Skip to main content

Internet of Things for Environmental Sustainability and Climate Change

  • Chapter
  • First Online:
Internet of Things for Sustainable Community Development

Part of the book series: Internet of Things ((ITTCC))

Abstract

Our world is vulnerable to climate change risks such as glacier retreat, rising temperatures, more variable and intense weather events (e.g., floods, droughts, and frosts), deteriorating mountain ecosystems, soil degradation , and increasing water scarcity. However, there are big gaps in our understanding of changes in regional climate and how these changes will impact human and natural systems, making it difficult to anticipate, plan, and adapt to the coming changes. The IoT paradigm in this area can enhance our understanding of regional climate by using technology solutions, while providing the dynamic climate elements based on integrated environmental sensing and communications that is necessary to support climate change impacts assessments in each of the related areas (e.g., environmental quality and monitoring, sustainable energy, agricultural systems, cultural preservation, and sustainable mining). In the IoT in Environmental Sustainability and Climate Change chapter, a framework for informed creation, interpretation and use of climate change projections and for continued innovations in climate and environmental science driven by key societal and economic stakeholders is presented. In addition, the IoT cyberinfrastructure to support the development of continued innovations in climate and environmental science is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abegaz, B. W., Datta, T., & Mahajan, S. M. (2018). Sensor technologies for the energy-water nexus–a review. Applied Energy, 210, 451–466.

    Article  Google Scholar 

  2. Abramowitz, G., Herger, N., Gutmann, E., Hammerling, D., Knutti, R., Leduc, M., et al. (2019). ESD reviews: Model dependence in multi-model climate ensembles: Weighting, sub-selection and out-of-sample testing. Earth System Dynamics, 10(1), 91–105.

    Article  Google Scholar 

  3. Acquistapace, C., Kneifel, S., Löhnert, U., Kollias, P., Maahn, M., & Bauer-Pfundstein, M. (2017). Optimizing observations of drizzle onset with millimeter-wavelength radars. Atmospheric Measurement Techniques, 10(5), 1783–1802.

    Article  Google Scholar 

  4. Adams, R. M., Hurd, B. H., Lenhart, S., & Leary, N. (1998). Effects of global climate change on agriculture: an interpretative review. Climate Research, 11(1), 19–30.

    Article  Google Scholar 

  5. Ahuja, K., & Jani, N. (2019). Air quality prediction data-model formulation for urban areas. In International Conference on Computer Networks and Communication Technologies (pp. 111–118). Berlin: Springer.

    Chapter  Google Scholar 

  6. Albergel, C., Munier, S., Bocher, A., Bonan, B., Zheng, Y., Draper, C., et al. (2018). LDAS-monde sequential assimilation of satellite derived observations applied to the contiguous us: An era-5 driven reanalysis of the land surface variables. Remote Sensing, 10(10), 1627.

    Article  Google Scholar 

  7. Alexander, L., Zhang, X., Peterson, T., Caesar, J., Gleason, B., Klein Tank, A., et al. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111(D5), 1–22.

    Article  Google Scholar 

  8. Alexander, M. A., Kilbourne, K. H., & Nye, J. A. (2014). Climate variability during warm and cold phases of the Atlantic multidecadal oscillation (AMO) 1871–2008. Journal of Marine Systems, 133, 14–26.

    Article  Google Scholar 

  9. Alexander, M. A., Scott, J. D., Friedland, K. D., Mills, K. E., Nye, J. A., Pershing, et al. (2018). Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of northern oceans. Elementa Science of the Anthropocene 6(1), 1–25.

    Google Scholar 

  10. Bagley, J. E., Jeong, S., Cui, X., Newman, S., Zhang, J., Priest, C., et al. (2017). Assessment of an atmospheric transport model for annual inverse estimates of California greenhouse gas emissions. Journal of Geophysical Research Atmospheres, 122(3), 1901–1918.

    Article  Google Scholar 

  11. Banta, R. M., Pichugina, Y. L., Brewer, W. A., James, E. P., Olson, J. B., Benjamin, S. G., et al. (2018). Evaluating and improving NWP forecast models for the future: How the needs of offshore wind energy can point the way. Bulletin of the American Meteorological Society, 99(6), 1155–1176.

    Article  Google Scholar 

  12. Barsugli, J., Anderson, C., Smith, J. B., & Vogel, J. M. (2009). Options for improving climate modeling to assist water utility planning for climate change. Water Utility Climate Alliance White Paper. http://www.wucaonline.org/assets/pdf/pubs_whitepaper_120909.pdf

    Google Scholar 

  13. Bell, M. L., Goldberg, R., Hogrefe, C., Kinney, P. L., Knowlton, K., Lynn, B., et al. (2007). Climate change, ambient ozone, and health in 50 US cities. Climatic Change, 82(1–2), 61–76.

    Article  Google Scholar 

  14. Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken, C., et al. (1994). GPS meteorology: Mapping zenith wet delays onto precipitable water. Journal of Applied Meteorology, 33(3), 379–386.

    Article  Google Scholar 

  15. Bianco, L., Friedrich, K., Wilczak, J. M., Hazen, D., Wolfe, D., Delgado, R., et al. (2017). Assessing the accuracy of microwave radiometers and radio acoustic sounding systems for wind energy applications. Atmospheric Measurement Techniques, 10(5), 1707.

    Article  Google Scholar 

  16. Booker, F., Muntifering, R., McGrath, M., Burkey, K., Decoteau, D., Fiscus, E., et al. (2009). The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. Journal of Integrative Plant Biology, 51(4), 337–351.

    Article  Google Scholar 

  17. Bourassa, M. A., Gille, S. T., Jackson, D. L., Roberts, J. B., & Wick, G. A. (2010). Ocean winds and turbulent air-sea fluxes inferred from remote sensing. Oceanography, 23(4), 36–51.

    Article  Google Scholar 

  18. Castro, S., Emery, W., Wick, G., & Tandy, W. (2017). Submesoscale sea surface temperature variability from UAV and satellite measurements. Remote Sensing, 9(11), 1089.

