Skip to main content

Multi-scale Graph Convolutional Network for Mild Cognitive Impairment Detection

  • Conference paper
  • First Online:
Graph Learning in Medical Imaging (GLMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11849))

Included in the following conference series:

Abstract

Mild cognitive impairment (MCI) is an early stage of Alzheimer’s disease (AD), which is also the best time for treatment. However, existing methods only consider neuroimaging features learned from group relationships instead of the subjects’ individual features. Such methods ignore demographic relationships (i.e., non-image information). In this paper, we propose a novel method based on multi-scale graph convolutional network (MS-GCN) via inception module, which combines image and non-image information for MCI detection. Specifically, since the brain has the characteristics of high-order interactions, we first analyze the dynamic high-order features of resting functional magnetic resonance imaging (rs-fMRI) time series and construct a dynamic high-order brain functional connectivity network (DH-FCN). To get more effective features and further improve the detection performance, we extract the local weighted clustering coefficients from the original DH-FCN. Then, gender and age information are combined with the neuroimaging data to build a graph. Finally, we perform the detection using the MS-GCN, and validate the proposed method on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. The experimental results demonstrate that our proposed method can achieve remarkable MCI detection performance.

This work was supported partly by National Natural Science Foundation of China (Nos. 61871274, 61801305 and 81571758), National Natural Science Foundation of Guangdong Province (No. 2017A030313377), Guangdong Pearl River Talents Plan (2016ZT06S220), Shenzhen Peacock Plan (Nos. KQTD2016053112051497 and KQTD2015033016 104926), and Shenzhen Key Basic Research Project (Nos. JCYJ2017 0413152804728, JCYJ20180507184647636, JCYJ20170818142347251 and JCYJ20170818094109846).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alzheimer’s Association: 2018 Alzheimer’s disease facts and figures. Alzheimers Dement. 14(3), 367–425 (2018)

    Google Scholar 

  2. Petersen, R.C., et al.: Current concepts in mild cognitive impairment. Arch. Neurol. 58(12), 1985–1992 (2001)

    Article  Google Scholar 

  3. Huettel, S.A., Song, A.W., McCarthy, G.: Sinauer Associates Sunderland. Functional Magnetic Resonance Imaging, MA (2004)

    Google Scholar 

  4. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186 (2009)

    Article  Google Scholar 

  5. Wee, C.-Y., Yap, P.-T., Zhang, D., Wang, L., Shen, D.: Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Struct. Funct. 219(2), 641–656 (2014)

    Article  Google Scholar 

  6. Hart, B., et al.: A longitudinal model for functional connectivity networks using resting-state fMRI. NeuroImage 178, 687–701 (2018)

    Article  Google Scholar 

  7. Parisot, S., et al.: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med. Image Anal. 48, 117–130 (2018)

    Article  Google Scholar 

  8. Ktena, S.I., et al.: Metric learning with spectral graph convolutions on brain connectivity networks. NeuroImage 169, 431–442 (2018)

    Article  Google Scholar 

  9. Kazi, A., et al.: InceptionGCN: receptive field aware graph convolutional network for disease prediction. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 73–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_6

    Chapter  Google Scholar 

  10. Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., He, Y.: GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front. Hum. Neurosci. 9, 386 (2015)

    Google Scholar 

  11. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1), 273–289 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiying Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, S., Yue, G., Elazab, A., Song, X., Wang, T., Lei, B. (2019). Multi-scale Graph Convolutional Network for Mild Cognitive Impairment Detection. In: Zhang, D., Zhou, L., Jie, B., Liu, M. (eds) Graph Learning in Medical Imaging. GLMI 2019. Lecture Notes in Computer Science(), vol 11849. Springer, Cham. https://doi.org/10.1007/978-3-030-35817-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35817-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35816-7

  • Online ISBN: 978-3-030-35817-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics