Skip to main content

Submonolayer Quantum Dots

  • Chapter
  • First Online:
Semiconductor Nanophotonics

Abstract

The cycled deposition of small InAs islands into a GaAs matrix leads to the formation of a tailored rough quantum well containing densely spaced In-rich agglomerations referred to as submonolayer quantum dots, which support an efficient exciton formation. Carrier localization properties of the submonolayer structures are further enhanced by alloying with antimony. In this chapter we address the growth, the structure, and the optical and optoelectronic properties of alloyed and unalloyed InAs submonolayer quantum dots and devices based on these structures. Based on structural and optical characterization, we find densities of localization centers exceeding those of self-assembled quantum dots by an order of magnitude. Submonolayer quantum dots show quantum-dot like ultrafast carrier dynamics, while at the same time providing a significantly larger modal gain, which reaches values known for InGaAs quantum-well structures. We develop a numerical model for the density of states and relevant scattering channels in the submonolayer potential landscape. Alloyed and unalloyed submonolayer quantum dots differ predominantly in the degree of hole localization, which is dramatically increased by the addition of antimony. We show that the alloyed submonolayer quantum dots support a heterodimensional confinement, from fully zero-dimensional to hetero-confinement with zero-dimensionally confined holes and electrons free in two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z.M. Wang (ed.), Quantum Dot Devices (Springer, New York, 2012)

    Google Scholar 

  2. D.J. Mowbray, M.S. Skolnick, New physics and devices based on self-assembled semiconductor quantum dots. J. Phys. D: Appl. Phys. 38, 2059 (2005)

    Article  ADS  Google Scholar 

  3. W.W. Chow, F. Jahnke, On the physics of semiconductor quantum dots for applications in lasers and quantum optics. Prog. Quant. Electron. 37, 109 (2013)

    Article  ADS  Google Scholar 

  4. F. Hopfer, M. Kuntz, M. Lämmlin, G. Fiol, N.N. Ledentsov, A.R. Kovsh, S.S. Mikrin, I. Kaiander, V. Haisler, A. Lochmann, A. Mutig, C. Schubert, A. Umbach, V. M. Ustinov, U.W. Pohl, D. Bimberg, Quantum dot photonics: edge emitter amplifier, and VCSEL. Proc. SPIE 7009, 700902 (2008)

    Google Scholar 

  5. D. Bimberg, U.W. Pohl, Quantum dots: promises and accomplishments. Mater. Today 14, 388 (2011)

    Article  Google Scholar 

  6. Q. Xie, A. Madhukar, P. Chen, N. Kabayashi, Vertically self-organized InAs quantum box islands on GaAs(100). Phys. Rev. Lett. 75, 2542 (1995)

    Article  ADS  Google Scholar 

  7. H. Eisele, O. Flebbe, T. Kalka, C. Preinesberger, F. Heinrichsdorff, A. Krost, D. Bimberg, M. Dähne-Prietsch, Cross-sectional scanning-tunneling microscopy of stacked InAs quantum dots. Appl. Phys. Lett. 75, 106 (1999)

    Article  ADS  Google Scholar 

  8. J.H. Blokland, M. Bozkurt, J.M. Ulloa, D. Reuter, A.D. Wieck, P.M. Koenraad, P.C.M. Christianen, J.C. Maan, Ellipsoidal InAs quantum dots observed by cross-sectional scanning tunneling microscopy. Appl. Phys. Lett. 94, 023107 (2009)

    Article  ADS  Google Scholar 

  9. S. Gaan, G. He, R.M. Feenstra, J. Walker, E. Towe, Size, shape, composition, and electronic properties of InAs/GaAs quantum dots by scanning tunneling microscopy and spectroscopy. J. Appl. Phys. 108, 114315 (2010)

    Article  ADS  Google Scholar 

  10. M. Schmidbauer, M. Hanke, R. Köhler, Asymmetric correlation function describing the positional ordering of liquid-phase-epitaxy Si–Ge nanoscale islands. Phys. Rev. B 71, 115323 (2005)

    Article  ADS  Google Scholar 

  11. V.A. Shchukin, N.N. Ledentsov, P.S. Kop’ev, D. Bimberg, Spontaneous ordering of arrays of coherent strained islands. Phys. Rev. Lett. 75, 2968 (1995)

    Article  ADS  Google Scholar 

  12. R. Heitz, M. Veit, N.N. Ledentsov, A. Hoffmann, D. Bimberg, V.M. Ustinov, P.S. Alferov, Z.I. Kopev, Energy relaxation by multiphonon processes in InAs/GaAs quantum dots. Phys. Rev. B 56, 10435 (1997)

    Article  ADS  Google Scholar 

  13. T.R. Nielsen, P. Gartner, F. Jahnke, Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers. Phys. Rev. B 69, 235314 (2004)

    Google Scholar 

  14. T. Markussen, P. Kristensen, B. Tromborg, T.W. Berg, J. Mork, Influence of wetting-layer wave functions on phonon-mediated carrier capture into self-assembled quantum dots. Phys. Rev. B 74, 195342 (2006)

    Article  ADS  Google Scholar 

  15. T.W. Berg, S. Bischoff, I. Magnusdottir, J. Mork, Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices. IEEE Photon. Technol. Lett. 13, 541 (2001)

    Article  ADS  Google Scholar 

  16. J. Gomis-Bresco, S. Dommers, V.V. Temnov, U. Woggon, M. Laemmlin, D. Bimberg, E. Malic, M. Richter, E. Schöll, A. Knorr, Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots. Phys. Rev. Lett. 101, 256803 (2008)

    Article  ADS  Google Scholar 

  17. S.S. Mikhrin, A.E. Zhukov, A.R. Kovsh, N.A. Maleev, V.M. Ustinov, Y.M. Shernyakov, I.P. Soshnikov, D.A. Livshits, I.S. Tarasov, D.A. Bedarev, B.V. Volovik, M.V. Maximov, A.F. Tsatsul’nikov, N.N. Ledentsov, P.S. Kop’ev, D. Bimberg, Z.I. Alferov, 0.94 µm diode lasers based on Stranski-Krastanow and sub-monolayer quantum dots. Semicond. Sci. Technol. 15, 1061 (2000)

    Article  ADS  Google Scholar 

  18. Z. Xu, D. Birkedal, J.M. Hvam, Z. Zhao, Y. Liu, K. Yang, A. Kanjilal, J. Sadowski, Structure and optical anisotropy of vertically correlated submonolayer InAs/GaAs quantum dots. Appl. Phys. Lett. 82, 3859 (2003)

    Article  ADS  Google Scholar 

  19. A. Lenz, H. Eisele, J. Becker, J.-H. Schulze, T.D. Germann, F. Luckert, K. Pötschke, E. Lenz, L. Ivanova, A. Strittmatter, D. Bimberg, U.W. Pohl, M. Dähne, Atomic structure and optical properties of submonolayer InAs depositions in GaAs. J. Vac. Sci. Technol., B 29, 04D104 (2011)

    Article  Google Scholar 

  20. Z. Xu, D. Birkedal, M. Juhl, J.M. Hvam, Submonolayer InGaAs/GaAs quantum dot lasers with high modal gain and zero-linewidth enhancement factor. Appl. Phys. Lett. 85, 3259 (2004)

    Article  ADS  Google Scholar 

  21. T.D. Germann, A. Strittmatter, J. Pohl, U.W. Pohl, D. Bimberg, J. Rautiainen, M. Guina O.G. Okhotnikov, High-power semiconductor disk laser based on InAs∕GaAs submonolayer quantum dots. Appl. Phys. Lett. 92, 101123 (2008)

    Article  ADS  Google Scholar 

  22. U.W. Pohl, D. Bimberg, Semiconductor Disk Lasers Based on Quantum Dots, ed by O.G. Okhotnikov (Wiley-VCH, Weinheim, 2010), pp. 187–211

    Google Scholar 

  23. F. Hopfer, G. Fiol, M. Kuntz, V.A. Shchukin, V.A. Haisler, T. Warming, E. Stock, S.S. Mikhrin, I.L. Krestnikov, D.A., Livshits, A.R. Kovsh, C. Bornholdt, A. Lenz, H. Eisele, M. Dähne, N.N. Ledentsov, D. Bimberg, 20 Gb/s 85 °C error-free operation of VCSELs based on submonolayer deposition of quantum dots. IEEE J. Sel. Top. Quant. Electron. 13, 1302 (2007)

    Google Scholar 

  24. N.N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V.A. Shchukin, A.V. Savel’ev, G. Fiol, E. Stock, H. Eisele, M. Dähne, D. Gerthsen, U. Fischer, D. Litvinov, A. Rosenauer, S.S. Mikhrin, A.R. Kovsh, N.D. Zakharov, P. Werner, Submonolayer quantum dots for high speed surface emitting lasers. Nanoscale Res. Lett. 2, 417 (2007)

    Article  ADS  Google Scholar 

  25. S. Harrison, M.P. Young, P.D. Hodgson, R.J. Young, M. Hayne, L. Danos, A. Schliwa, A. Strittmatter, A. Lenz, H. Eisele, U.W. Pohl, D. Bimberg, Heterodimensional charge-carrier confinement in stacked submonolayer InAs in GaAs. Phys. Rev. B 93, 085302 (2016)

    Article  ADS  Google Scholar 

  26. M. Hayne, B. Bansal, High-field magneto-photoluminescence of semiconductor nanostructures. Luminescence 19, 179 (2012)

    Article  Google Scholar 

  27. O. Stier, M. Grundmann, D. Bimberg, Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory. Phys. Rev. B 59, 5688 (1999)

    Article  ADS  Google Scholar 

  28. D. Quandt, J.-H. Schulze, A. Schliwa, Z. Diemer, C. Prohl, A. Lenz, H. Eisele, A. Strittmatter, U.W. Pohl, M. Gschrey, S. Rodt, S. Reitzenstein, D. Bimberg, M. Lehmann, M. Weyland, Strong carrier localization in InAs/GaAs sub-monolayer stacks prepared by Sb-assisted metalorganic vapor-phase epitaxy. Phys. Rev. B 91, 235418 (2015)

    Article  ADS  Google Scholar 

  29. K. Huang, A. Rhys, Theory of light absorption and non-radiative transitions in F-centres. Proc. Royal Soc. A 204, 406 (1950)

    ADS  MATH  Google Scholar 

  30. P.D. Wang, N.N. Ledentsov, C.M. Sotomayor Torres, P.S. Kop’ev, V.M. Ustinov, Optical characterization of submonolayer and monolayer InAs structures grown in a GaAs matrix on (100) and high-index surfaces. Appl. Phys. Lett. 64, 1526 (1994)

    Article  ADS  Google Scholar 

  31. J.M. Marzin, J.Y. Gerard, High quality ultrathin InAs/GaAs quantum wells grown by standard and low-temperature modulated-fluxes molecular beam epitaxy. Appl. Phys. Lett. 53, 568 (1988)

    Article  ADS  Google Scholar 

  32. O. Brandt, R. Cingolani, H. Lage, G. Scamarcio, L. Tapfer, K. Ploog, Radiative decay of excitonic states in bulklike GaAs with a periodic array of InAs lattice planes. Phys. Rev. B 42, 11396(R) (1990)

    Article  ADS  Google Scholar 

  33. O. Brandt, L. Tapfer, R. Cingolani, K. Ploog, M. Hohenstein, F. Phillipp, Structural and optical properties of (100) InAs single-monolayer quantum wells in bulklike GaAs grown by molecular-beam epitaxy. Phys. Rev. B 41, 12599 (1990)

    Article  ADS  Google Scholar 

  34. J.H. Lee, K.Y. Hsieh, R.M. Kolbas, Photoluminescence and stimulated emission from monolayer-thick pseudomorphic InAs single-quantum-well heterostructures. Phys. Rev. B 41, 7678 (1990)

    Article  ADS  Google Scholar 

  35. O. Brandt, H. Lage, K. Ploog, Excitons in InAs/GaAs submonolayer quantum wells. Phys. Rev. B 43, 14285 (1991)

    Article  ADS  Google Scholar 

  36. O. Brandt, H. Lage, G.C.L. Rocca, A. Heberle, K. Ploog, Role of broken translational invariance for the optical response of excitons in lowdimensional semiconductors. Surf. Sci. 267, 319 (1992)

    Article  ADS  Google Scholar 

  37. D. Quandt, J. Bläsing, A. Strittmatter, Analysis of InAsSb/GaAs submonolayer stacks. J. Cryst Growth 1, 494 (2018)

    Google Scholar 

  38. H. Eisele, A. Lenz, R. Heitz, R. Timm, M. Dähne, Y. Temko, T. Suzuki, K. Jacobi, Change of InAs/GaAs quantum dot shape and composition during capping. J. Appl. Phys. 104, 124301 (2008)

    Article  ADS  Google Scholar 

  39. H. Eisele, P. Ebert, N. Liu, A.L. Holmes Jr., C.-K. Shih, Reverse mass transport during capping of In0.5Ga0.5As/GaAs quantum dots. Appl. Phys. Lett. 101, 233107 (2012)

    Article  ADS  Google Scholar 

  40. M. Müller, B. Gault, G.D.W. Smith, C.R.M. Grovenor, Accuracy of pulsed laser atom probe tomography for compound semiconductor analysis. J. Phys.: Conf. Ser. 326, 12031 (2011)

    Google Scholar 

  41. T. Niermann, F. Kießling, M. Lehmann, J.-H. Schulze, T.D. Germann, K. Pötschke, A. Strittmatter, U.W. Pohl, Atomic structure of closely stacked InAs submonolayer depositions in GaAs. J. Appl. Phys. 112, 083505 (2012)

    Article  ADS  Google Scholar 

  42. H. Eisele, Cross-Sectional Scanning Tunneling Microscopy of InAs/GaAs Quantum Dots (Wissenschaft & Technik Verlag, Berlin, 2002)

    Google Scholar 

  43. A. Lenz, H. Eisele, J. Becker, L. Ivanova, E. Lenz, F. Luckert, K. Pötschke, A. Strittmatter, U.W. Pohl, D. Bimberg, M. Dähne, Atomic structure of buried InAs sub-monolayer depositions in GaAs. Appl. Phys. Express 3, 105602 (2010)

    Article  ADS  Google Scholar 

  44. K. Muraki, S. Fukatsu, Y. Shiraki, Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells. Appl. Phys. Lett. 61, 557 (1992)

    Article  ADS  Google Scholar 

  45. H. Eisele, A. Lenz, C. Hennig, R. Timm, M. Ternes, M. Dähne, Atomic structure of InAs and InGaAs quantum dots determined by cross-sectional scanning tunneling microscopy. J. Cryst. Growth 248, 322 (2003)

    Article  ADS  Google Scholar 

  46. R.M. Feenstra, J.A. Stroscio, J. Tersoff, A.P. Fein, Atom-selective imaging of the GaAs(110) surface. Phys. Rev. Lett. 58, 1192 (1987)

    Article  ADS  Google Scholar 

  47. R. Timm, H. Eisele, A. Lenz, T.-Y. Kim, F. Streicher, K. Pötschke, U.W. Pohl, D. Bimberg, M. Dähne, Structure of InAs/GaAs quantum dots grown with Sb surfactant. Physica E 32, 25 (2006)

    Article  ADS  Google Scholar 

  48. V. Haxha, R. Garg, M.A. Migliorato, W. Drouzas, J.M. Ulloa, P.M. Koenraad, M.J. Steer, H.Y. Liu, M. Hopkinson, D.J. Mowbray, The use of Abell-Tersoff potentials in atomistic simulations of InGaAsSb/GaAs. Opt. Quant. Electron. 40, 1143 (2008)

    Article  Google Scholar 

  49. R. Timm, H. Eisele, A. Lenz, L. Ivanova, G. Balakrishnan, D. Huffaker, M. Dähne, Self-organized formation of GaSb/GaAs quantum rings. Phys. Rev. Lett. 101, 256101 (2008)

    Google Scholar 

  50. B. Herzog, B. Lingnau, M. Kolarczik, Y. Kaptan, D. Bimberg, A. Maaßdorf, U.W. Pohl, R. Rosales, J.-H. Schulze, A. Strittmatter, M. Weyers, U. Woggon, K. Lüdge, N. Owschimikow, Strong amplitude-phase coupling in submonolayer-quantum-dots. Appl. Phys. Lett. 109, 201102 (2016)

    Article  ADS  Google Scholar 

  51. B. Lingnau, K. Lüdge, B. Herzog, M. Kolarczik, Y. Kaptan, U. Woggon, N. Owschimikow, Ultrafast gain recovery and large nonlinear optical response in submonolayer quantum dots. Phys. Rev. B 94, 014305 (2016)

    Article  ADS  Google Scholar 

  52. B. Herzog, N. Owschimikow, J.-H. Schulze, R. Rosales, Y. Kaptan, M. Kolarczik, T. Switaiski, A. Strittmatter, D. Bimberg, U.W. Pohl, U. Woggon, Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots. Appl. Phys. Lett. 107, 201102 (2015)

    Article  ADS  Google Scholar 

  53. M. Kolarczik, N. Owschimikow, B. Herzog, F. Buchholz, Y. Kaptan, U. Woggon, Exciton dynamics probe the energy structure of a quantum dot-in-a-well system: the role of Coulomb attraction and dimensionality. Phys. Rev. B 91, 235310 (2015)

    Article  ADS  Google Scholar 

  54. A. Wilms, D. Breddermann, P. Mathé, Theory of direct capture from two- and three-dimensional reservoirs to quantum dot states. Phys. Status Solidi C 9, 1278 (2012)

    Article  ADS  Google Scholar 

  55. C.H. Henry, Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18, 259 (1982)

    Article  ADS  Google Scholar 

  56. B. Herzog, B. Lingnau, M. Kolarczik, S. Helmrich, A.W. Achtstein, K. Thommes, F. Alhussein, D. Quandt, A. Strittmatter, U.W. Pohl, O. Brox, M. Weyers, U. Woggon, K. Lüdge, N. Owschimikow, Broadband light-emitting devices based on heteroconfined excitons in InGa(Sb)As submonolayer quantum dots. IEEE J. Select. Top. Quantum Electron. 25, 1900310 (2019)

    Article  Google Scholar 

  57. B.W. Hakki, T.L. Paoli, Gain spectra in GaAs double-heterostructure injection lasers. J. Appl. Phys. 46, 1299 (1975)

    Article  ADS  Google Scholar 

  58. K. Vynck, M. Burresi, F. Riboli, D.S. Wiersma, Photon management in two-dimensional disordered media. Nat. Mater. 11, 1017 (2012)

    Article  ADS  Google Scholar 

  59. D.Z.-Y. Ting, S.V. Bandara, S.D. Gunapala, J.M. Mumolo, S.A. Keo, C.J. Hill, J.K. Liu, E.R. Blazejewski, S.B. Rafol, Y.-C. Chang, Submonolayer quantum dot infrared photodetector. Appl. Phys. Lett. 94, 111107 (2009)

    Article  ADS  Google Scholar 

  60. J.O. Kim, S. Sengupta, A.V. Barve, Y.D. Sharma, S. Adhikary, S.J. Lee, S.K. Noh, M.S. Allen, J.W. Allen, S. Chakrabarti, S. Krishna, Multi-stack InAs/InGaAs sub-monolayer quantum dots infrared photodetectors. Appl. Phys. Lett. 102, 011131 (2013)

    Article  ADS  Google Scholar 

  61. H. Ghadi, S. Sengupta, S. Shetty, A. Manohar, A. Balgarkashi, S. Chakrabarti, N.B. Pendyala, S.L. Prajapati, A. Kumar, Comparison of three design architectures for quantum dot infrared photodetectors: InGaAs-capped dots; dots-in-a-well; and submonolayer quantum dots. IEEE Transact. Nanotechnol. 14, 603 (2015)

    Article  ADS  Google Scholar 

  62. C.G.E. Alfieri, D. Waldburger, J. Nürnberg, M. Golling, L. Jaurigue, K. Lüdge, U. Keller, Mode-locking instabilities for high-gain semiconductor disk lasers based on active submonolayer quantum dots. Phys. Rev. Appl. 92, 044015 (2018)

    Article  ADS  Google Scholar 

  63. B. Lingnau, B. Herzog, M. Kolarczik, U. Woggon, K. Lüdge, N. Owschimikow, Dynamic phase response and amplitude-phase coupling of self-assembled semiconductor quantum dots. Appl. Phys. Lett. 110, 241102 (2017)

    Article  ADS  Google Scholar 

  64. M. Osinski, J. Buus, Linewidth broadening factor in semiconductor lasers—an overview. IEEE J. Quant. Electron. 23, 9 (1987)

    Article  ADS  Google Scholar 

  65. I.D. Henning, J.V. Collins, Measurements of the semiconductor linewidth broadening factor. Electron. Lett. 19, 927 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Anna Carlsson, Thermo Fischer Scientific, for EDX measurements (Fig. 2.19). We are grateful to David Quandt and Jan-Hindrik Schulze for growing samples, Konstantin Zak, Jonas Becker, and Zeno Dimer for structural characterization, and Mirco Kolarczik and Ulrike Woggon for fruitful discussions and support with the time-resolved experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Owschimikow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Owschimikow, N. et al. (2020). Submonolayer Quantum Dots. In: Kneissl, M., Knorr, A., Reitzenstein, S., Hoffmann, A. (eds) Semiconductor Nanophotonics. Springer Series in Solid-State Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-35656-9_2

Download citation

Publish with us

Policies and ethics