Skip to main content

The Microbiome as a Component of the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1225))

Abstract

Microbes, which live in the human body, affect a large set of pathophysiological processes. Changes in the composition and proportion of the microbiome are associated with metabolic diseases (Fulbright et al., PLoS Pathog 13:e1006480, 2017; Maruvada et al., Cell Host Microbe 22:589–599, 2017), psychiatric disorders (Macfabe, Glob Adv Health Med 2:52–66, 2013; Kundu et al., Cell 171:1481–1493, 2017), and neoplastic diseases (Plottel and Blaser, Cell Host Microbe 10:324–335, 2011; Schwabe and Jobin, Nat Rev Cancer 13:800–812, 2013; Zitvogel et al., Cell 165:276–287, 2016). However, the number of directly tumorigenic bacteria is extremely low. Microbial dysbiosis is connected to cancers of the urinary tract (Yu, Arch Med Sci 11:385–394, 2015), cervix (Chase, Gynecol Oncol 138:190–200, 2015), skin (Yu et al., J Drugs Dermatol 14:461–465, 2015), airways (Gui et al., Genet Mol Res 14:5642–5651, 2015), colon (Garrett, Science 348:80–86, 2015), lymphomas (Yamamoto and Schiestl, Int J Environ Res Public Health 11:9038–9049, 2014; Yamamoto and Schiestl, Cancer J 20:190–194, 2014), prostate (Yu, Arch Med Sci 11:385–394, 2015), and breast (Flores et al., J Transl Med 10:253, 2012; Fuhrman et al., J Clin Endocrinol Metab 99:4632–4640, 2014; Xuan et al., PLoS One 9:e83744, 2014; Goedert et al., J Natl Cancer Inst 107:djv147, 2015; Chan et al., Sci Rep 6:28061, 2016; Hieken et al., Sci Rep 6:30751, 2016; Urbaniak et al., Appl Environ Microbiol 82:5039–5048, 2016; Goedert et al., Br J Cancer 118:471–479, 2018). Microbial dysbiosis can influence organs in direct contact with the microbiome and organs that are located at distant sites of the body. The altered microbiota can lead to a disruption of the mucosal barrier (Plottel and Blaser, Cell Host Microbe 10:324–335, 2011), promote or inhibit tumorigenesis through the modification of immune responses (Kawai and Akira, Int Immunol 21:317–337, 2009; Dapito et al., Cancer Cell 21:504–516, 2012) and microbiome-derived metabolites, such as estrogens (Flores et al., J Transl Med 10:253, 2012; Fuhrman et al., J Clin Endocrinol Metab 99:4632–4640, 2014), secondary bile acids (Rowland, Role of the gut flora in toxicity and cancer, Academic Press, London, p x, 517 p., 1988; Yoshimoto et al., Nature 499:97–101, 2013; Xie et al., Int J Cancer 139:1764–1775, 2016; Shellman et al., Clin Otolaryngol 42:969–973, 2017; Luu et al., Cell Oncol (Dordr) 41:13–24, 2018; Miko et al., Biochim Biophys Acta Bioenerg 1859:958–974, 2018), short-chain fatty acids (Bindels et al., Br J Cancer 107:1337–1344, 2012), lipopolysaccharides (Dapito et al., Cancer Cell 21:504–516, 2012), and genotoxins (Fulbright et al., PLoS Pathog 13:e1006480, 2017). Thus, altered gut microbiota may change the efficacy of chemotherapy and radiation therapy (McCarron et al., Br J Biomed Sci 69:14–17, 2012; Viaud et al., Science 342:971–976, 2013; Montassier et al., Aliment Pharmacol Ther 42:515–528, 2015; Buchta Rosean et al., Adv Cancer Res 143:255–294, 2019). Taken together, microbial dysbiosis has intricate connections with neoplastic diseases; hereby, we aim to highlight the major contact routes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fulbright LE, Ellermann M, Arthur JC (2017) The microbiome and the hallmarks of cancer. PLoS Pathog 13(9):e1006480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Maruvada P et al (2017) The human microbiome and obesity: moving beyond associations. Cell Host Microbe 22(5):589–599

    Article  CAS  PubMed  Google Scholar 

  3. Macfabe D (2013) Autism: metabolism, mitochondria, and the microbiome. Glob Adv Health Med 2(6):52–66

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kundu P et al (2017) Our gut microbiome: the evolving inner self. Cell 171(7):1481–1493

    Article  CAS  PubMed  Google Scholar 

  5. Plottel CS, Blaser MJ (2011) Microbiome and malignancy. Cell Host Microbe 10(4):324–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwabe RF, Jobin C (2013) The microbiome and cancer. Nat Rev Cancer 13(11):800–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zitvogel L et al (2016) Microbiome and anticancer immunosurveillance. Cell 165(2):276–287

    Article  CAS  PubMed  Google Scholar 

  8. Yu H et al (2015) Urinary microbiota in patients with prostate cancer and benign prostatic hyperplasia. Arch Med Sci 11(2):385–394

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chase D et al (2015) The vaginal and gastrointestinal microbiomes in gynecologic cancers: a review of applications in etiology, symptoms and treatment. Gynecol Oncol 138(1):190–200

    Article  PubMed  Google Scholar 

  10. Yu Y et al (2015) The role of the cutaneous microbiome in skin cancer: lessons learned from the gut. J Drugs Dermatol 14(5):461–465

    PubMed  Google Scholar 

  11. Gui QF et al (2015) Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet Mol Res 14(2):5642–5651

    Article  PubMed  Google Scholar 

  12. Garrett WS (2015) Cancer and the microbiota. Science 348(6230):80–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamamoto ML, Schiestl RH (2014) Lymphoma caused by intestinal microbiota. Int J Environ Res Public Health 11(9):9038–9049

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yamamoto ML, Schiestl RH (2014) Intestinal microbiome and lymphoma development. Cancer J 20(3):190–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Flores R et al (2012) Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med 10:253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fuhrman BJ et al (2014) Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J Clin Endocrinol Metab 99(12):4632–4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xuan C et al (2014) Microbial dysbiosis is associated with human breast cancer. PLoS One 9(1):e83744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Goedert JJ et al (2015) Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: a population-based case-control pilot study. J Natl Cancer Inst 107(8):djv147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chan AA et al (2016) Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors. Sci Rep 6:28061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hieken TJ et al (2016) The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci Rep 6:30751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Urbaniak C et al (2016) The microbiota of breast tissue and its association with breast cancer. Appl Environ Microbiol 82(16):5039–5048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goedert JJ et al (2018) Postmenopausal breast cancer and oestrogen associations with the IgA-coated and IgA-noncoated faecal microbiota. Br J Cancer 118(4):471–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21(4):317–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dapito DH et al (2012) Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21(4):504–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rowland IR (1988) Role of the gut flora in toxicity and cancer. Academic Press, London, p x, 517 p

    Google Scholar 

  26. Yoshimoto S et al (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499(7456):97–101

    Article  CAS  PubMed  Google Scholar 

  27. Xie G et al (2016) Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. Int J Cancer 139(8):1764–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shellman Z et al (2017) Bile acids: a potential role in the pathogenesis of pharyngeal malignancy. Clin Otolaryngol 42(5):969–973

    Article  CAS  PubMed  Google Scholar 

  29. Luu TH et al (2018) Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells. Cell Oncol (Dordr) 41(1):13–24

    Article  CAS  Google Scholar 

  30. Miko E et al (2018) Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness. Biochim Biophys Acta Bioenerg 1859(9):958–974

    Article  CAS  PubMed  Google Scholar 

  31. Bindels LB et al (2012) Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br J Cancer 107(8):1337–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McCarron AJ et al (2012) Antibacterial effects on acinetobacter species of commonly employed antineoplastic agents used in the treatment of haematological malignancies: an in vitro laboratory evaluation. Br J Biomed Sci 69(1):14–17

    Article  CAS  PubMed  Google Scholar 

  33. Viaud S et al (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342(6161):971–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Montassier E et al (2015) Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment Pharmacol Ther 42(5):515–528

    Article  CAS  PubMed  Google Scholar 

  35. Buchta Rosean C et al (2019) Impact of the microbiome on cancer progression and response to anti-cancer therapies. Adv Cancer Res 143:255–294

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Garcia-Castillo V et al (2016) Microbiota dysbiosis: a new piece in the understanding of the carcinogenesis puzzle. J Med Microbiol 65(12):1347–1362

    Article  CAS  PubMed  Google Scholar 

  37. Arslan N (2014) Obesity, fatty liver disease and intestinal microbiota. World J Gastroenterol 20(44):16452–16463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375(24):2369–2379

    Article  CAS  PubMed  Google Scholar 

  39. Khan AA, Shrivastava A, Khurshid M (2012) Normal to cancer microbiome transformation and its implication in cancer diagnosis. Biochim Biophys Acta 1826(2):331–337

    CAS  PubMed  Google Scholar 

  40. Walsh CJ et al (2014) Beneficial modulation of the gut microbiota. FEBS Lett 588(22):4120–4130

    Article  CAS  PubMed  Google Scholar 

  41. Petersen C, Round JL (2014) Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 16(7):1024–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kovacs T et al (2019) Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Sci Rep 9(1):1300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  44. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125(23):5591–5596

    Article  CAS  PubMed  Google Scholar 

  45. Fernandez MF et al (2018) Breast cancer and its relationship with the microbiota. Int J Environ Res Public Health 15(8):E1747

    Article  PubMed  CAS  Google Scholar 

  46. Hackam DJ, Good M, Sodhi CP (2013) Mechanisms of gut barrier failure in the pathogenesis of necrotizing enterocolitis: toll-like receptors throw the switch. Semin Pediatr Surg 22(2):76–82

    Article  PubMed  PubMed Central  Google Scholar 

  47. Brahmer JR et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang JC et al (2007) Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother 30(8):825–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Topalian SL et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vetizou M et al (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350(6264):1079–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sivan A et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350(6264):1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gopalakrishnan V et al (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359(6371):97–103

    Article  CAS  PubMed  Google Scholar 

  53. Matson V et al (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359(6371):104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Routy B et al (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359(6371):91–97

    Article  CAS  PubMed  Google Scholar 

  55. Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47(2):241–259

    Article  CAS  PubMed  Google Scholar 

  56. Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12(10):661–672

    Article  CAS  PubMed  Google Scholar 

  57. Miko E et al (2019) Microbiome-microbial metabolome-cancer cell interactions in breast cancer-familiar, but unexplored. Cell 8(4):E293

    Article  CAS  Google Scholar 

  58. Gandhi N, Das GM (2019) Metabolic reprogramming in breast cancer and its therapeutic implications. Cell 8(2):E89

    Article  CAS  Google Scholar 

  59. Sansone P et al (2017) Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A 114(43):E9066–E9075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ivan J et al (2017) The short-chain fatty acid propionate inhibits adipogenic differentiation of human chorion-derived mesenchymal stem cells through the free fatty acid receptor 2. Stem Cells Dev 26(23):1724–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fruge AD et al (2018) Fecal Akkermansia muciniphila is associated with body composition and microbiota diversity in overweight and obese women with breast Cancer participating in a presurgical weight loss trial. J Acad Nutr Diet. https://doi.org/10.1016/j.jand.2018.08.164

  62. Swales KE et al (2006) The farnesoid X receptor is expressed in breast cancer and regulates apoptosis and aromatase expression. Cancer Res 66(20):10120–10126

    Article  CAS  PubMed  Google Scholar 

  63. Salaspuro M (1997) Microbial metabolism of ethanol and acetaldehyde and clinical consequences. Addict Biol 2(1):35–46

    Article  CAS  PubMed  Google Scholar 

  64. Vida A et al (2018) Deletion of poly(ADPribose) polymerase-1 changes the composition of the microbiome in the gut. Mol Med Rep 18(5):4335–4341

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Morgan XC et al (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13(9):R79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Giles GI, Jacob C (2002) Reactive sulfur species: an emerging concept in oxidative stress. Biol Chem 383(3–4):375–388

    CAS  PubMed  Google Scholar 

  67. Khoruts A et al (2010) Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol 44(5):354–360

    Article  PubMed  Google Scholar 

  68. Roh YS, Seki E (2013) Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis. J Gastroenterol Hepatol 28(Suppl 1):38–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zambirinis CP et al (2014) Pancreatic cancer, inflammation, and microbiome. Cancer J 20(3):195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Houghton AM (2013) Mechanistic links between COPD and lung cancer. Nat Rev Cancer 13(4):233–245

    Article  CAS  PubMed  Google Scholar 

  71. Schmidt BL et al (2014) Changes in abundance of oral microbiota associated with oral cancer. PLoS One 9(6):e98741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Zackular JP et al (2013) The gut microbiome modulates colon tumorigenesis. MBio 4(6):e00692–e00613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Arthur JC, Jobin C (2011) The struggle within: microbial influences on colorectal cancer. Inflamm Bowel Dis 17(1):396–409

    Article  PubMed  Google Scholar 

  74. Banerjee S et al (2015) Distinct microbiological signatures associated with triple negative breast cancer. Sci Rep 5:15162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Luu TH et al (2017) Intestinal proportion of Blautia sp. is associated with clinical stage and histoprognostic grade in patients with early-stage breast cancer. Nutr Cancer 69(2):267–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work is supported by grants from NKFIH (K123975, PD124110, FK128387, GINOP-2.3.2-15-2016-00006) and the Hungarian Academy of Sciences (NKM-26/2019). EM is supported by a Bolyai Fellowship from the Hungarian Academy of Sciences. We are grateful to Dr. Karen Uray (Department of Medical Chemistry, University of Debrecen) for the revision of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kovács, T., Mikó, E., Ujlaki, G., Sári, Z., Bai, P. (2020). The Microbiome as a Component of the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1225. Springer, Cham. https://doi.org/10.1007/978-3-030-35727-6_10

Download citation

Publish with us

Policies and ethics