    Article  Google Scholar 

  19. Castro, S. L., Monzon, L. A., Wick, G. A., Lewis, R. D., & Beylkin, G. (2018). Subpixel variability and quality assessment of satellite sea surface temperature data using a novel high resolution multistage spectral interpolation (HRMSI) technique. Remote Sensing of Environment, 217, 292–308.

    Article  Google Scholar 

  20. Chisolm, E. I., & Matthews, J. C. (2012). Impact of hurricanes and flooding on buried infrastructure. Leadership and Management in Engineering, 12(3), 151–156.

    Article  Google Scholar 

  21. Choi, B. I., Lee, S. W., Woo, S. B., Kim, J. C., Kim, Y. G., & Yang, S. G. (2018). Evaluation of radiosonde humidity sensors at low temperature using ultralow-temperature humidity chamber. Advances in Science and Research, 15, 207–212.

    Article  Google Scholar 

  22. Choukulkar, A., Brewer, W. A., Sandberg, S. P., Weickmann, A., Bonin, T. A., Hardesty, R. M., et al. (2017). Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign. Atmospheric Measurement Techniques, 10(1), 247–264.

    Article  Google Scholar 

  23. Collins, III, C., Blomquist, B., Persson, O., Lund, B., Rogers, W., Thomson, J., et al. (2017). Doppler correction of wave frequency spectra measured by underway vessels. Journal of Atmospheric and Oceanic Technology, 34(2), 429–436.

    Article  Google Scholar 

  24. Creamean, J. M., Kirpes, R. M., Pratt, K. A., Spada, N. J., Maahn, M., Boer, G. D., et al. (2018). Marine and terrestrial influences on ice nucleating particles during continuous springtime measurements in an arctic oilfield location. Atmospheric Chemistry and Physics, 18(24), 18023–18042.

    Article  Google Scholar 

  25. Cynthia, R., David, R., Andrew, L.: Our warming planet: Topics in climate dynamics (vol. 1). Singapore: World Scientific.

    Google Scholar 

  26. Shupe, M. D. (2017). SOnic Detection And Ranging (SODAR) measurements taken at Summit Station, Greenland, 2017. http://doi.org/10.18739/A2V698B7K.

  27. Shupe, M. D. (2018). Ceilometer Cloud Base Height Measurements at Summit Station, Greenland, 2018. Arctic Data Center. http://doi.org/10.18739/A2KP7TQ9P.

    Google Scholar 

  28. Shupe, M. D. (2018). Millimeter Cloud Radar measurements taken at Summit Station, Greenland, 2018. Arctic Data Center. http://doi.org/10.18739/A2F47GT18.

    Google Scholar 

  29. Shupe, M. D. (2018). Cloud and Aerosol Polarization and Backscatter LiDAR measurements taken at Summit Station, Greenland, 2018. Arctic Data Center. http://doi.org/10.18739/A25T3FZ9D.

    Google Scholar 

  30. Darwin, R., Tsigas, M. E., Lewandrowski, J., & Raneses, A. (1995). World agriculture and climate change: Economic adaptations. Tech. rep.

    Google Scholar 

  31. de Boer, G., Ivey, M., Schmid, B., Lawrence, D., Dexheimer, D., Mei, F., et al. (2018). A bird’s-eye view: Development of an operational ARM unmanned aerial capability for atmospheric research in Arctic Alaska. Bulletin of the American Meteorological Society, 99(6), 1197–1212.

    Article  Google Scholar 

  32. Diez, J. M., D’Antonio, C. M., Dukes, J. S., Grosholz, E. D., Olden, J. D., Sorte, C. J., et al. (2012). Will extreme climatic events facilitate biological invasions? Frontiers in Ecology and the Environment, 10(5), 249–257.

    Article  Google Scholar 

  33. Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: The other co2 problem. Annual Review of Marine Science, 1, 169–192.

    Article  Google Scholar 

  34. Dorigo, W., de Jeu, R., Chung, D., Parinussa, R., Liu, Y., Wagner, W., et al. (2012). Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophysical Research Letters, 39(18), 1–7.

    Article  Google Scholar 

  35. Draper, C., & Reichle, R. H. (2019). Assimilation of satellite soil moisture for improved atmospheric reanalyses. Monthly Weather Review, 147(6), 2163–2188.

    Article  Google Scholar 

  36. Du, Y., Song, W., He, Q., Huang, D., Liotta, A., & Su, C. (2019). Deep learning with multi-scale feature fusion in remote sensing for automatic oceanic eddy detection. Information Fusion, 49, 89–99.

    Article  Google Scholar 

  37. Duarte-Guardia, S., Peri, P. L., Amelung, W., Sheil, D., Laffan, S. W., Borchard, N., et al. (2019). Better estimates of soil carbon from geographical data: A revised global approach. Mitigation and Adaptation Strategies for Global Change, 24(3), 355–372.

    Article  Google Scholar 

  38. Easterling, W. E. (2011). Guidelines for adapting agriculture to climate change. London: Imperial College Press.

    Google Scholar 

  39. Emery, W., Castro, S., Wick, G., Schluessel, P., & Donlon, C. (2001). Estimating sea surface temperature from infrared satellite and in situ temperature data. Bulletin of the American Meteorological Society, 82(12), 2773–2786.

    Article  Google Scholar 

  40. Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., & Young, G. S. (1996). Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. Journal of Geophysical Research Oceans, 101(C2), 3747–3764.

    Article  Google Scholar 

  41. Fairall, C., Matrosov, S. Y., Williams, C. R., & Walsh, E. (2018). Estimation of rain rate from airborne Doppler w-band radar in calwater-2. Journal of Atmospheric and Oceanic Technology, 35(3), 593–608.

    Article  Google Scholar 

  42. Fan, Y., Miguez-Macho, G., Weaver, C. P., Walko, R., & Robock, A. (2007). Incorporating water table dynamics in climate modeling: 1. water table observations and equilibrium water table simulations. Journal of Geophysical Research: Atmospheres, 112(D10), 1–17.

    Article  Google Scholar 

  43. FEMA. (2013). Mitigation assessment team report: Hurricane sandy in New Jersey and New York.

    Google Scholar 

  44. Fowler, D. R., Mitchell, C. S., Brown, A., Pollock, T., Bratka, L. A., Paulson, J., et al. (2013). Heat-related deaths after an extreme heat event-four states, 2012, and united states, 1999–2009. MMWR Morbidity and Mortality Weekly Report, 62(22), 433.

    Google Scholar 

  45. Friel, S., Dangour, A. D., Garnett, T., Lock, K., Chalabi, Z., Roberts, I., et al. (2009). Public health benefits of strategies to reduce greenhouse-gas emissions: Food and agriculture. The Lancet, 374(9706), 2016–2025.

    Article  Google Scholar 

  46. Fu, S., Deng, X., Shupe, M. D., & Xue, H. (2019). A modelling study of the continuous ice formation in an autumnal arctic mixed-phase cloud case. Atmospheric Research, 228, 77–85.

    Article  Google Scholar 

  47. Gan, T. Y., Barry, R. G., Gizaw, M., Gobena, A., & Balaji, R. (2013). Changes in North American snowpacks for 1979–2007 detected from the snow water equivalent data of SMMR and SSM/I passive microwave and related climatic factors. Journal of Geophysical Research: Atmospheres, 118(14), 7682–7697.

    Google Scholar 

  48. Gao, Y., Vano, J. A., Zhu, C., & Lettenmaier, D. P. (2011). Evaluating climate change over the Colorado River basin using regional climate models. Journal of Geophysical Research Atmospheres, 116(D13), 1–20.

    Article  Google Scholar 

  49. Gao, Y., Leung, L. R., Salathé, Jr, E. P., Dominguez, F., Nijssen, B., & Lettenmaier, D. P. (2012). Moisture flux convergence in regional and global climate models: Implications for droughts in the Southwestern United States under climate change. Geophysical Research Letters, 39(9), 1–5.

    Article  Google Scholar 

  50. García, O., Díaz, A., Expósito, F., Díaz, J., Dubovik, O., Dubuisson, P., et al. (2008). Validation of AERONET estimates of atmospheric solar fluxes and aerosol radiative forcing by ground-based broadband measurements. Journal of Geophysical Research Atmospheres, 113(D21).

    Google Scholar 

  51. Gastineau, G., Soden, B. J., Jackson, D. L., & O’dell, C. W. (2014). Satellite-based reconstruction of the tropical oceanic clear-sky outgoing longwave radiation and comparison with climate models. Journal of Climate, 27(2), 941–957.

    Article  Google Scholar 

  52. Gil-Agudelo, D. L., Ibarra-Mojica, D. M., Guevara-Vargas, A. M., Nieto-Bernal, R., Serrano-Gómez, M., Gundlach, E. R., et al. (2019). Environmental sensitivity index for oil spills in Colombian rivers (ESI-R): Application for the Magdalena river. CT&F-Ciencia, Tecnología y Futuro, 9(1), 83–91.

    Article  Google Scholar 

  53. Grachev, A. A., Persson, P. O. G., Uttal, T., Akish, E. A., Cox, C. J., Morris, S. M., et al. (2018). Seasonal and latitudinal variations of surface fluxes at two arctic terrestrial sites. Climate Dynamics, 51(5–6), 1793–1818.

    Article  Google Scholar 

  54. Grall, G., & Moresco, G. (2002). System for undersea seismic prospecting. US Patent 6,456,565.

    Google Scholar 

  55. Greene, S., Kalkstein, L. S., Mills, D. M., & Samenow, J. (2011). An examination of climate change on extreme heat events and climate–mortality relationships in large us cities. Weather, Climate, and Society, 3(4), 281–292.

    Article  Google Scholar 

  56. Greenwald, T. J., Stephens, G. L., Vonder Haar, T. H., & Jackson, D. L. (1993). A physical retrieval of cloud liquid water over the global oceans using special sensor microwave/imager (SSM/I) observations. Journal of Geophysical Research Atmospheres, 98(D10), 18471–18488.

    Article  Google Scholar 

  57. Guest, P., Persson, P. O. G., Wang, S., Jordan, M., Jin, Y., Blomquist, B., et al. (2018). Low-level baroclinic jets over the new Arctic ocean. Journal of Geophysical Research Oceans, 123(6), 4074–4091.

    Article  Google Scholar 

  58. Haines, A., McMichael, A. J., Smith, K. R., Roberts, I., Woodcock, J., Markandya, A., et al. (2009). Public health benefits of strategies to reduce greenhouse-gas emissions: Overview and implications for policy makers. The Lancet, 374(9707), 2104–2114.

    Article  Google Scholar 

  59. Hamill, T. M., Engle, E., Myrick, D., Peroutka, M., Finan, C., & Scheuerer, M. (2017). The US national blend of models for statistical postprocessing of probability of precipitation and deterministic precipitation amount. Monthly Weather Review, 145(9), 3441–3463.

    Article  Google Scholar 

  60. Hanka, W., Saul, J., Weber, B., Becker, J., Harjadi, P., Rudloff, A., et al. (2010). Real-time earthquake monitoring for tsunami warning in the Indian ocean and beyond. Natural Hazards & Earth System Sciences, 10(12), 2611–2622.

    Article  Google Scholar 

  61. Hartten, L. M., Johnston, P. E., Rodríguez Castro, V. M., & Esteban Pérez, P. S. (2019). Postdeployment calibration of a tropical UHF profiling radar via surface-and satellite-based methods. Journal of Atmospheric and Oceanic Technology, 36, 1729–1751. https://doi.org/10.1175/JTECH-D-18-0020.1.

    Article  Google Scholar 

  62. Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L., Izaurralde, R.C., Ort, D., et al. (2011). Climate impacts on agriculture: Implications for crop production. Agronomy Journal, 103(2), 351–370.

    Article  Google Scholar 

  63. Heimlich, B., & Bloetscher, F. (2011). Effects of sea level rise and other climate change impacts on southeast Florida’s water resources. Florida Water Resources Journal, 63(9), 37–48.

    Google Scholar 

  64. Herron, T., Tolstoy, I., & Kraft, D. (1969). Atmospheric pressure background fluctuations in the mesoscale range. Journal of Geophysical Research, 74(6), 1321–1329.

    Article  Google Scholar 

  65. Hodgkins, G. A., & Dudley, R. W. (2006). Changes in late-winter snowpack depth, water equivalent, and density in Maine, 1926–2004. Hydrological Processes an International Journal, 20(4), 741–751.

    Article  Google Scholar 

  66. Högström, U., & Smedman, A. S. (2004). Accuracy of sonic anemometers: Laminar wind-tunnel calibrations compared to atmospheric in situ calibrations against a reference instrument. Boundary-Layer Meteorology, 111(1), 33–54.

    Article  Google Scholar 

  67. Huang, D., Zhang, Q., Wang, J., Liotta, A., Song, W., & Zhu, J. (2018). Marine information system based on ocean data ontology construction. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 2595–2601). Piscataway: IEEE.

    Chapter  Google Scholar 

  68. Izaurralde, R. C., Thomson, A. M., Morgan, J., Fay, P., Polley, H., & Hatfield, J. L. (2011). Climate impacts on agriculture: Implications for forage and rangeland production. Agronomy Journal, 103(2), 371–381.

    Article  Google Scholar 

  69. Jackson, D. L., & Stephens, G. L. (1995). A study of SSM/I-derived columnar water vapor over the global oceans. Journal of Climate, 8(8), 2025–2038.

    Article  Google Scholar 

  70. Jackson, D. L., & Wick, G. A. (2010). Near-surface air temperature retrieval derived from AMSU-A and sea surface temperature observations. Journal of Atmospheric and Oceanic Technology, 27(10), 1769–1776.

    Article  Google Scholar 

  71. Jackson, D. L., & Wick, G. A. (2014). Propagation of uncertainty analysis of co2 transfer velocities derived from the COARE gas transfer model using satellite inputs. Journal of Geophysical Research Oceans, 119(3), 1828–1842.

    Article  Google Scholar 

  72. Jackson, D. L., Wick, G. A., & Bates, J. J. (2006). Near-surface retrieval of air temperature and specific humidity using multisensor microwave satellite observations. Journal of Geophysical Research Atmospheres, 111(D10), 1–16.

    Article  Google Scholar 

  73. Jackson, D. L., Wick, G. A., & Robertson, F. R. (2009). Improved multisensor approach to satellite-retrieved near-surface specific humidity observations. Journal of Geophysical Research Atmospheres, 114(D16), 1–13.

    Article  Google Scholar 

  74. Jagtap, S., Jones, J., Mearns, L., Ojima, D., Paul, E., & Paustian, K. (2003). US agriculture and climate change: New results. Climatic Change, 57, 4369.

    Google Scholar 

  75. Jeong, S., Newman, S., Zhang, J., Andrews, A. E., Bianco, L., Dlugokencky, E., et al. (2018). Inverse estimation of an annual cycle of California’s nitrous oxide emissions. Journal of Geophysical Research Atmospheres, 123(9), 4758–4771.

    Article  Google Scholar 

  76. Jin, X., Yu, L., Jackson, D. L., & Wick, G. A. (2015). An improved near-surface specific humidity and air temperature climatology for the SSM/I satellite period. Journal of Atmospheric and Oceanic Technology, 32(3), 412–433.

    Article  Google Scholar 

  77. Johnson, D. L., Ambrose, S. H., Bassett, T. J., Bowen, M. L., Crummey, D. E., Isaacson, J. S., et al. (1997). Meanings of environmental terms. Journal of Environmental Quality, 26(3), 581–589.

    Article  Google Scholar 

  78. Joseph, A. (2014). Chapter 4 - remote mapping of sea surface currents using HF Doppler radar networks. In A. Joseph (Ed.), Measuring ocean currents (pp. 109–137). Boston: Elsevier. https://doi.org/10.1016/B978-0-12-415990-7.00004-1.

    Chapter  Google Scholar 

  79. Justić, D., Rabalais, N. N., & Turner, R. E. (2005). Coupling between climate variability and coastal eutrophication: Evidence and outlook for the Northern Gulf of Mexico. Journal of Sea Research, 54(1), 25–35.

    Article  Google Scholar 

  80. Karl, T. R., Melillo, J. M., Peterson, T. C., & Hassol, S. J. (2009). Global climate change impacts in the United States. Cambridge: Cambridge University Press.

    Google Scholar 

  81. Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012). Future internet: The internet of things architecture, possible applications and key challenges. In 2012 10th International Conference on Frontiers of Information Technology (pp. 257–260). IEEE (2012)

    Google Scholar 

  82. Kundzewicz, Z. W., Budhakooncharoen, S., Bronstert, A., Hoff, H., Lettenmaier, D., Menzel, L., et al. (2002). Coping with variability and change: Floods and droughts. In Natural resources forum (vol. 26, pp. 263–274). Wiley Online Library.

    Google Scholar 

  83. Kunkel, K. (2008). Observed changes in weather and climate extremes. In Weather and climate extremes in a changing climate: Regions of focus: North America, Hawaii, Caribbean, and US Pacific Islands (pp. 35–80). Scotts Valley: CreateSpace Independent.

    Google Scholar 

  84. Lacour, A., Chepfer, H., Shupe, M. D., Miller, N. B., Noel, V., Kay, J., et al. (2017). Greenland clouds observed in CALIPSO-GOCCP: Comparison with ground-based summit observations. Journal of Climate, 30(15), 6065–6083.

    Article  Google Scholar 

  85. Liu, Y., Shupe, M. D., Wang, Z., & Mace, G. (2017). Cloud vertical distribution from combined surface and space radar-lidar observations at two arctic atmospheric observatories. Atmospheric Chemistry and Physics, 17(9), 5973–5989.

    Article  Google Scholar 

  86. Lund, B., Graber, H. C., Persson, P., Smith, M., Doble, M., Thomson, J., et al. (2018). Arctic sea ice drift measured by shipboard marine radar. Journal of Geophysical Research: Oceans, 123(6), 4298–4321.

    Google Scholar 

  87. Ma, Z., Kuo, Y. H., Ralph, F. M., Neiman, P. J., Wick, G. A., Sukovich, E., et al. (2018). Assimilation of GPS radio occultation data for an intense atmospheric river with the NCEP regional GSI system. Monthly Weather Review, 139(7), 2170–2183.

    Article  Google Scholar 

  88. Maahn, M., Hoffmann, F., Shupe, M. D., Boer, G. D., Matrosov, S. Y., & Luke, E. P. (2019). Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration? Atmospheric Measurement Techniques, 12(6), 3151–3171.

    Article  Google Scholar 

  89. Mahoney, K., Jackson, D. L., Neiman, P., Hughes, M., Darby, L., Wick, G., et al. (2016). Understanding the role of atmospheric rivers in heavy precipitation in the southeast united states. Monthly Weather Review, 144(4), 1617–1632.

    Article  Google Scholar 

  90. Maizlish, N., Woodcock, J., Co, S., Ostro, B., Fanai, A., & Fairley, D. (2013). Health cobenefits and transportation-related reductions in greenhouse gas emissions in the San Francisco bay area. American Journal of Public Health, 103(4), 703–709.

    Article  Google Scholar 

  91. Malaver Rojas, J. A., Motta, N., Gonzalez, L. F., Corke, P., & Depari, A. (2012). Towards the development of a gas sensor system for monitoring pollutant gases in the low troposphere using small unmanned aerial vehicles. In R. N. Smith (Ed.), Workshop on Robotics for Environmental Monitoring, 11 July 2012, Sydney University, N. S. W.

    Google Scholar 

  92. Markandya, A., Armstrong, B. G., Hales, S., Chiabai, A., Criqui, P., Mima, S., et al. (2009). Public health benefits of strategies to reduce greenhouse-gas emissions: Low-carbon electricity generation. The Lancet, 374(9706), 2006–2015.

    Article  Google Scholar 

  93. Marlier, M. E., DeFries, R. S., Voulgarakis, A., Kinney, P. L., Randerson, J. T., Shindell, D. T., et al. (2013). El niño and health risks from landscape fire emissions in Southeast Asia. Nature Climate Change, 3(2), 131.

    Article  Google Scholar 

  94. Mass, C., Skalenakis, A., & Warner, M. (2011). Extreme precipitation over the west coast of North America: Is there a trend? Journal of Hydrometeorology, 12(2), 310–318.

    Article  Google Scholar 

  95. Matrosov, S. Y. (2017). Characteristic raindrop size retrievals from measurements of differences in vertical Doppler velocities at Ka-and W-band radar frequencies. Journal of Atmospheric and Oceanic Technology, 34(1), 65–71.

    Article  Google Scholar 

  96. Matrosov, S. Y., & Turner, D. D. (2018). Retrieving mean temperature of atmospheric liquid water layers using microwave radiometer measurements. Journal of Atmospheric and Oceanic Technology, 35(5), 1091–1102.

    Article  Google Scholar 

  97. McCaffrey, K., Bianco, L., Johnston, P., & Wilczak, J. M. (2017). A comparison of vertical velocity variance measurements from wind profiling radars and sonic anemometers. Atmospheric Measurement Techniques, 10(3), 999.

    Article  Google Scholar 

  98. McCaffrey, K., Bianco, L., & Wilczak, J. M. (2017). Improved observations of turbulence dissipation rates from wind profiling radars. Atmospheric Measurement Techniques, 10(7), 2595–2611.

    Article  Google Scholar 

  99. McCaffrey, K., Quelet, P. T., Choukulkar, A., Wilczak, J. M., Wolfe, D. E., Oncley, S. P., et al. (2017). Identification of tower-wake distortions using sonic anemometer and lidar measurements. Atmospheric Measurement Techniques, 10(NREL/JA-5000-68031), 393–407.

    Article  Google Scholar 

  100. McVicar, T. R., Roderick, M. L., Donohue, R. J., Li, L. T., Van Niel, T. G., Thomas, A., et al. (2012). Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. Journal of Hydrology, 416, 182–205.

    Article  Google Scholar 

  101. Mir, L. (2008). Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: A review. Environnement, Risques & Santé, 7(1), 10–11.

    Google Scholar 

  102. Mirabelli, M., Sarnat, S., & Damon, S. (2019). Air quality index and air quality awareness among adults in the united states. In C45. Effects of the environment on pulmonary health, pp. A4909–A4909. New York: American Thoracic Society.

    Chapter  Google Scholar 

  103. Mohanty, U., & Gupta, A. (2008). Deterministic methods for prediction of tropical cyclone tracks. In Modelling and monitoring of coastal marine processes (pp. 141–170). Berlin: Springer.

    Chapter  Google Scholar 

  104. Mueller, J. L., Bidigare, R., Trees, C., Balch, W., Dore, J., Drapeau, D., et al. (2003). Ocean optics protocols for satellite ocean color sensor validation, revision 5. Volume v: Biogeochemical and bio-optical measurements and data analysis protocols. Greenbelt: Goddard Space Flight Space Center.

    Google Scholar 

  105. Mueller, M. J., Mahoney, K. M., & Hughes, M. (2017). High-resolution model-based investigation of moisture transport into the Pacific Northwest during a strong atmospheric river event. Monthly Weather Review, 145(9), 3861–3879.

    Article  Google Scholar 

  106. Murphy, M. (1994). Weathering the storm: Water systems versus hurricanes. Journal-American Water Works Association, 86(1), 74–83.

    Article  Google Scholar 

  107. Myers, D. R. (2016). Solar radiation: Practical modeling for renewable energy applications. Boca Raton: CRC Press.

    Google Scholar 

  108. Nakicenovic, N., Alcamo, J., Grubler, A., Riahi, K., Roehrl, R., Rogner, H. H., et al. (2000). Special report on emissions scenarios (SRES), a special report of Working Group III of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  109. Nam, W. H., Feng, S., Hayes, M. J., Svoboda, M. D., Fuchs, B., Hong, E. M., et al. (2018). Flash drought risk assessment over China and Korea using evaporative demand drought index (EDDI). In AGU fall meeting abstracts.

    Google Scholar 

  110. National Research Council, Division on Earth and Life Studies, Board on Atmospheric Sciences and Climate, Committee on Stabilization Targets for Atmospheric Greenhouse Gas Concentrations. (2011). Climate stabilization targets: Emissions, concentrations, and impacts over decades to millennia. Washington: National Academies Press.

    Google Scholar 

  111. Neiman, P. J., Ralph, F. M., White, A., Kingsmill, D., & Persson, P. (2002). The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Monthly Weather Review, 130(6), 1468–1492.

    Article  Google Scholar 

  112. Neiman, P. J., Wick, G. A., Ralph, F. M., Martner, B. E., White, A.B., & Kingsmill, D. E. (2005). Wintertime nonbrightband rain in California and Oregon during CALJET and PACJET: Geographic, interannual, and synoptic variability. Monthly Weather Review, 133(5), 1199–1223.

    Article  Google Scholar 

  113. Neiman, P. J., Gaggini, N., Fairall, C. W., Aikins, J., Spackman, J. R., Leung, L.R., et al. (2017). An analysis of coordinated observations from NOAA’s Ronald H. Brown ship and G-IV aircraft in a landfalling atmospheric river over the North Pacific during CalWater-2015. Monthly Weather Review, 145(9), 3647–3669.

    Article  Google Scholar 

  114. Newsom, R. K., Brewer, W. A., Wilczak, J. M., Wolfe, D., Oncley, S., & Lundquist, J. K. (2017). Validating precision estimates in horizontal wind measurements from a Doppler lidar. Atmospheric Measurement Techniques, 10(3), 1229–1240.

    Article  Google Scholar 

  115. Norgren, M. S., Boer, G. D., & Shupe, M. D. (2018). Observed aerosol suppression of cloud ice in low-level arctic mixed-phase clouds. Atmospheric Chemistry and Physics, 18(18), 13345–13361.

    Article  Google Scholar 

  116. Parris, A. S., Bromirski, P., Burkett, V., Cayan, D. R., Culver, M. E., Hall, J., et al. (2012). Global sea level rise scenarios for the united states national climate assessment. NOAA technical report OAR CPO.

    Google Scholar 

  117. Patz, J. A., McGeehin, M. A., Bernard, S. M., Ebi, K. L., Epstein, P. R., Grambsch, A., et al. (2000). The potential health impacts of climate variability and change for the united states: Executive summary of the report of the health sector of the us national assessment. Environmental Health Perspectives, 108(4), 367–376.

    Article  Google Scholar 

  118. Perlwitz, J., & Graf, H. F. (1995). The statistical connection between tropospheric and stratospheric circulation of the Northern Hemisphere in winter. Journal of Climate, 8(10), 2281–2295.

    Article  Google Scholar 

  119. Perlwitz, J., Knutson, T., Kossin, J. P., & LeGrande, A. N. (2017). Large-scale circulation and climate variability. In D. J. Wuebbles, D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, & T. K. Maycock (Eds.) Climate Science special report: Fourth national climate assessment. U.S. Global Change Research Program (Vol. I, pp. 161–184). http://doi.org/10.7930/J0RV0KVQ.

  120. Peterson, T. C., Stott, P. A., & Herring, S. (2012). Explaining extreme events of 2011 from a climate perspective. Bulletin of the American Meteorological Society, 93(7), 1041–1067.

    Article  Google Scholar 

  121. Peterson, T. C., Heim, Jr., R. R., Hirsch, R., Kaiser, D. P., Brooks, H., Diffenbaugh, N. S., et al. (2013). Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the united states: State of knowledge. Bulletin of the American Meteorological Society, 94(6), 821–834.

    Article  Google Scholar 

  122. Pettersen, C., Bennartz, R., Merrelli, A. J., Shupe, M. D., Turner, D. D., & Walden, V. P. (2018). Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations. Atmospheric Chemistry and Physics, 18(7), 4715–4735.

    Article  Google Scholar 

  123. Pichugina, Y. L., Banta, R. M., Olson, J. B., Carley, J. R., Marquis, M. C., Brewer, W. A., et al. (2017). Assessment of NWP forecast models in simulating offshore winds through the lower boundary layer by measurements from a ship-based scanning Doppler lidar. Monthly Weather Review, 145(10), 4277–4301.

    Article  Google Scholar 

  124. Polvani, L. M., Sun, L., Butler, A. H., Richter, J.H., & Deser, C. (2017). Distinguishing stratospheric sudden warmings from ENSO as key drivers of wintertime climate variability over the north Atlantic and Eurasia. Journal of Climate, 30(6), 1959–1969.

    Article  Google Scholar 

  125. Popovicheva, O., Diapouli, E., Makshtas, A., Shonija, N., Manousakas, M., Saraga, D., et al. (2019). East Siberian Arctic background and black carbon polluted aerosols at HMO Tiksi. Science of the Total Environment, 655, 924–938.

    Article  Google Scholar 

  126. Potyrailo, R. A. (2016). Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet. Chemical Reviews, 116(19), 11877–11923.

    Article  Google Scholar 

  127. Privette, J., Fowler, C., Wick, G., Baldwin, D., & Emery, W. (1995). Effects of orbital drift on advanced very high resolution radiometer products: Normalized difference vegetation index and sea surface temperature. Remote Sensing of Environment, 53(3), 164–171.

    Article  Google Scholar 

  128. Pruski, F. F., & Nearing, M. A. (2002). Runoff and soil-loss responses to changes in precipitation: A computer simulation study. Journal of Soil and Water Conservation, 57(1), 7–16.

    Google Scholar 

  129. Rahman, M. M., Mostofa, M. G., Rahman, M. A., Miah, M. G., Saha, S. R., Karim, M. A., et al. (2019). Insight into salt tolerance mechanisms of the halophyte Achras sapota: An important fruit tree for agriculture in coastal areas. Protoplasma, 256(1), 181–191.

    Article  Google Scholar 

  130. Ralph, F. M., Neiman, P. J., & Wick, G. A. (2004). Satellite and CALJET aircraft observations of atmospheric rivers over the eastern north Pacific ocean during the winter of 1997/98. Monthly Weather Review, 132(7), 1721–1745.

    Article  Google Scholar 

  131. Ralph, F., Iacobellis, S., Neiman, P., Cordeira, J., Spackman, J., Waliser, D., et al. (2017). Dropsonde observations of total integrated water vapor transport within North Pacific atmospheric rivers. Journal of Hydrometeorology, 18(9), 2577–2596.

    Article  Google Scholar 

  132. Ralph, F. M., Dettinger, M., Lavers, D., Gorodetskaya, I. V., Martin, A., Viale, M., et al. (2017). Atmospheric rivers emerge as a global science and applications focus. Bulletin of the American Meteorological Society, 98(9), 1969–1973.

    Article  Google Scholar 

  133. Roberts, J., Clayson, C., Robertson, F., & Jackson, D. (2010). Predicting near-surface characteristics from SSM/I using neural networks with a first guess approach. Journal of Geophysical Research, 115, D19113.

    Article  Google Scholar 

  134. Rolinski, T., Capps, S. B., & Zhuang, W. (2019). Santa Ana winds: A descriptive climatology. Weather and Forecasting, 34(2), 257–275.

    Article  Google Scholar 

  135. Rosário, N. E., Yamasoe, M. A., Brindley, H., Eck, T. F., & Schafer, J. (2011). Downwelling solar irradiance in the biomass burning region of the southern Amazon: Dependence on aerosol intensive optical properties and role of water vapor. Journal of Geophysical Research Atmospheres, 116(D18), 1–10.

    Article  Google Scholar 

  136. Sanchez-Cohen, I., Díaz-Padilla, G., Velasquez-Valle, M., Slack, D. C., Heilman, P., & Pedroza-Sandoval, A. (2015). A decision support system for rainfed agricultural areas of Mexico. Computers and Electronics in Agriculture, 114, 178–188.

    Article  Google Scholar 

  137. Sands, R. D., & Edmonds, J. A. (2005). Climate change impacts for the conterminous USA: An integrated assessment. In: Climate change impacts for the conterminous USA (pp. 127–150). Berlin: Springer.

    Chapter  Google Scholar 

  138. Schaller, M. F., & Fan, Y. (2009). River basins as groundwater exporters and importers: Implications for water cycle and climate modeling. Journal of Geophysical Research Atmospheres, 114(D4), 1–21.

    Article  Google Scholar 

  139. Scheuerer, M., & Hamill, T. M. (2018). Generating calibrated ensembles of physically realistic, high-resolution precipitation forecast fields based on GEFS model output. Journal of Hydrometeorology, 19(10), 1651–1670.

    Article  Google Scholar 

  140. Send, U., Wallace, D. W. R., Lampitt, R., Honda, M. C., Lukas, R., Feely R., et al. (2009). OceanSITES. In Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society. Paris: European Space Agency. http://dx.doi.org/10.5270/OceanObs09.cwp.79.

    Google Scholar 

  141. Shields, C. A., Rutz, J. J., Leung, L. Y., Ralph, F. M., Wehner, M., Kawzenuk, B., et al. (2018). Atmospheric river tracking method intercomparison project (ARTMIP): Project goals and experimental design. Geoscientific Model Development, 11(6), 2455–2474.

    Article  Google Scholar 

  142. Smit, B., & Skinner, M. W. (2002). Adaptation options in agriculture to climate change: A typology. Mitigation and Adaptation Strategies for Global Change, 7(1), 85–114.

    Article  Google Scholar 

  143. Sossa, A., Liebmann, B., Bladé, I., Allured, D., Hendon, H.H., Peterson, P., et al. (2017). Statistical connection between the Madden–Julian oscillation and large daily precipitation events in west Africa. Journal of Climate, 30(6), 1999–2010.

    Article  Google Scholar 

  144. Spickett, J. T., Brown, H., & Rumchev, K. (2011). Climate change and air quality: The potential impact on health. Asia Pacific Journal of Public Health, 23(2), 37S–45S.

    Article  Google Scholar 

  145. Stillwell, R. A., Neely, III, R. R., Thayer, J. P., Shupe, M. D., & Turner, D. D. (2018). Improved cloud-phase determination of low-level liquid and mixed-phase clouds by enhanced polarimetric lidar. Atmospheric Measurement Techniques, 11(2), 835–859.

    Article  Google Scholar 

  146. Stone, B., Hess, J. J., & Frumkin, H. (2010). Urban form and extreme heat events: Are sprawling cities more vulnerable to climate change than compact cities? Environmental Health Perspectives, 118(10), 1425–1428.

    Article  Google Scholar 

  147. Strauch, R. G., Merritt, D., Moran, K., Earnshaw, K., & De Kamp, D. V. (1984). The Colorado wind-profiling network. Journal of Atmospheric and Oceanic Technology, 1(1), 37–49.

    Article  Google Scholar 

  148. Sun, L., Alexander, M., & Deser, C. (2018). Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change. Journal of Climate, 31(19), 7823–7843.

    Article  Google Scholar 

  149. Tagaris, E., Manomaiphiboon, K., Liao, K. J., Leung, L. R., Woo, J. H., He, S., et al. (2007). Impacts of global climate change and emissions on regional ozone and fine particulate matter concentrations over the united states. Journal of Geophysical Research Atmospheres, 112(D14), 1–11.

    Article  Google Scholar 

  150. Tao, F., Zuo, Y., Da Xu, L., Lv, L., & Zhang, L. (2014). Internet of things and BOM-based life cycle assessment of energy-saving and emission-reduction of products. IEEE Transactions on Industrial Informatics, 10(2), 1252–1261.

    Article  Google Scholar 

  151. Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1–2), 123–138.

    Article  Google Scholar 

  152. Turner, D., Shupe, M., & Zwink, A. (2018). Characteristic atmospheric radiative heating rate profiles in arctic clouds as observed at barrow, Alaska. Journal of Applied Meteorology and Climatology, 57(4), 953–968.

    Article  Google Scholar 

  153. Twigg, J., Christie, N., Haworth, J., Osuteye, E., & Skarlatidou, A. (2017). Improved methods for fire risk assessment in low-income and informal settlements. International Journal of Environmental Research and Public Health, 14(2), 139.

    Article  Google Scholar 

  154. United States Environmental Protection Agency. (2013). Inventory of us greenhouse gas emissions and sinks: 1990–2011 (vol. 505). Washington DC: United States Environmental Protection Agency.

    Google Scholar 

  155. Vose, R. S., Applequist, S., Bourassa, M. A., Pryor, S. C., Barthelmie, R. J., Blanton, B., et al. (2014). Monitoring and understanding changes in extremes: Extratropical storms, winds, and waves. Bulletin of the American Meteorological Society, 95(3), 377–386.

    Article  Google Scholar 

  156. Walden, V., & Shupe, M. (2013). Radiosonde temperature and humidity profiles taken at summit station, Greenland, Arctic Data Center.

    Google Scholar 

  157. Wall, E., & Smit, B. (2005). Climate change adaptation in light of sustainable agriculture. Journal of Sustainable Agriculture, 27(1), 113–123.

    Article  Google Scholar 

  158. Walthall, C. L., Hatfield, J., Backlund, P., Lengnick, L., Marshall, E., Walsh, M., et al. (2012). Climate change and agriculture in the United States: Effects and adaptation (p. 186). Washington: USDA Technical Bulletin 1935.

    Google Scholar 

  159. Wang, Y., Li, J., & Wang, H. H. (2019). Cluster and cloud computing framework for scientific metrology in flow control. Cluster Computing, 22(1), 1189–1198.

    Article  Google Scholar 

  160. Wen, Y., Behrangi, A., Chen, H., & Lambrigtsen, B. (2018). How well were the early 2017 California atmospheric river precipitation events captured by satellite products and ground-based radars? Quarterly Journal of the Royal Meteorological Society, 144, 344–359.

    Article  Google Scholar 

  161. Wendisch, M., Macke, A., Ehrlich, A., Lüpkes, C., Mech, M., Chechin, D., et al. (2019). The Arctic cloud puzzle: Using ACLOUD/PASCAL multiplatform observations to unravel the role of clouds and aerosol particles in arctic amplification. Bulletin of the American Meteorological Society, 100(5), 841–871.

    Article  Google Scholar 

  162. White, A. B., Gottas, D. J., Ralph, F. M., & Neiman, P. J. (2003). Operational bright-band snow level detection using Doppler radar. US Patent 6,615,140.

    Google Scholar 

  163. Wick, G. A., Bates, J. J., & Gottschall, C. C. (2000). Observational evidence of a wind direction signal in SSM/I passive microwave data. IEEE transactions on Geoscience and Remote Sensing, 38(2), 823–837.

    Article  Google Scholar 

  164. Wick, G. A., Bates, J. J., & Scott, D. J. (2002). Satellite and skin-layer effects on the accuracy of sea surface temperature measurements from the goes satellites. Journal of Atmospheric and Oceanic Technology, 19(11), 1834–1848.

    Article  Google Scholar 

  165. Wick, G. A., Neiman, P. J., & Ralph, F. M. (2012). Description and validation of an automated objective technique for identification and characterization of the integrated water vapor signature of atmospheric rivers. IEEE Transactions on Geoscience and Remote Sensing, 51(4), 2166–2176.

    Article  Google Scholar 

  166. Wick, G. A., Neiman, P. J., Ralph, F. M., & Hamill, T. M. (2013). Evaluation of forecasts of the water vapor signature of atmospheric rivers in operational numerical weather prediction models. Weather and Forecasting, 28(6), 1337–1352.

    Article  Google Scholar 

  167. Wilkinson, P., Smith, K. R., Davies, M., Adair, H., Armstrong, B. G., Barrett, M., et al. (2009). Public health benefits of strategies to reduce greenhouse-gas emissions: Household energy. The Lancet, 374(9705), 1917–1929.

    Article  Google Scholar 

  168. Wilson, D., Ziemann, A., Ostashev, V., & Voronovich, A. (2001). An overview of acoustic travel-time tomography in the atmosphere and its potential applications. Acta Acustica United with Acustica, 87(6), 721–730.

    Google Scholar 

  169. Wood, K. R., Jayne, S. R., Mordy, C. W., Bond, N., Overland, J. E., Ladd, C., et al. (2018). Results of the first arctic heat open science experiment. Bulletin of the American Meteorological Society, 99(3), 513–520.

    Article  Google Scholar 

  170. Woodcock, J., Edwards, P., Tonne, C., Armstrong, B. G., Ashiru, O., Banister, et al. (2009). Public health benefits of strategies to reduce greenhouse-gas emissions: Urban land transport. The Lancet, 374(9705), 1930–1943.

    Article  Google Scholar 

  171. Yu, L., & Weller, R. A. (2007). Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bulletin of the American Meteorological Society, 88(4), 527–540.

    Article  Google Scholar 

  172. Zhang, J. A., Cione, J. J., Kalina, E. A., Uhlhorn, E. W., Hock, T., & Smith, J.A. (2017). Observations of infrared sea surface temperature and air–sea interaction in Hurricane Edouard (2014) using GPS dropsondes. Journal of Atmospheric and Oceanic Technology, 34(6), 1333–1349.

    Article  Google Scholar 

  173. Ziska, L. H. (2011). Climate change, carbon dioxide and global crop production: Food security and uncertainty. Handbook on Climate Change and Agriculture (pp. 9–31). Cheltenham: Edward Elgar.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salam, A. (2020). Internet of Things for Environmental Sustainability and Climate Change. In: Internet of Things for Sustainable Community Development. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-35291-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35291-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35290-5

  • Online ISBN: 978-3-030-35291-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics