Skip to main content

Improving Privacy Through Fast Passive Wi-Fi Scanning

  • Conference paper
  • First Online:
Secure IT Systems (NordSec 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11875))

Included in the following conference series:

Abstract

Traditionally, Wi-Fi networks are discovered by actively transmitting probe requests. The alternative, passive scanning, is rarely used because it is substantially slower. Unfortunately, active scanning can be abused to track users based on (physical) fingerprints of probe requests. Previous work attempted to address these issues by making active scanning more privacy-friendly. For instance, Franklin et al. proposed to make implementations more uniform (USENIX Security 2006), and Lindqvist et al. suggested to use encrypted probe requests (WiSec 2009). However, a better approach is to make passive scanning faster. This motivates vendors to use passive scanning, increasing the privacy of users.

Motivated by the above insight, we improve the performance of passive scanning. We implement our proposals on Android, and show the average time needed to connect to a known network using passive scanning now matches active scanning. Additionally, we implement a new network-discovery mechanism that drastically decreases scanning times, and present a new method to fingerprint Wi-Fi radios. All combined, our results show that passive scanning is a viable and more privacy-friendly alternative to active scanning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is the file /system/etc/firmware/wlan/qca_cld/WCNSS_qcom_cfg.ini.

  2. 2.

    Our code, including a build for the Nexus 5X, is available at https://github.com/vanhoefm/nordsec-passivescan.

  3. 3.

    https://openwifi.su/download.php?lang=en.

References

  1. Arcia-Moret, A., Molina, L., Montavont, N., Castignani, G., Blanc, A.: Access point discovery in 802.11 networks. In: IFIP WD (2014)

    Google Scholar 

  2. Barbera, M.V., Epasto, A., Mei, A., Perta, V.C., Stefa, J.: Signals from the crowd: uncovering social relationships through smartphone probes. In: IMC (2013)

    Google Scholar 

  3. Bonne, B., Barzan, A., Quax, P., Lamotte, W.: WiFiPi: involuntary tracking of visitors at mass events. In: WoWMoM Workshop (2013)

    Google Scholar 

  4. Brik, V., Banerjee, S., Gruteser, M., Oh, S.: Wireless device identification with radiometric signatures. In: MobiCom (2008)

    Google Scholar 

  5. Campbell-Dollaghan, K.: Brave new garbage: London’s trash cans track you using your smartphone (2013)

    Google Scholar 

  6. Castignani, G., Arcia, A., Montavont, N.: A study of the discovery process in 802.11 networks. ACM Mob. Comput. Commun. Rev. 15(1), 25–36 (2011)

    Article  Google Scholar 

  7. Cisco: Dynamic channel assignment (DCA). www.cisco.com/c/en/us/td/docs/wireless/controller/technotes/8-1/mobility_express/b_RRM_White_Paper/b_RRM_White_Paper_chapter_0100.pdf. Accessed 1 Aug 2019

  8. Cisco Systems: Channel deployment issues for 2.4-GHz 802.11 WLANs (2004). xenguard.com/library/wifi/wifi-channels.pdf. Accessed 16 July 2018

  9. Franklin, J., McCoy, D., Tabriz, P., Neagoe, V., Randwyk, J.V., Sicker, D.: Passive data link layer 802.11 wireless device driver fingerprinting. In: USENIX Sec (2006)

    Google Scholar 

  10. Freudiger, J.: How talkative is your mobile device? An experimental study of Wi-Fi probe requests. In: WiSec (2015)

    Google Scholar 

  11. Greenstein, B., McCoy, D., Pang, J., Kohno, T., Seshan, S., Wetherall, D.: Improving wireless privacy with an identifier-free link layer protocol. In: MobiSys (2008)

    Google Scholar 

  12. Gupta, V., Beyah, R., Corbett, C.: A characterization of wireless NIC active scanning algorithms. In: WCNC (2007)

    Google Scholar 

  13. IEEE Std 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Spec (2016)

    Google Scholar 

  14. Khoury, P.: Multiple BSSID support. In: IEEE 802.11-16/0586r1 (2016)

    Google Scholar 

  15. Kim, Y.S., Tian, Y., Nguyen, L.T., Tague, P.: LAPWiN: location-aided probing for protecting user privacy in Wi-Fi networks. In: CNS (2014)

    Google Scholar 

  16. Lindqvist, J., Aura, T., Danezis, G., Koponen, T., Myllyniemi, A., Mäki, J., Roe, M.: Privacy-preserving 802.11 access-point discovery. In: WiSec (2009)

    Google Scholar 

  17. Martin, J., et al.: A study of MAC address randomization in mobile devices and when it fails. PETS 2017(4), 365–383 (2017)

    Google Scholar 

  18. Matte, C., Cunche, M., Franck, R., Vanhoef, M.: Defeating MAC address randomization through timing attacks. In: WiSec, July 2016

    Google Scholar 

  19. Microsoft: Non-broadcast wireless SSIDs: why hidden wireless networks are a bad idea (2008). blogs.technet.microsoft.com. Accessed 16 July 2018

  20. Nicholson, A.J., Noble, B.D.: Breadcrumbs: Forecasting mobile connectivity. In: MobiCom (2008)

    Google Scholar 

  21. Pang, J., Greenstein, B., Gummadi, R., Seshan, S., Wetherall, D.: 802.11 user fingerprinting. In: MobiCom (2007)

    Google Scholar 

  22. Peddemors, A., Eertink, H., Niemegeers, I.: Predicting mobility events on personal devices. Pervasive Mob. Comput. 6(4), 401–423 (2010)

    Article  Google Scholar 

  23. Vanhoef, M., Matte, C., Cunche, M., Cardoso, L.S., Piessens, F.: Why MAC address randomization is not enough: an analysis of Wi-Fi network discovery mechanisms. In: Asia CCS (2016)

    Google Scholar 

  24. ZyXel: Dynamic channel selection (DCS). https://www.zyxel.com/uploads/Dynamic_Channel_Selection_4.20.pdf. Accessed 1 Aug 2019

Download references

Acknowledgments

Gunes Acar and Mathy Vanhoef hold a Postdoctoral fellowship from the Research Foundation Flanders (FWO). This work is partially supported by the Research Fund KU Leuven and by the Center for Cyber Security at New York University Abu Dhabi (NYUAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathy Vanhoef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goovaerts, F., Acar, G., Galvez, R., Piessens, F., Vanhoef, M. (2019). Improving Privacy Through Fast Passive Wi-Fi Scanning. In: Askarov, A., Hansen, R., Rafnsson, W. (eds) Secure IT Systems. NordSec 2019. Lecture Notes in Computer Science(), vol 11875. Springer, Cham. https://doi.org/10.1007/978-3-030-35055-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35055-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35054-3

  • Online ISBN: 978-3-030-35055-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics