mater 141(3):637–644

    Article  CAS  Google Scholar 

  100. Suksabye P, Thiravetyan P, Nakbanpote W (2008) Column study of chromium(VI) adsorption from electroplating industry by coconut coir pith. J Hazard Mater 160(1):56–62

    Article  CAS  Google Scholar 

  101. Kadirvelu K, Namasivayam C (2003) Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd(II) from aqueous solution. Adv Environ Res 7(2):471–478

    Article  CAS  Google Scholar 

  102. Parab H, Joshi S, Shenoy N, Lali A, Sarma US, Sudersanan M (2006) Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith. Process Biochem 41(3):609–615

    Article  CAS  Google Scholar 

  103. Suksabye P, Thiravetyan P (2012) Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith. J Environ Manag 102:1–8

    Article  CAS  Google Scholar 

  104. Ofomaja AE, Ho YS (2007) Effect of pH on cadmium biosorption by coconut copra meal. J Hazard Mater 139(2):356–362

    Article  CAS  Google Scholar 

  105. Johari K, Alias AS, Saman N, Song ST, Mat H (2015) Removal performance of elemental mercury by low-cost adsorbents prepared through facile methods of carbonisation and activation of coconut husk. Waste Manag Res 33(1):81–88

    Article  CAS  Google Scholar 

  106. Johari K, Saman N, Song ST, Heng JYY, Mat H (2014) Study of Hg(Ii) removal from aqueous solution using lignocellulosic coconut fiber biosorbents: equilibrium and kinetic evaluation. Chem Eng Commun 201(9):1198–1220

    Article  CAS  Google Scholar 

  107. Saman N, Johari K, Song ST, Mat H (2015) Silver adsorption enhancement from aqueous and photographic waste solutions by mercerized coconut fiber. Sep Sci Technol 50(7):937–946

    Article  CAS  Google Scholar 

  108. de Sousa DA, de Oliveira E, da Costa Nogueira M, Espósito BP (2010) Development of a heavy metal sorption system through the P{double bond, long}S functionalization of coconut (Cocos nucifera) fibers. Bioresour Technol 101(1):138–143

    Article  CAS  Google Scholar 

  109. Staroń P, Chwastowski J, Banach M (2017) Sorption and desorption studies on silver ions from aqueous solution by coconut fiber. J Clean Prod 149:290–301

    Article  CAS  Google Scholar 

  110. Wu W et al (2016) Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments. Environ Sci Pollut Res 23(22):22890–22896

    Article  CAS  Google Scholar 

  111. Mohd Fouzi NFA, Ismail M, Mat Hussin Z, Mohd Jan SL (2018) Separation of Pb(II) from wastewater using untreated coconut (Cocos nucifera) frond powder. Malaysian J Anal Sci 22(1):128–135

    Google Scholar 

  112. Sousa FW, Oliveira AG, Ribeiro JP, Rosa MF, Keukeleire D, Nascimento RF (2010) Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology. J Environ Manag 91(8):1634–1640

    Article  CAS  Google Scholar 

  113. Abdulrasaq OO, Basiru OG (2010) Removal of copper (II), iron (III) and lead (II) ions from mono-component simulated waste effluent by adsorption on coconut husk. Afr J Environ Sci Technol 4(6):382–387

    Article  CAS  Google Scholar 

  114. Honnannavar SM, Hosamani SR (2014) Comparison of activated and inactivated coconut husk as an adsorbent for removal of hexavalent chromium from wastewater. J Chem Pharm Res 6(6):2628–2633

    Google Scholar 

  115. Manju GN, Raji C, Anirudhan TS (1998) Evaluation of coconut husk carbon for the removal of arsenic from water. Water Res 32(10):3062–3070

    Article  CAS  Google Scholar 

  116. Saman N, Johari K, Tien SS, Mat H (2015) Silver ion adsorption using alkali and organosilane modified coconut pith biosorbents. J Nat Fibers 12(3):283–302

    Article  CAS  Google Scholar 

  117. Saman N, Abdul Aziz A, Johari K, Song ST, Mat H (2015) Adsorptive efficacy analysis of lignocellulosic waste carbonaceous adsorbents toward different mercury species. Process Saf Environ Prot 96:33–42

    Article  CAS  Google Scholar 

  118. Sekar M, Sakthi V, Rengaraj S (2004) Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. J Colloid Interface Sci 279(2):307–313

    Article  CAS  Google Scholar 

  119. Bernard E, Jimoh A, Odigure JO (2013) Heavy metals removal from industrial wastewater by activated carbon prepared from coconut shell. Res J Chem Sci 3(8):3–9

    CAS  Google Scholar 

  120. Gueu S, Yao B, Adouby K, Ado G (2006) Heavy metals removal in aqueous solution by activated carbon prepared from coconut shell and seed shell of the palm tree. J Appl Sci 6(13):2789–2793

    Article  CAS  Google Scholar 

  121. Amuda OS, Giwa AA, Bello IA (2007) Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem Eng J 36(2):174–181

    Article  CAS  Google Scholar 

  122. Babel S, Kurniawan TA (2004) Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 54(7):951–967

    Article  CAS  Google Scholar 

  123. Pino GH, Souza De Mesquita LM, Torem ML, Pinto GAS (2006) Biosorption of cadmium by green coconut shell powder. Miner Eng 19(5):380–387

    Article  CAS  Google Scholar 

  124. Mohan D, Singh KP, Singh VK (2006) Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. J Hazard Mater 135(1–3):280–295

    Article  CAS  Google Scholar 

  125. Rahman MM, Adil M, Yusof AM, Kamaruzzaman YB, Ansary RH (2014) Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells. Materials 7:3634–3650

    Article  CAS  Google Scholar 

  126. Caccin M, Giorgi M, Giacobbo F, Da Ros M, Besozzi L, Mariani M (2016) Removal of lead (II) from aqueous solutions by adsorption onto activated carbons prepared from coconut shell. Desalin Water Treat 57(10):4557–4575

    CAS  Google Scholar 

  127. Johari K et al (2014) Study of Hg(Ii) removal from aqueous solution using lignocellulosic coconut fiber biosorbents: equilibrium and kinetic evaluation. Chem Eng Commun 201(9):1198–1220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khairiraihanna Johari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abdul Rahim, A.R., Johari, K., Saman, N., Mat, H. (2021). Sustainable Conversion of Coconut Wastes into Useful Adsorbents. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_121

Download citation

Publish with us

Policies and ethics